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Abstract— A robot making contact with an environment
or human presents potential safety risks, including excessive
collision force. While experiments on the effect of robot inertia,
relative velocity, and interface stiffness on collision are in
literature, analytical models for maximum collision force are
limited to a simplified mass-spring robot model. This simplified
model limits the analysis of control (force/torque, impedance,
or admittance) or compliant robots (joint and end-effector
compliance). Here, the Sobolev norm is adapted to be a system
norm, giving rigorous bounds on the maximum force on a
stiffness element in a general dynamic system, allowing the
study of collision with more accurate models and feedback
control. The Sobolev norm can be found through the H2

norm of a transformed system, allowing efficient computation,
connection with existing control theory, and controller synthesis
to minimize collision force. The Sobolev norm is validated,
first experimentally with an admittance-controlled robot, then
in simulation with a linear flexible-joint robot. It is then
used to investigate the impact of control, joint flexibility and
end-effector compliance on collision, and a trade-off between
collision performance and environmental estimation uncertainty
is shown.

I. INTRODUCTION

Mechatronic design for position control is largely stan-
dardized - every position-controlled robot has high drive-
train stiffness with a controller designed for high-bandwidth
tracking performance and disturbance rejection. On the other
hand, mechatronic design for physically interactive robots
is more application-specific [1]–[3], where joint stiffness,
end-effector compliance, and control architecture vary sig-
nificantly. To design interactive robots, methods to quantify
the impact of compliance and control on performance and
safety are needed. Some trade-offs between performance and
robustness have been shown [4], and the role of joint com-
pliance on relaxing coupled stability conditions investigated
[5], but unified design methods are not yet established.

One design requirement for interactive robots robot is
establishing safe contact with a human or environment, in
both collision (unintended) or contact transition (intended).
To allow safe robots moving at reasonable speeds in semi-
structured environments, a limit on contact force should
be achieved over possible contacts. Design for contact is
challenging, as contact with a stiff environment introduces
broad frequency input to the robot, exciting high-frequency
resonance modes which are often unmodelled. Additionally,
the high-frequency dynamics of the robot can’t be easily
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Fig. 1: Two inertia robot model with motor inertia J ,
joint flexibility Kjt (e.g. from torque sensor or harmonic
gearbox), link inertia I , and compliance at the interface Ke

(e.g. soft skin, compliant end-effector), in contact with an
environment. Scaled Dirac delta impulses δ induce the initial
contact velocity.

reshaped by control due to controller bandwidth limitations.
This makes the intrinsic dynamics of a robot especially
important in collision, motivating the need for physical
compliance on otherwise high-impedance robots[15].

Compliance can be realized as a flexible joint between the
motor and load [16], [17], a compliant covering [18], or a
soft end-effector. Choosing the stiffness of these compliant
elements is as much an art as a science, relying on iterative
testing, and realized values in commercial products are
often kept as trade secrets. Often, other important robot
characteristics are fixed (e.g. motor inertia, link inertia),
leaving the choice of stiffness and control architecture as
important design choices.

Designing compliance and control to avoid user injury
is important for human-robot applications. Characterizing
human injury from robot collision is experimentally well-
established, and several established metrics are shown in
Table I. Early work [19] experimentally established force
thresholds for pain. A line of investigation [15], [20]–[23]
draws collision metrics from automotive testing standards
and experimentally establishes the impact of the robot’s
reflected inertia, velocity, and impact geometry on these
metrics.

Analytically relating robot design to these biomechanic
safety limits is challenging. ISO 15066:2016, which sets
guidelines for human-robot collision, uses a two mass, single
stiffness model under perfect elastic collision to motivate safe
robot speed limits [6]. For low-stiffness flexible-joint robots,
it is suggested that link-side dynamics dominate collision
force and that motor inertia can be neglected [21]. While later
work [24] elaborates, a wide range of joint stiffness are used
in practice, from series-elastic and variable stiffness actuators
(20−1000 Nm/rad [25], [26]), impedance-controlled flexible-
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TABLE I: Collision metrics in literature

Quantity Name Domain Notes, reference

max |f (t)| Maximum Force* Human, Environment Most fundamental [6]–[9]
fss = f(t)|t→∞ Steady State Force Clamped human, Stiffness environment [6], [10], [11]
max |f (t) v (t)| Maximum Power Human, Environment Mentioned, but not investigated in [6]∫
|f (t) v (t)| dt Absolute Energy Transfer* Human, Environment Typ. taken over initial penetration [6], [12], [13]

∆
−3/2
t ‖a (t) |‖5/22 Head Injury Criterion Human: Head, unconstrained 2-norm only over ∆t, [14], [15]

∗ Also extended to per-unit-area metrics (i.e. pressure, energy flux)

joint robots (e.g. Kuka IIWA ∼ 10kNm/rad [27]), to a
standard harmonic drive gearbox (>15 kNm/rad), suggesting
analysis which can accommodate a range of joint stiffnesses
is useful.

For contact with a pure-stiffness environment, there is
established literature for stability [7], [10], [28], and limiting
the peak force of a rigid, perfectly backdriveable robot [8]
using inelastic/elastic collision models. Energy-based plan-
ning methods have also been introduced, to bound kinetic
energy in robot links [23], or bound maximum power flow
between robot and environment [29].

To quantify the effect of compliance and control on colli-
sion force, this paper adapts the Sobolev norm as a system
norm, allowing a rigorous bound on maximum collision
force with an arbitrary environment. The Sobolev norm is
shown to be the H2 norm of a transformed system, allowing
computation with existing methods. This norm is validated
experimentally and in simulation, for pure stiffness as well
as inertial environments. The impact of joint and interface
compliance, motor dynamics, and control on a linearized
two-inertia robot model is investigated. Finally, a trade-off
between collision performance and environmental estimation
uncertainty is shown.

II. SYSTEM METRICS FOR INTERACTIVE ROBOTS

This section motivates the collision model and approaches
for translating collision metrics into system norms.

A. Impact Metrics and Models

Some impact metrics used in experimental literature can
be seen in Table I, where the force and velocity at the
interaction port are denoted f(t) and v(t), and acceleration
of an environmental inertia is a(t) (e.g. head acceleration).

Contact is here modelled with a rigidly coupled
robot/environment - neglecting unilateral contact conditions.
The robot model is seen in Figure 1, with two inertias
(motor and link inertia), and two stiffnesses (joint and end-
effector compliance). This model accommodates impedance
and admittance-controlled robots, which respectively mea-
sure joint torque at Kjt or end-effector force/torque near
Ke (wrist force/torque sensor). For a serial manipulator, this
model can be considered as a linearization about a contact
pose.

To model the relative velocity v0 between robot and
environment at the moment contact is made, a state-space
model could be used with initial conditions θ̇ = q̇ = v0.
Here, it is convenient to represent this initial velocity as a

Dirac delta input at each robot inertia, scaled by that inertia’s
momentum. This impulse, when applied at t = 0, induces
the initial velocity v0. As any output force is linear in this
contact velocity, a unit velocity v0 = 1 is assumed.

B. Metric Bounds by Norms

Given the model in Figure 1, it is desired to guaran-
tee bounds on the collision metrics seen in Table I as a
function of robot properties. Let the force of interest be
f(t) = Ke(x− q), the contact force at the interface with the
environment. Denote the transfer function from δ → f as
Gf (s). Recall that max|f(t)| = ||f(t)||∞, and when there
is no other input to the system (x = 0, τm = 0, δ is the
Dirac impulse), f(t) = L −1 {Gf (s)} [30]. Although f(t)
is, in general, an arbitrary output of the system, it will be
here regarded as the force response to the unit velocity initial
condition with a specified environment and control policy.

If a different linear collision model is written with input
u(t) ∈ L∞ (note that an impulse δ /∈ L∞), with transfer
function Guf (s) for dynamics u → f , the force can be
bounded as ‖f(t)‖∞ < ‖guf (t)‖1‖u(t)‖∞ [31], but the 1
norm of an impulse response guf (t) = L−1 {Guf (s)} is
not easily computed, and the conservatism of this norm in
collision analysis is noted [7].

C. Sobolev Spaces

Recall that while norm equivalence is guaranteed over
a finite-dimensional vector space V (i.e. ∃c s.t. ‖x‖q <
c ‖x‖p ∀x ∈ V), this does not hold for uncountably infinite
spaces, such as continuous-time signals f(t) ∈ Lp. So,
bounding ‖f(t)‖2 or ‖f(t)‖1 does not guarantee a bound
on ‖f(t)‖∞.

If a signal is continuous with a continuous derivative,
Sobolev spaces can be used to find absolute bounds on
‖f(t)‖∞. Define the Sobolev norm as

‖f(t)‖W 1,p = ‖f (t) ‖pp + ‖ḟ (t) ‖pp, (1)

then the following inequality holds from [32], Theorem 8.8,

‖f (t)‖∞ ≤ γ ‖f (t)‖W 1,p ∀f ∈W 1,p, (2)

for a fixed constant γ. The proof is reproduced in the
Appendix, with the intuition that while a signal with a finite
square integral can have an arbitrarily large peak (e.g. a
Gaussian distribution as covariance approaches zero), if the
square integral of a signal and its derivative are bounded, a
bound on the absolute signal peak exists.



If the 2−norm is used and f(t) is scalar, ‖f (t)‖W 1,2

can be expressed in the frequency domain with Parseval’s
Theorem [30], yielding:

‖f(t)‖W 1,2 = ‖F (jω)‖22 + ‖jωF (jω)‖22 (3)

where F (jω) is the Fourier transform of f (t). For the
collision model here, F (jω) = Gf (jω), the transfer function
from δ → f .

When the signal F (jω) is a rational polynomial with
relative degree two, poles only in the open left half plane, and
lims→0 |F (s)| <∞, the Sobolev norm exists (i.e. is finite),
and can be easily computed from existing signal theory.

These existence conditions restrict the signals which can
be analyzed with the Sobolev norm, but when the force
of interest is the force through a stiffness element between
two inertias, this condition is satisfied. As force is typically
measured by strain gauges on a pure stiffness (in both
joint torque sensors and 6-DOF force/torque sensors), this
condition is practical for bounding the measured force on
real-world robots.

III. MECHATRONIC DESIGN FOR COLLISION

This section validates the Sobolev norm for interactive
robots in contact with a pure stiffness, and a stiffness/inertia
environment.

A. Pure Stiffness Environment Validation
Contact experiments with a Manutec r3 industrial manip-

ulator under admittance control, as seen in Figure 2, with
details on controller architecture in [10]. The admittance
parameters (stiffness, damping, and inertia) are varied over
a set of 64 contact transitions, with ranges shown in Table
II.

Fig. 2: End-effector of a Manutec r3, in contact with pure-
stiffness environment (∼ 56kN/m) as used in experimental
validation of the proposed collision norm.

The model which the Sobolev norm is applied to is
a linearized model for the position-controlled robot, and

the outer-loop admittance control parameters (target mass,
damping and stiffness). The environment is identified as a
56kN/m stiffness. This gives a total transfer function:

F (s) =
G

1 + CAGKe +GC +GKe

(
Mv0 + CXd

)
(4)

where C(s) is the position controller, G(s) linearized model
from torque to position, Ke environmental stiffness, A(s) the
target admittance, F (s) the interaction force and Xd(s) the
reference trajectory signal. Model and controller values used
can be seen in Table II. The position reference is dropped in
this analysis because the steady-state force it induces gives
an infinite Sobolev norm, and the transient response (which
contains potentially dangerous force peaks) is assumed to be
dominated by the momentum of the robot (i.e. the Mv0 term
in (4)).

For each contact experiment, the model was simulated
with identical controller parameters, two example experi-
mental and model force trajectories can be seen in Figure
3. A good correspondence in the initial force peak, resonant
frequency, and decay rate are achieved with a model response
using the parameters of Table II. Steady-state error between
model and experiment arises from the contribution of the Xd

reference trajectory, which is not included in the simulation.
The model is then used to calculate the ‖f(t)‖W 1,2 norm

for each controller configuration, which is compared with
the corresponding observed maximum force from the ex-
periments. Results can be seen in Figure 4, achieving good
correspondence between the Sobolev Norm and observed
peak force across a range of peak force values.

1.5 2 2.5 3
−20

−10

0

10

20

30

F 
[N

]

t [s]

κ=56,  ωt =3 [Hz]

1.5 2 2.5 3
−15

−10

−5

0

5

10

15

20

25

F 
[N

]

t [s]

κ=224,  ωt =6 [Hz]

Observed Response
Simulation

Fig. 3: Force response in two contact transitions compared
with simulated response (simulation ignores trajectory refer-
ence, leading to steady-state error).

B. Inertial Environment Validation

To validate the norm in inertial environments, a simulation
was used based on Figure 1, with the environment being a



TABLE II: Model parameters fit to the Manutec r3

Param Value Units/Notes

G (s)
(
308s2 + 40s

)−1 with M = 308

C (s) 85s + 370 position control bandwidth ∼ 4 Hz

Ke 5.6e4 [N/m]

A (s) 1
Mt(s2+2ξωt+ω

2
t )

Ranges used:

{
ωt [.5, 1, 3, 6, 8]

Mt [25− 400]
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Fig. 4: Peak initial force of the experiment compared with
Sobolev Norm of the matching model for various admittance
parameters.

damped inertia (f = Bhẋ+ Ihẍ). The robot parameters are
motivated by the first joint of the KUKA LWR as identified
in [27], and the human parameters (i.e. Ke and environment
inertia H) from Table A.3 in [6]. These human parameters
are translated into rotational coordinates under an assumed
contact radius of .2-.75 meters.

The results seen in Figure 5 compare the maximum force
observed in simulated collision with the Sobolev norm of the
model. Again a good correspondence is achieved over the
range of stiffnesses and inertias expected from humans, with
a largely monotonic relationship. Qualitatively, this norm is
sensitive to damping (just as the H∞ norm is), and sufficient

TABLE III: Robot and Human Model Parameters

Param Value Units/Notes

M 3.19 Kgm2

B 24.3 Nms/rad

Kjt 10 kNm/rad

I 4.5 Kgm2

V 20.3 Nms/rad

Ke ∈ {10r2, 150r2} kNm/rad

Bh 75r2 Nms/rad

Ih ∈ {.6r2, 175r2} Kgm2

r ∈ {.2, .75} m
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Fig. 5: Norm validation in simulation with inertial environ-
ment.

damping on the robot model must be included to maintain
good predictions.

C. Discussion

The relationships seen in Figures 4 and 5 suggests that
although the Sobolev norm is only an upper bound in theory,
it can be useful as a design tool: within a family of related
systems, decreasing the Sobolev norm reduces peak force.
However, the experiments here only demonstrate the Sobolev
norm on systems where parameters of a fixed architecture
are varied. Although this is relevant for mechatronic design
(e.g. choosing joint stiffness, interface compliance, controller
gains), additional validation is required before using the
Sobolev norm to compare impact force between arbitrary
systems.

IV. DESIGN AND ANALYSIS VIA SOBOLEV NORM

With the Sobolev norm providing a useful design ap-
proximation for collision performance, its compatibility with
established H2 theory can be used to investigate the impact
of joint flexibility, interface compliance, and control on peak
collision force.

A. State Space Model

The system shown in Figure 1 can be directly written
in state-space form, separating the environment by taking
it’s velocity ẋ as input. For a pure-stiffness environment,
the stiffness of environment can be incorporated in Ke and
ẋ = x = 0. The augmented state ξ = [θ, θ̇, q, q̇, x] and
the decomposition B = [Bδ, Bτ , Bẋ] will be used in the
following.

d

dt
ξ = Aξ +B

 δ
τm
ẋ

 (5)

w =

[
f

ḟ

]
= Cwξ +D

 δ
τm
ẋ





[
A B
Cw Dw

]
=

0 1 0 0 0 0 0 0
-KjtJ

-1 -BJ-1 KjtJ
-1 0 0 1 J-1 0

0 0 0 1 0 0 0 0
KjtI

-1 0 - (Kjt+Ke) I
-1 -V I-1 0 1 0 0

0 0 0 0 0 0 0 1
0 0 Ke 0 -Ke 0 0 0
0 0 0 Ke 0 0 0 -Ke


B. Sobolev as an H2 norm

The Sobolev norm of the force response of the impulse
collision model can be written as

‖f‖W 1,2 = ‖f(t)‖22 + ‖ḟ(t)‖22 (6)

=

∫ ∞
0

wT (t)w(t)dt (7)

= ‖Gδf (s)‖22, (8)

where Gδf is the transfer function from δ to f . The H2

norm can be directly calculated through the controllability
or observability Gramian [30], for example

‖Gδw‖22 = trace
(
BTδ LoBδ

)
(9)

ATLo + LoA = −CTwCw. (10)

The state feedback controller τm = Kξ which minimizes
the sum of the square of the Sobolev norm and a quadratic
control penalty can be found through an LQR problem [30]

Klqr = arg minK
∫∞
0
wT (t)w(t) + τm(t)TRτm(t)dt(11)

= arg minK ‖f(t)‖2W 1,2 +
∫∞
0
τm(t)TRτm(t)dt,(12)

with minimum cost of tr(BTδ SBδ), where S is the unique
solution to the LQR Ricatti Equation

ATS + SA− SBτR−1BTτ S + CTwCw = 0. (13)

Although the LQR controller is not practical (complete
state-space information is rarely available, high-DOF robots
are not approximately linear, robot control must also achieve
other objectives), this gives a baseline to compare the possi-
ble impact of control on collision.

C. Joint Stiffness Analysis

The impact of control and joint flexibility on collision
performance can now be investigated. The complete model
is the system in Figure 1, under parameters in Table III, in
contact with a Ke = 30 kNm/rad environment. Four different
cases can be compared: the uncontrolled system, the system
without motor dynamics omitted (i.e. J = 0, B = 0), the
system with torque control τm = (Kp + Kds)Kjt(θ − q)
(Kp = 1.5, Kd = .2), and the system under state feedback
with LQR gains from (11) with R = 5. These four cases are
compared as the joint stiffness changes in Figure 6.

At low joint stiffnesses, control and motor dynamics
make no difference, and all systems have the same collision
performance which is dominated by link dynamics. As joint
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Fig. 6: Collision performance of robot with no control (τm =
0), no motor dynamics (J = B = 0), torque control and LQR
control, with parameters from Table III at Ke = 30 kNm/rad.
Note y axis range.

stiffness increases, the no control system collision perfor-
mance increases to 150% of the no motor case, showing
how at higher joint stiffnesses, the motor dynamics affect
the collision performance. However, the effect of motor
dynamics is substantially reduced by the inner-loop torque
control (for both PD or LQR). Although physical compliance
reduces the impact of motor dynamics, it does not need to
be very low to achieve good collision performance if control
is used.

LQR and PD torque control present similar behav-
iors, which can be seen from the similarity of their
expressions. Typical LQR results with R = 5 →
Klqr = [1.28, .03, −1.30, −.05, 0]1e4 and a PD torque
controller written as a similar state feedback gain Kpd =
[Kp, Kd, −Kp, −Kd, 0]Kjt. The matching of signs (as
well as approximate magnitude commonly used on PD
control of joint torque) shows that inner-loop PD torque
control is well-aligned with reducing peak impact force.

D. Interface Stiffness Analysis

While decreasing the stiffness of the interface Ke provides
improvements in collision performance, there is a trade-off
with performance. Classical interpretations of performance
in control theory is the ability to reshape the apparent dy-
namics of the system (i.e. reshaping the transfer functions of
disturbance rejection, reference tracking, noise sensitivity).
For interactive robots, the apparent dynamics are a direct
performance goal as well, although the range of dynamics
required is not as easily formalized.

There is a secondary sense of performance for interac-
tive robots; their ability to discover actionable information
from the environment. Just as actuator dynamics and non-
collocation limit the dynamics which can be rendered, sensor
dynamics and non-collocation limit the information flow
from the environment. As a concrete example, take a robot
coming into contact with a kinematic plane at an uncertain
position. While knowledge of this plane’s location may be



important for subsequent behavior, the compliance at the
end-effector can limit the ability to estimate the hidden
information of the environment.

Working this example within the model in Figure 1 as
written in (6), this information transfer can be stated as
the covariance of the posterior estimate p(x̂|y(0 : T )),
where y(0 : T ) is the history of measurements available.
Impedance- and admittance-controlled robots use motor po-
sition measurements, along with measurements of the force
along Kjt and Kint, respectively which can be written as
emission equations on the states seen in (6).

yimp =

[
1 0 0 0 0
Kjt 0 −Kjt 0 0

]
ξ (14)

yadm =

[
1 0 0 0 0
0 0 Kint 0 −Kint

]
ξ (15)

Under a unified noise model, with process noise covari-
ance Σw = diag([.1, .5, .1, 10, 15]), sensor noise Σv =
diag([.110]), the steady-state covariance of the estimate of
environment location x̂ can be found in closed form from
standard solutions to the Kalman filter. The impact of Kint

on this covariance can be seen in Figure 7, where it is
compared with collision performance. Collision performance
monotonically improves as stiffness decreases, but the quality
of the estimation of environment decreases at lower stiff-
nesses as well. Low stiffnesses allow torque-sensor noise to
dominate the force arising from the environment.
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Fig. 7: Effect of interface stiffness Ke on collision perfor-
mance (blue) and covariance of estimate of environment lo-
cation under impedance (top, green) and admittance (bottom,
green), parameters from Table III at Kjt = 10 kNm/rad.

V. CONCLUSION

This paper introduced a system norm for collision analysis
based on the Sobolev norm. By bounding the maximum
force on a pure stiffness, it provides useful predictions for
human-robot and robot-environment contact transitions. The
norm was validated with experiments of a pure stiffness
environment, and simulation of an inertial environment, and

the maximum impact force and Sobolev norm are shown to
correspond well over parametric variation of the systems.
The Sobolev norm of a system is then stated as the H2

norm of a related system, and existing control theory used to
establish the impact of joint stiffness and interface stiffness
on impact performance, towards validating design approxi-
mations which are used in practice.

This norm provides the advantage over existing method-
ologies (perfect elastic collision of two inertias with single
stiffness) by allowing the accounting for joint stiffness,
motor dynamics, and control. Furthermore, collision can
be considered over a wider continuum of environments,
also supporting design for contact transitions with industrial,
high-stiffness environments.

APPENDIX

The proof of [32], Theorem 8.8 is recreated with additional
steps for clarity. Let f (t) ∈ C1, a continuous function with a
continuous derivative, and for 1 ≤ p <∞ define the function
G (s) = |s|p−1 s. The function v = G (f) is in C1 and

v′ = G′ (f) f ′

= p |f |p−1 f ′

⇒ v =

∫ t

−∞
p |f (τ)|p−1 f ′ (τ) dτ.

Note that |v (t)| = |f (t)|p, and can be bounded as

|v (t)| ≤
∫ t

−∞
p |f (τ)|p−1 |f ′ (τ)| dτ,

⇒ |f (t)|p ≤ p ‖f‖p−1p ‖f ′‖p .
Manipulation of this term with a Sobolev norm ‖f‖W 1,2 =
‖f‖pp + ‖f ′‖pp = αp, and noting p1/p ≤ e1/e ∀p > 1 gives

|f (t)| ≤ γα
for a positive constant γ which does not depend on f(t).
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