
Interaction-Aware Multi-Agent Reinforcement Learning for Mobile
Agents with Individual Goals

Anahita Mohseni-Kabir1, David Isele2, and Kikuo Fujimura2

Abstract— In a multi-agent setting, the optimal policy of a
single agent is largely dependent on the behavior of other
agents. We investigate the problem of multi-agent reinforcement
learning, focusing on decentralized learning in non-stationary
domains for mobile robot navigation. We identify a cause
for the difficulty in training non-stationary policies: mutual
adaptation to sub-optimal behaviors, and we use this to motivate
a curriculum-based strategy for learning interactive policies.
The curriculum has two stages. First, the agent leverages policy
gradient algorithms to learn a policy that is capable of achieving
multiple goals. Second, the agent learns a modifier policy to
learn how to interact with other agents in a multi-agent setting.
We evaluated our approach on both an autonomous driving
lane-change domain and a robot navigation domain.

I. INTRODUCTION

Single agent reinforcement learning (RL) algorithms
have made significant progress in game playing [20] and
robotics [13], however, single agent learning algorithms in
multi-agent settings are prone to learn stereotyped behaviors
that over-fit to the training environment [22], [15]. There
are several reasons why multi-agent environments are more
difficult: 1) interacting with an unknown agent requires
having either multiple responses to a given situation or a
more nuanced ability to perceive differences. The former
breaks the Markov assumption, the latter rules out simpler
solutions which are likely to be found first. 2) Intentions and
goals of other agents are not known and must be inferred.
This also can break the Markov assumption. 3) Agents
are co-evolving, and their policies are non-stationary during
training. In this work we investigate a property associated
with non-stationary policies: partially successful policies for
one agent can get repeated multiple times or ’burned in’,
causing the other agents to adapt to that specific behavior.
This sets off a chain of mutual adaptation that encourages
agents to only visit suboptimal regions of the state space.

When training independent agents [27], the competing
learning processes of multiple agents is sufficiently difficult
that either the agents fail to learn, or the agents learn
one-after-the-other, resulting in stereotyped policies that are
sensitive to the behavior of other agents. Recent approaches
to multi-agent reinforcement learning have relaxed the inde-
pendence of an agent by exploiting centralized training and
assuming the other agents’ actions are known [8], [18]. While
these techniques are more successful, we show that they

1Anahita Mohseni-Kabir is with the Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA 15213, USA
anahitam@andrew.cmu.edu. This work has been conducted
while she was at Honda Research Institute USA.

2David Isele and Kikuo Fujimura are with Honda Research Institute USA
{disele, kfujimura}@honda-ri.com

Fig. 1: Double lane-change problem. The bottom car and the
top car are crossing one another to go to the star on the top
right and bottom right of the environment respectively.

still exhibit one-after-the-other learning, producing highly-
dependent policies.

We propose the use of an independent curriculum-based
training procedure for learning policies that avoids mu-
tual adaptation without using either centralized training or
knowledge of the other agents actions. We start from the
observation that when agents learn at different rates (as often
happens under random initialization), one agent learns a pol-
icy around the other agents’ policies. Since the policies being
accommodated are suboptimal during the early stages of
learning, the agents drive each other into poor local optima.
One solution to pacing the learning of multiple agents is
self-play [26], but self-play requires symmetric agents. As
an alternative, we consider learning via a curriculum [4].
The use of curriculum learning lets us pace the learning of
each agent, while allowing us to handle the case of agents
with different goals.

We structure our curriculum by first learning an optimal
single agent and then explicitly learning the modifications
required to interact with other agents. This approach lever-
ages the intuition that when other agents are not present
in the environment, the agent should behave like a single
agent trying to reach a goal. We address the interaction-
aware decision making problem in the second stage of the
curriculum. In the second stage, we introduce an architecture
that uses the learned single-agent policy, and adjusts it with
a learned interactive multi-agent policy.

We consider two robotic applications where the agents
policies must be mutually consistent in order to achieve the
intended goals: a lane-change scenario and a mobile naviga-
tion scenario. The agents do not have access to the goals or
intentions of other agents and are learning different policies
simultaneously. We show that not only is our curriculum-
based approach better able to learn the desired behaviors,
but that the learned policies also generalize against agents
that were not included in the training process.

ar
X

iv
:1

90
9.

12
92

5v
1

 [
cs

.A
I]

 2
7

Se
p

20
19

II. RELATED WORK

Multiple works have focused on reinforcement learning
methods for multi-agent domains in fully cooperative, fully
competitive, and mixed environments [6]. Foerster et al.
[8] propose a multi-agent actor-critic method to address the
challenges of multi-agent credit assignment. Different from
our work where each agent pursues its individual goal, their
approach is appropriate for problems with a single shared
task. Lowe et al. [18] propose an actor-critic approach,
called MADDPG, that augments the agent’s critic with action
policies of other agents and is able to successfully learn
the coordination policy between multiple agents. Unlike our
approach these methods use centralized training.

He et al. [10] presents new models based on deep Q-
network for decision-making in adversarial games which
jointly learns a policy and different strategies of opponents.
Their proposed approach is appropriate for two agents,
whereas our approach is tested on more than two agents.
Furthermore, our approach is demonstrated in the non-
stationary case where the agents are co-evolving together
while the opponents in their approach have a set of fixed
strategies. Some work leverages self-play to provide the
agents with a curriculum for learning complex competitive
tasks [3]. They use dense rewards in the beginning phase
of the training to allow the agents to learn basic motor
skills. In our environments, it is difficult to create motor
skills or define a reward function for them. In our problems,
self-play using single agent RL algorithms failed to learn
successful policies since the environment is non-stationary,
and also without cooperation the agents were not able to
even occasionally succeed in their tasks thus were not able
to learn successful policies.

In social dilemma research, most works focus on one-
shot or repeated tasks [19], [9] and ignore that in real world
scenarios the behaviors are temporally extended. Among the
most relevant RL approaches in this area, is work on the se-
quential prisoner’s dilemma (SPD) [16] which leverages deep
Q-networks to study effects of environmental parameters on
the agents degree of cooperation. In contrast to this work
that focuses on the impact of the games’ parameters on the
agents’ behavior, we provide a multi-agent learning approach
for cooperative problems with individual goals. Another
relevant work [28] proposes a deep RL approach for mutual
cooperation in SPD games. Their approach adaptively selects
its policy with the proper cooperation degree based on the
detected cooperation degree of an opponent. Different from
their approach, our approach is not specific to two player
games. In addition, since we focus on mobile navigation
problems our approach learns how to react to the continuous
policies of other agents, not just their cooperation degree.

Significant amount of work has focused on motion plan-
ning for autonomous vehicles [21] where the problem of
intention prediction or trajectory estimation of other agents
has been studied. Among these, relevant work has focused
on intention-aware POMDP planning for autonomous vehi-
cles [2]. These methods leverage machine learning methods

to learn models of other agents as also surveyed in [1]. In
contrast to these approaches, we focus on RL algorithms for
interaction-aware agents where the agents are co-evolving
together and their motion models are dependent on others
policies. Another work [5] presents an approach for com-
puting optimal trajectories for multiple robots in a distributed
fashion.

III. APPROACH

We focus on multi-goal multi-agent settings, where each
agent cooperates with other agents in order to accomplish
their individual goals. We leverage the intuition that in many
settings, like autonomous driving, the interaction between
multiple agents is limited to certain parts of the state space
where conflict of interest is present, otherwise the agent be-
haves according to its single-agent policy. I.e., the agent starts
with its own single-agent policy and adapts it to account
for the multiple agents that appear in the environment. We
propose a two stages approach to learn multiple interactive
policies for multiple agents. In the first stage of learning,
the agents learn a single agent policy to accomplish their
individual goals. The learned single agent policies are then
passed to the multi-agent model that enables each agent to
learn an interactive policy to account for the other agents.

A. Single Agent Module

We model an agent with individual goal as a Markov
Decision Process (MDP) [11] with goals [23]. The MDP
is defined as a tuple < S,O,A, P,R,G,G, γ > in which
S represents the state of the world, O represents the agent’s
observation, A is a set of actions, P : S×A → S determines
the distribution over next states, G is the agent’s goal, G is the
goal distribution, R : S×G×A → R is an immediate reward
function, and γ ∈ [0, 1] is the discount factor. The solution
to an MDP is a policy πθ : O × G × A → [0, 1] where
θ is the parameters of the policy. For continuous actions,
πθ is assumed to be Gaussian, and in our work the mean
is represented by a neural network with parameters θ. The
robot seeks to find a policy πθ that maximizes the expected
future discounted reward R =

∑T
t=0 γ

trt. In the following
paragraphs, we add subscript “self” or “s” to our notation
to show the agent’s own properties and “single” or ”sng” to
highlight the single agent scenario.

We use a decentralized actor-critic policy gradient algo-
rithm to learn the single agent policies. The single agent
model gets observation os and goal gs as inputs, and outputs
an action as that the agent should take. Each agent learns
a policy πsng(as|os, gs), according to its individual goal-
specific reward function Rsng(ss, as, gs) in the absence of
other agents. The decentralized actor-critic policy gradient
algorithm maximizes Jsng(θ) = Eos∼pπs ,as∼πsng,gs∼G [Rsng]
by ascending the following gradient:

∇θJ(θ) = E
τ∼pθ(τ),gs∼G

[∇θ log πsng(as|os, gs)

Aπ(os, as, gs)]

Fig. 2: Multi-agent (MA) actor critic model. The gray colored
boxes are the single agent policies and are frozen during
training in the multi-agent setting.

Where pπs is the state distribution, and Aπ is the advantage
function [24]. We use τ ∼ pθ(τ) to refer to os ∼ pπs , as ∼
πsng . For simplicity, θ is removed. The gray colored boxes
in Fig. 2 show the actor-critic model for the single agent.

B. Multiple Agents Module

We assume that each agent has a noisy estimate of the
other agents’ states, but they don’t have access to the
other agents actions or intentions. We model the multi-
agent decision problem as a Markov Game [17], modified
to accommodate mixed goals, and defined as the tuple
< N,S, {Oi}i∈N , {Ai}i∈N , {Ri}i∈N , {Gi}i∈N , P,G, γ >
with N agents. The possible configurations of the agents is
specified by S. Each agent i gets an observation oi ∈ Oi
which includes both the agent’s observation of its own state
os and an observation of other agents oo. Each agent has its
own set of actions Ai, a goal Gi ∼ G, and a reward function
Ri : S×G×Ai → R. The markov game includes a transition
function P : S ×A1 × ...×AN → S which determines the
distribution over next states. The solution to the markov game
is a policy for each agent i πθi : Oi×G×Ai → [0, 1] where
θi is the parameters of the policy. For continuous actions
problems, πθi is assumed to be a Gaussian where the mean
is modeled by neural networks. Each agent seeks to find a
policy πθi that maximizes its own expected future discounted
reward Ri =

∑T
t=0 γ

trit. In the following paragraphs, we
remove i for simplicity and add subscript “self” or “s” to our
notation to show the agent’s own properties. We add “multi”
or “mlt” to highlight the multi-agent scenario, and subscript
“others” or “o” refers to other agents properties.

We modify each agent’s Rsng to account for the presence
of other agents in the environment. Each agent is rewarded
based on its individual objective, but is punished if it gets
into conflicts (e.g., collisions in mobile agent scenarios) with
other agents. The new reward function for each agent is
as follows where C is a positive constant that penalizes
the agent for conflicts, and 1conflict(ss, so) determines if
conflict is present:

Rmlt(ss, as, gs, so) = Rsng(ss, as, gs)− C × 1conflict(ss, so)

We use a decentralized actor-critic policy gradient algo-
rithm to learn the multi-agent policies. Each agent learns an
actor-critic model that accounts for the multiple agents in
the environment. The model gets observation os, goal gs,
and oo as inputs, and outputs an action as that the agent
should take. Each agent learns a policy πmlt(as|os, gs, oo),
according to its multi-agent goal-specific reward function
Rmlt(ss, as, gs, oo) in the presence of other agents. The de-
centralized actor-critic policy gradient algorithm maximizes
Jmlt(θ) = Eos∼pπs ,as∼πmlt,gs∼G,oo∼pπo [Rmlt] by ascending
the gradient:

∇θJ(θ) = E
τ∼pθ(τ),gs∼G

[∇θ log πmlt(as|os, gs, oo)

Aπ(os, as, gs, os)]

Where pπo is the other agents’ state distribution. We use
τ ∼ pθ(τ) to refer to os ∼ pπs , as ∼ πmlt, oo ∼ pπo . Fig. 2
shows our architecture for both reaching the individual goal
and cooperative non-conflicting behavior. In this architecture,
each agent leverages its learned single agent actor-critic
models. The learned model is frozen and combined with
another multi-agent model that addresses the cooperative
non-conflicting behavior.

The multi-agent module includes the single agent (SA)
module from the previous stage of the curriculum. The output
of the single agent model is combined with the output of a
multi-agent (MA) module to learn a policy that modifies the
single agent value functions to account for the other agents.
The agent’s own state os and an estimation of the other
agents state oo are passed to the actor and critic models of the
multi-agent module. In Fig. 2, we only show the actor models
for simplicity, the critic models have the same structure. In
this work, we used a summation to combine the single agent
and multi-agent models since we found it sufficient in our
experiments.

IV. EXPERIMENTS

In this section, first we discuss our network architecture.
We then delve into the details of the environments and
experimental setup, and then discuss our results.

A. Algorithm and Network Architecture

We use the Trust Region Policy Optimization (TRPO) [24]
algorithm to learn the actor-critic models. We use the same
architecture and parameters as the OpenAI baseline im-
plementation [7]. We use ReLU as the activation function
instead of tanh in the original implementation. The actor-
critic models each have 2 hidden layers with 128 neurons.
We call our approach Interaction-Aware TRPO or IATRPO.

B. Simulation Environments

We tested our proposed approach on the following two
environments. Both environments are designed such that in-
teraction is required for successfully achieving the individual
goals. The environments are shown in Fig. 3.

(a) Lane-change environment. The bottom and top agents start
from the bottom left and top left quarters respectively.

(b) Robot navigation environment. Each agent starts from a
random position in their corresponding side of the course.

Fig. 3: Environments. Agents are crossing one another to go to their opposite side of the course.

1) Lane-change: This environment consists of two cars
that are crossing to go to their goal destination (matching
color stars). At each episode a pair of non-adjacent goals
are selected and are kept constant throughout the episode.
The agents’ positions are selected randomly in the top left
and bottom left quarters of the course. The agents start with
a 0 velocity, 0 angular velocity, and 0 heading angle. We
call this environment “C2”. We created an easier version of
this environment where the goals are fixed to the 1st and 3rd
lanes, and the agents’ position has randomness only in the
+x direction. We call this environment “C2-fixed”.

The agent’s state includes its x and y position, velocity,
angular velocity, heading angle, if it is broken due to collision
with other agents or the environment, and if it has reached
its goal. The observation noise for ss is in [−0.01, 0.01].
The cars have acceleration and angular acceleration as their
actions as with uniform noise in [−0.1, 0.1]. The car can
reach a minimum and maximum velocity of −1 and 1
respectively, and a minimum and maximum angular velocity
of −1 and 1 respectively. The multi-agent module for each
agent has access to other agent’s x and y positions, velocity,
heading, angular velocity with a uniform noise in [−0.1, 0.1].
The cars use a bicycle kinematics model [14].

The reward function for the single agent scenario and the
multi-agents scenario are as follows with a reward scale 3.
Function d computes the euclidean distance between the cen-
ter of the car and agent’s goal. Function collision(ss, env)
or collision(ss, so) specify if the agent is in collision with
the environment or the other agents respectively.

Rsng(ss, as, gs) =

−1, if collision(ss, env)
1, if d(ss, gs) < 0.4
d(ss,gs)
1000 , otherwise

Rmlt(ss, as, gs, so) =

−1, if collision(ss, env)
−1, if collision(ss, so)
1, if d(ss, gs) < 0.4
d(ss,gs)
1000 , otherwise

2) Multi-Robot Navigation: This environment consists of
two or more mobile robots that are crossing one another to go
to their goal destination (matching color stars). Three fixed
goals are located at the top, left and right sides of the course.
The agents’ positions are selected randomly in the left (goal
in right region of the environment), right (goal in left region),
and bottom (goal in top region) of the course to assure that
the agents pass one another to go to their goal position. The 2
agent environment has the same setting, but the bottom (gray)

agent is not present. We call the environment with 2 agents
and 3 agents “R2” and “R3” respectively. The robots have
the same state space and parameters as the cars in the lane
changing environment. The mobile robots use the unicycle
kinematics model [12]. The reward function is as before.

C. Results

We provide quantitative and qualitative results on the per-
formance of our approach. As our baseline, we compare
against MADDPG [18]. We leveraged the main contribution
of the MADDPG approach and implemented the multi-agent
version of the TRPO [24] algorithm (MATRPO) where each
agent is provided with the action values of the other agents.
TRPO was used in place of DDPG because it was found
to consistently outperform DDPG in all our experiments.
TRPO was also used to train the IATRPO for all stages of
the curriculum.

D. Qualitative Results

Figures 4 and 5 illustrate the agents learned policies on the
two environments. In both scenarios, all the agents must
cross paths to reach their goal destination (matching color
stars). We show the single agent policies with dashed lines,
and the multi-agent policies with solid lines. We ran the
learned multi-agent models and observed that the agents are
successfully able to learn how to interact. We refer to the
agents based on their colors or their start positions.

In the multi-agent policy in Fig. 4, the bottom agent
(orange or abbreviated as O) slows down for the top agent
(blue or B) to pass first and then it goes to its goals (but the
single agent trajectory is in collision with the other agent).
The top agent (B) also modifies the shape of its trajectory
to not get into collision with the bottom agent. In the multi-
agent policy in Fig. 5, the bottom agent (gray or G) learns
to go first with maximum speed, the right agent (B) slows
down and modifies the shape of its trajectory for the bottom
agent (G) to pass first. The left agent (O) modifies its speed
to prevent a collision with the other agents. Notice that the
single agent policies differ both in speed and shape from
the multi-agent policies, and if all the agents executed their
single agent policy, they would have collided with the others.
Please refer to the video accompanying the paper to see
examples of successful and failed executions.

E. Quantitative Results

We evaluate the IATRPO approach against the MATRPO
approach and report the final results in three evaluations:

Fig. 4: IATRPO’s final policy on the lane-change environment.

Fig. 5: IATRPO’s final policy on the robot navigation environment.

TABLE I: Success of the algorithms on the 4 environments.

Environment MATRPO success rate (%) IATRPO success rate (%)
C2-fixed 97.88± 0.31 99.4± 0.33

C2 0± 0 94.3± 2.99
R2 36.92± 45.22 90.96± 1.43
R3 0± 0 88.02± 4.11

Success Rate: Table I shows the success rate of our approach
against the MATRPO approach. We ran both approaches
on the 4 environments with 5 random seeds. An episode
is successful if both agents are 0.4 away from their goals
d(sself , gself) < 0.4. To compute the success rate, the final
learned policies were run on 1000 random episodes. Both
MATRPO and IATRPO approaches give a high accuracy
on the C2-fixed environment, but the success rate of the
IATRPO algorithm is higher. On the C2 environment, which
has a greater amount of randomness in the start position and
has random goals, the MATRPO algorithm is not able to
learn successful policies for all the agents, but the IATRPO
algorithm has 94.3 ± 2.99% success rate. MATRPO learns
a successful policy for one agent, but the second agent is
stuck in a local optima, having only learned to not collide
with the environment or the successful agent. Most of the
failure cases in IATRPO happens around the boundaries of
the environments or when the agents are too close to one
another. We believe this is because of the noise associated
with both the agent’s action and the observations of others.

The performance of the IATRPO algorithm is much
higher than the MATRPO algorithm on the R2 environment.
In half of the random runs the MATRPO algorithm
did not learn a successful policy for both the agents.
However, the IATRPO algorithm has a success rate of
around 90%. The MATRPO algorithm completely failed
to learn a successful policy on the R3 algorithm, but the
IATRPO algorithm achieves a success rate of 88.02±4.11%.

Level of Interaction: We measure how interactive are
the final policies that are learned by the IATRPO and
MATRPO approaches. We ran both approaches on C2-fixed
and R2 environments where MATRPO was able to learn
successful policies. We performed 5 training runs with
random seeds and tested the final learned policies on a 1000
random episodes. We estimate how interactive the policies
are by finding which agent reached its goal first. For each
agent, we compute the average and standard deviation of the

(a) C2 environment. (b) R3 environment.

Fig. 6: Fréchet distance between the single agent trajectories
and the multi-agent trajectories in IATRPO algorithm.

interactiveness metric on the 5 runs. In each algorithm run
if one agent always waits for the other agent to go first and
compromises, the agents are considered non-interactive. In
a two agents scenario, the ideal case is if both agents have
an average of around 50% with a low standard deviation.
Fig. 7 shows the results of the two algorithms on the two
environments. In each run on the C2-fixed environment
where we applied the MATRPO algorithm, one agent always
waited for the other agent to go first. However, the IATRPO
algorithm was able to learn more interactive policies than
the MATRPO policies where both the agents sometimes
compromised. Fig. 8 provides more evidence of why, in the
MATRPO training, one agent always compromises.

Fig. 8 shows the mean episode length of both the algo-
rithms in one of the training runs on the C2-fixed environ-
ment. When the mean episode length becomes constant, the
agent has converged to a successful policy. In the MATRPO
training, the orange agent converges to the successful policy
and after about 800 training iterations the blue agent adapts
its policy to the orange agent’s policy and converges as well.
However, with IATRPO the two agents learn a successful
policy around the same time.

We applied both the algorithms on the R2 environment
and noticed that in the IATRPO algorithm the two agents
have a better balance where both the agents achieve the first
place about 50% of the times. The agents are less balanced
when using the MATRPO approach and have higher variance
than the IATRPO approach. We also investigate the influence
of our two stages approach on the interactiveness of the
agents. We measured the distance between the single agent
trajectories and the multi-agent trajectories to measure how
much each agent modified its trajectory to account for the
other agents in the IATRPO algorithm. We use the Fréchet
distance for our comparison. As before, we use the final

(a) Results on C2-fixed. (b) Results on R2.

Fig. 7: Shows which agent achieved its goal first.

(a) MATRPO training. (b) IATRPO training.

Fig. 8: Mean episode length in one experiment for training
multi-agent policies on the C2-fixed. IATRPO uses a cur-
riculum so the number of iterations is not comparable.

learned policy, run it on 1000 random episodes and compute
the distance between the single agent module’s trajectory
and the multi-agent module’s trajectory. For each agent, we
average the computed distance and use that to compute the
overall compromise (%) that each agent makes compared to
other agents. Fig. 6 shows the results on the C2 and R3
environments. Although the top agent gets the first place
72.43± 37.19% of the times, the changes in the distance is
almost equal for the two agents in the C2 environment.

In the R3 environment, the bottom agent (G) always
arrives first at the goal, but the distance between its single
agent trajectory and multi-agent trajectory is about 20%.
This implies that the bottom agent is also trying to adapt
its policy to the other agents’ policies. The right agent and
the left agent get the second place 82.59 ± 22.84% and
18.46±22.64% respectively. The overall impact of the right
agent (B) on distance is 45% compared to the left agent
(O) 32%. This implies that both agents change their single
agent policies, the right agent mostly changes the shape of
its policy and the left agent mostly changes its speed to
account for the other agents.

Mixed Agents:
We conducted experiments where we look at the performance
of agents not trained together. This is a scenario known
in the literature to cause agents to fail due to dependent

TABLE II: Success rate of the algorithms on the 4 environ-
ments when tested on agents not trained together.

Environment MATRPO success rate (%) IATRPO success rate (%)
C2-fixed 97.83± 0.72 98.71± 1.29

C2 NA 69.22± 26.44
R2 2.18± 8.56 77.05± 9.46
R3 NA 68.87± 17.44

policies [22], [15]. We used the 5 random training runs
and generated 20 pairs (or triples) of agents where the
agents in each pair are trained separately using a different
seed. Table II shows the success rate of the MATRPO and
IATRPO algorithms on the four environments. We used the
same approach as above to compute the success rate on a
1000 random episodes. The performance of the MATRPO
algorithm is not affected much in C2-fixed experiments, but
it has drastically decreased in R2 experiments. We believe
the reason for this behavior is the following. In C2-fixed
experiments with MATRPO, the bottom agent (O) learns
to always go first regardless of what the top agent (B) is
doing. Even when the bottom agent is tested against other
top agents (Bs), both the agents show the same behavior
thus the performance of the algorithm does not get affected.
However, in the R2 experiments with MATRPO, the agents
show a more interactive behavior than C2-fixed thus when
we test the agents, which were not trained together, against
each other, the performance drastically decreases.

The success rate of the IATRPO algorithm also decreases
when we test it on the 20 pairs (or triples). The performance
degrades less on the easier environments such as C2-fixed
and on the environments where the agents learned a more
interactive policy with low variance such as R2. The success
rate for the C2 and R3 degrades more than R2 since the
agents learned a less interactive behavior with high variance.

V. CONCLUSIONS

We focus on multi-agent settings where each agent learns
a policy to simultaneously achieve its individual goal and
interact with others. We provide a curriculum learning ap-
proach and a architecture that learn how to adapt single agent
policies to the multi-agent setting. We tested the method
on two robotics problems and observed that our approach
outperforms the state-of-the-art approach and results in in-
teractive policies.

Our formulation is generalizable to domains with inhomo-
geneous agents since we make no assumptions regarding the
homogeneity of the agents, and our future work involves
testing the approach on such domains. One method that
we are planning to try is the ensemble of policies method
proposed in [3]. If a model is learned in an environment with
N agents, we can apply the same model on an environment
with <= N agents where we assume the non-existent agent
is in a corner and is not interacting with others. However, a
limitation of our work is that a new model should be learned
if we increase the number of agents. We believe this issue
can be addressed by leveraging an approach that is agnostic
to the number of agents such as [25].

REFERENCES

[1] S. V. Albrecht and P. Stone. Autonomous agents modelling other
agents: A comprehensive survey and open problems. Artificial Intel-
ligence, 2018.

[2] H. Bai, S. Cai, N. Ye, D. Hsu, and WS. Lee. Intention-aware online
pomdp planning for autonomous driving in a crowd. In ICRA, 2015.

[3] T. Bansal, J. Pachocki, S. Sidor, I. Sutskever, and I. Mordatch.
Emergent complexity via multi-agent competition. arXiv preprint
arXiv:1710.03748, 2017.

[4] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Curriculum
learning. In ICML, 2009.

[5] S. Bhattacharya, M. Likhachev, and V. Kumar. Multi-agent path
planning with multiple tasks and distance constraints. In ICRA, 2010.

[6] L. Busoniu, R. Babuska, and B. De Schutter. A comprehensive survey
of multiagent reinforcement learning. IEEE SMC-Part C, 2008.

[7] P. Dhariwal, C. Hesse, O. Klimov, et al. Openai baselines.
https://github.com/openai/baselines, 2017.

[8] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. White-
son. Counterfactual multi-agent policy gradients. arXiv preprint
arXiv:1705.08926, 2017.

[9] J. Hao and H. Leung. Introducing decision entrustment mechanism
into repeated bilateral agent interactions to achieve social optimality.
AAMAS, 2015.

[10] H. He, J. Boyd-Graber, K. Kwok, and H. Daumé III. Opponent
modeling in deep reinforcement learning. In ICML, 2016.

[11] C. C. White III and D. J. White. Markov decision processes. EJOR,
1989.

[12] G. Indiveri. Kinematic time-invariant control of a 2d nonholonomic
vehicle. In CDC, 1999.

[13] J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in
robotics: A survey. IJRR, 2013.

[14] J. Kong, M. Pfeiffer, G. Schildbach, and F. Borrelli. Kinematic and
dynamic vehicle models for autonomous driving control design. In
IV, 2015.

[15] M. Lanctot, V. Zambaldi, A. Gruslys, et al. A unified game-theoretic
approach to multiagent reinforcement learning. In NIPS, 2017.

[16] J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel.
Multi-agent reinforcement learning in sequential social dilemmas. In
AAMAS, 2017.

[17] M. L. Littman. Markov games as a framework for multi-agent
reinforcement learning. In Machine Learning Proceedings. 1994.

[18] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch. Multi-
agent actor-critic for mixed cooperative-competitive environments. In
NIPS, 2017.

[19] P. Mathieu and J. Delahaye. New winning strategies for the iterated
prisoner’s dilemma. In AAMAS, 2015.

[20] V. Mnih, K. Kavukcuoglu, D. Silver, et al. Human-level control
through deep reinforcement learning. Nature, 2015.

[21] B. Paden, M. Čáp, SZ. Yong, D. Yershov, and E. Frazzoli. A survey of
motion planning and control techniques for self-driving urban vehicles.
IV, 2016.

[22] M. Raghu, A. Irpan, J. Andreas, R. Kleinberg, Q. V. Le, and J. Klein-
berg. Can deep reinforcement learning solve erdos-selfridge-spencer
games? arXiv preprint arXiv:1711.02301, 2017.

[23] T. Schaul, D. Horgan, K. Gregor, and D. Silver. Universal value
function approximators. In ICML, 2015.

[24] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust
region policy optimization. In ICML, 2015.

[25] D. Schwab, Y. Zhu, and M. Veloso. Zero shot transfer learning for
robot soccer. In AAMAS, 2018.

[26] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den
Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al. Mastering the game of go with deep neural networks
and tree search. Nature, 2016.

[27] M. Tan. Multi-agent reinforcement learning: Independent vs. cooper-
ative agents. In ICML, 1993.

[28] W. Wang, J. Hao, Y. Wang, and M. Taylor. Towards cooperation
in sequential prisoner’s dilemmas: a deep multiagent reinforcement
learning approach. arXiv preprint arXiv:1803.00162, 2018.

	I Introduction
	II Related Work
	III Approach
	III-A Single Agent Module
	III-B Multiple Agents Module

	IV EXPERIMENTS
	IV-A Algorithm and Network Architecture
	IV-B Simulation Environments
	IV-B.1 Lane-change
	IV-B.2 Multi-Robot Navigation

	IV-C Results
	IV-D Qualitative Results
	IV-E Quantitative Results

	V CONCLUSIONS
	References

