
Skill Acquisition via Automated Multi-Coordinate Cost Balancing

Harish Ravichandar1†, S. Reza Ahmadzadeh2†, M. Asif Rana1, and Sonia Chernova1

Abstract— We propose a learning framework, named Multi-
Coordinate Cost Balancing (MCCB), to address the problem of
acquiring point-to-point movement skills from demonstrations.
MCCB encodes demonstrations simultaneously in multiple
differential coordinates that specify local geometric properties.
MCCB generates reproductions by solving a convex optimiza-
tion problem with a multi-coordinate cost function and linear
constraints on the reproductions, such as initial, target, and via
points. Further, since the relative importance of each coordinate
system in the cost function might be unknown for a given
skill, MCCB learns optimal weighting factors that balance the
cost function. We demonstrate the effectiveness of MCCB via
detailed experiments conducted on one handwriting dataset and
three complex skill datasets.

I. INTRODUCTION

The next generation of robots, that can operate in and
adapt to unstructured and dynamic environments, must pos-
sess a diverse set of skills. However, it is implausible to
pre-program robots with a library of all required skills.
Learning from Demonstration (LfD) [1], [2] is a paradigm
that aims to equip robots with the ability to learn efficiently
from demonstrations provided by humans. Existing work
in trajectory-based LfD has contributed a wide range of
mathematical representations that encode skills from hu-
man demonstrations and then reproduce the learned skills
at runtime. Proposed representations include Spring-damper
systems with forcing functions [3], Gaussian Mixture Models
(GMMs) [4]–[6], Neural Networks (NNs) [7], [8], Gaussian
Processes (GPs) [9]–[11], and geometric objects [12], among
others. Each of these representations is used to encode the
demonstrations in a predefined space or coordinate system
(e.g., Cartesian coordinates). In other words, a single best
coordinate system for any given skill is assumed to both
exist and be known. However, as we show in this work, the
assumption that a single best coordinate system exists for
each task does not hold. Further, encoding in only a single
coordinate system prohibits the model from capturing some
of the geometric features that underlie a demonstrated skill.

In this work, we contribute a learning framework that en-
codes demonstrations simultaneously in multiple coordinates,
and balances the relative influences of the learned models in
generating reproductions. The proposed framework, named
Multi-Coordinate Cost Balancing (MCCB), encodes demon-
strations in three differential coordinates: Cartesian, tangent,
and Laplacian (Section III-A). Simultaneously learning in

† indicates equal contribution
1 Georgia Inst. of Technology, Atlanta, GA. Email: {harish.

ravichandar,asif.rana,chernova}@gatech.edu
2 University of Massachusetts Lowell, Lowell, MA. Email:

reza ahmadzadeh@uml.edu

 Demonstrations

 Cartesian

 Tangent

 Laplacian

 MCCB

Initial

Point 2

Targets

Initial

Point 1

Fig. 1: A comparison of reproductions generated by considering
different coordinates, illustrating the need for cost balancing.

these three coordinates allows our method to capture all
of the underlying geometric properties that are central to
a given skill. MCCB encodes the joint density of the time
index and the demonstrations in each differential coordinate
frame using a separate statistical model. Thus, given any time
instant, we are able to readily obtain the conditional mean
and covariance in each coordinate system (Section III-B).
MCCB generates reproductions by solving an optimization
problem with a blended cost function that consists of one
term per coordinate. Each term penalizes deviations from the
norm, weighted by the inverse of the expected variance in
the corresponding coordinate system (Section III-C). Further,
we subject the optimization problem to linear constraints
on the reproductions, such as initial, target, and via point
constraints. Our constrained optimization problem is convex
with respect to the reproduction and hence can be solved
efficiently.

A major hurdle in learning a wide variety of skills, without
significant parameter tweaking, is that the relative importance
of each differential coordinate (or the geometric feature) in
encoding a given task is unknown ahead of time. For in-
stance, consider the problem of encoding the demonstrations
illustrated in Fig. 1. Using any one coordinate system in
isolation, even when the most suitable one is known, does
not yield good reproductions (the red, brown, and green
dashed lines). To alleviate this problem, MCCB preferentially
weights the costs defined in each coordinate (Fig. 2). Impor-
tantly, MCCB learns the optimal weights directly from the
demonstrations without making task-dependent assumptions.
To this end, MCCB solves a meta optimization problem that
aims to minimize reproduction errors (Section III-D). As
shown by the solid blue lines in Fig. 1, a cost function that
optimally balances the costs in each coordinate yields better
reproductions than any single-coordinate method.

ar
X

iv
:1

90
3.

11
72

5v
1

 [
cs

.R
O

]
 2

7
M

ar
 2

01
9

Fig. 2: A flow diagram illustrating MCCB.

In summary, we contribute a unified task-independent
learning framework that (1) encodes demonstrations simul-
taneously in multiple differential coordinates, (2) defines a
blended cost function that incentivizes conformance to the
norm in each coordinate system while considering expected
variance, and (3) learns optimal weights directly from the
demonstrations to balance the relative influence of each
differential coordinate in generating reproductions. Further,
MCCB is compatible with and complementary to several
existing LfD methods that utilize different statistical repre-
sentations and coordinate systems [10]–[16].

II. RELATED WORK

Learning from demonstration has attracted a lot of at-
tention from researchers in the past few decades. While
several categories of LfD methods exist [1], our work falls
under the category of trajectory-based LfD. In this category,
demonstrations take the form of trajectories and the methods
aim to synthesize trajectories that accurately reproduce the
demonstrations.

Dynamical systems-based trajectory learning methods,
such as [5]–[7], encode demonstrations using statistical
dynamical systems and generate reproductions by forward
propagating the dynamics. While such deterministic methods
exhibit several advantages, such as convergence guarantees
and robustness to perturbations, they are restricted to learning
in a single coordinate system and ignore inherent uncertain-
ties in the demonstrations. They incentivize conformance to
the norm even when demonstrations exhibit high variance.

Trajectory optimization methods, such as [17] and [18],
focus on geometric features by minimizing costs specified
using predefined norms. An optimization framework pro-
posed in [19] attempts to adapt multiple demonstrations to
new initial and target locations by minimizing the distance
between the demonstrations and the reproduction accord-
ing to a learned Hilbert space norm. Indeed, learning an
appropriate Hilbert space norm is related to finding an
appropriate coordinate system based on the demonstrations.
However, similar to the dynamical systems-based methods,
the methods in [17]–[19] are restricted to a single predefined
or learned coordinate system and do not explicitly model
and utilize the inherent time-dependent variations in the
demonstrations.

Probabilistic trajectory-learning methods, such as [10],
[11] and [14], on the other hand, capture and utilize the
variation observed in the demonstrations. However, these
methods are also restricted to encoding demonstrations in

a single predefined coordinate system that is assumed to be
known.

Our design of the costs in each differential coordinate
is inspired by the minimal intervention principle [13] that
takes variance into account. While the approach in [13]
does encode demonstrations in different frames of references,
all the frames are restricted to Cartesian coordinates or
orientation space. Furthermore, all the relevant frames for
a given task are also expected to be provided by the user.

The motion planning framework in [15], complementary to
our approach, utilizes a blended cost function, the construc-
tion of which is guided by probability distributions learned
from the demonstrations. This framework incentivizes factors
such as smoothness, manipulability, and obstacle avoidance,
but is restricted to the Cartesian coordinate system. MCCB,
on the other hand, encodes demonstrations in multiple dif-
ferential coordinates and learns to optimally balance their
relative influences, but does not consider factors such as
manipulability and obstacle avoidance.

Differential coordinates have been extensively used in
the computer graphics community [20], [21]. Prior work in
trajectory learning that incorporates differential coordinates
includes the Laplacian trajectory editing (LTE) algorithm
[16]. Using Laplacian coordinates, the LTE algorithm adapts
a single demonstration to new initial, target, and via points
while preserving the shape. However, the LTE algorithm
does not reason about the relative importances of multiple
coordinates.

III. METHODOLOGY

The section describes the technical details of MCCB and
its work flow as illustrated in Fig. 2.

A. Differential Coordinate Transformations

In this section, we define the differential coordinates and
their corresponding transformations used in MCCB.

Cartesian: Let a discrete finite-length trajectory in n-
dimensional Cartesian coordinates be denoted by X =
[x(1) x(2) · · ·x(T)]> ∈ RT×n and let x(t) ∈ Rn denote
a discrete sample at time index t. This trajectory can be
represented using a graph G = (V, E) where V is the set
of vertices representing the samples in the trajectory and E
is the set of edges that represent the connections between
the samples in the trajectory. The neighborhood Nt of each
vertex Vt is defined by the set of adjacent vertices V ′t. In
the case of discrete-time trajectories, the edges between any
given vertex and its two neighbors are assumed to carry unit
weights, while all other edges carry zero weights.

Laplacian: It is known that the discrete Laplace-Beltrami
operator for the trajectory X provides the Laplacian co-
ordinate δ(t) as δ(t) ,

∑
t′∈Nt

1∑
t′∈Nt

1 (x(t)− x(t′)) [20].
Note that the above relationship can be written as a linear
differential operator in matrix form

∆ = LX (1)

where ∆ = [δ(1) δ(2) · · · δ(T)]> ∈ RT×n is the trajectory
in the Laplacian coordinates, and L ∈ RT×T , called the

graph Laplacian, is given by

L =


1 −1 0 0
−0.5 1 −0.5 0 ... 0
0 −0.5 1 −0.5 ... 0

...
.

...
0 ... 0 −0.5 1 −0.5
0 0 −1 1

 (2)

As pointed out in [16], the Laplacian coordinates have
meaningful geometric interpretations. Specifically, the Lapla-
cian coordinates can be seen as the discrete approximations
of the derivative of the unit tangent vectors of an arc-
length parametrized continuous trajectory. In other words, the
Laplacian coordinates measure the deviation of each sample
from the centroid of its neighbors.

Tangent: While the Laplacian coordinates are discrete
approximations of second order differential transformations,
a discrete approximation of the first differential trans-
formation is possible. Consider such a first order trans-
formation using first order finite differences defined as
γ(t) , (x(t+ 1)− x(t)), where γ(t) is called the tangent
coordinate. The matrix form of the above relationship results
in a linear differential operator given by

Γ = GX (3)

where Γ = [γ(1) γ(2) · · · γ(T)]> ∈ RT×n is the trajectory
in the tangent coordinates and G ∈ RT×T , called the graph
incidence matrix, is given by

G =


−1 1 0 0
0 −1 1 0 ... 0
0 0 −1 1 ... 0

...
.

...
0 ... 0 0 −1 1
0 0 0 −1

 (4)

Similar to the Laplacian coordinates, the tangent coordinates
have geometric interpretations. Specifically, the tangent co-
ordinates can be seen as discrete approximations of the un-
normalized tangent vectors of an arc-length parametrized
continuous trajectory, i.e., the tangent coordinates measure
the local direction of motion at each sample of the trajectory.

In our work, we assume that a set of N demonstrations in
the Cartesian coordinates are available. Let the jth demon-
stration be denoted by Xj

d = [xjd(1) xjd(2) · · ·xjd(T)]> ∈
RT×n. Note that if the raw demonstrations are of varying
duration in time, we perform time alignment using dynamic
time warping. MCCB transforms each obtained demonstra-
tion Xj

d into a trajectory in the tangent coordinates (denoted
by Γjd) and a trajectory in Laplacian coordinates (denoted by
∆j
d) using (1) and (3), respectively.

B. Encoding in Multiple Differential Coordinates

This section defines the costs associated with each coor-
dinate. With the demonstrations available in all three differ-
ential coordinates, we employ three independent Gaussian
mixture models (GMMs)1 to approximate the joint proba-
bility densities of time and the samples in each coordinate
system.

1MCCB does not rely on the use of GMMs and any statistical represen-
tation that can provide the conditional estimates will suffice.

The GMM associated with the Cartesian coordinates at-
tempts to approximate the joint density of t and x us-
ing a finite number of Gaussian basis functions as fol-
lows P(t, x; θC) =

∑KC

k=1 P(k)P(t, x|k), where KC is the
number of Gaussian basis functions, P(k) = πkC is
the prior associated with the kth basis function, θC =
{µ1

C · · ·µ
KC

C ,Σ1
C · · ·Σ

KC

C , π1
C · · ·π

KC

C } is the set of param-
eters of the GMM, and P(t, x|k) is the conditional probabil-

ity density given by P(t, x|k) ∼ N
([

t
x

]
;µkC ,Σ

k
C

)
, where

µkC =

[
µkt
µkx

]
is the mean and ΣkC =

[
Σkt Σkt,x
Σkx,t Σkx

]
is the

covariance matrix of the kth Gaussian basis function.
We learn the parameters θC of the model using the

Expectation-Maximization algorithm based on the demon-
strations {Xj

d}Nj=1. Given the learned model and a time
instant, the expected value of the conditional density P(x|t)
is given by Gaussian mixture regression (GMR) [22] as
follows

x̂(t) = E[x|t] =

KC∑
k=1

hkC(t)(AkCt+ bkC) (5)

where hkC(t) = P(k)P(t|k)∑KC
i=1 P(i)P(t|i)

, AkC = Σkx,t(Σ
k
t)−1, bk =

µkx + (t− µkt), and the conditional covariance is given by

Σ̂x(t) = V ar[x|t] =

KC∑
k=1

hkC
2

(Σkx − Σkx,t(Σ
k
t)−1Σt,x) (6)

Similar to the GMM learned in the Cartesian coordi-
nates, we learn a second GMM in the tangent coordinates
based on the demonstrations {Γjd}Nj=1, and a third GMM
in the Laplacian coordinates based on the demonstrations
{∆j

d}Nj=1. The expected values of the conditional densities
P(γ|t) and P(δ|t) are given by

γ̂(t) =E[γ|t] =

KG∑
k=1

hkG(t)(AkGt+ bkG) (7)

δ̂(t) =E[δ|t] =

KL∑
k=1

hkL(t)(AkLt+ bkL) (8)

and the corresponding conditional expectations are given by

Σ̂γ(t) =Var[γ|t] =

KG∑
k=1

(hkG)2 (Σkγ − Σkγ,t(Σ
k
t)−1Σt,γ) (9)

Σ̂δ(t) =Var[δ|t] =

KL∑
k=1

(hkL)2 (Σkδ − Σkδ,t(Σ
k
t)−1Σt,δ) (10)

where the variables in (7)-(10) with subscripts G and L corre-
spond to the tangent and Laplacian coordinates, respectively,
and are defined similarly to the ones in (5)-(6).

C. Imitation via Optimization

In this section, we explain the design of our multi-
coordinate cost function. MCCB generates reproductions by

solving a constrained optimization problem given by

Xr = arg min
X

wCJC(X) + wGJG(X)

+ wLJL(X) (11)
s.t. PxX = X∗ (12)

where Xr ∈ RT×n is the reproduction, wC , wG, wL ∈
R+ are positive weights; JC , JG, JL : RT×n → R+

are cost functions in the Cartesian, tangent, and Laplacian
coordinates, respectively; Px ∈ Rm×T and X∗ ∈ Rm×n
define m ∈ Z+ linear constraints on Xr. In practice, m <<
n and we use the linear constraints to enforce constraints on
initial, target, and via points.

We define the cost function in each coordinate system as
follows

JC(X) =(X(:)− X̂(:))>(Σ̂X)−1(X(:)− X̂(:)) (13)

JG(X) =(Γ(:)− Γ̂(:))>(Σ̂Γ)−1(Γ(:)− Γ̂(:)) (14)

JL(X) =(∆(:)− ∆̂(:))>(Σ̂∆)−1(∆(:)− ∆̂(:)) (15)

where Σ̂X , Σ̂Γ, Σ̂∆ ∈ RnT×nT denote the block di-
agonal matrices formed with the conditional covariances
Σ̂x(t), Σ̂γ(t), and Σ̂δ(t), respectively, for all values of t.
Further, the notation (:) denotes vectorization - for instance,
X(:), X̂(:) ∈ RnT denote the vectorized trajectories formed
by vertically stacking x(t) and x̂(t) for all values of t,
respectively. Note that we construct the trajectories Γ and ∆
in (14) and (15) from X via the linear operators defined in
(3) and (1), respectively. MCCB penalizes deviations from
the conditional mean in each coordinate system. However,
deviations are penalized less (more) severely if high (low)
variance is observed in the demonstrations at any given time.

D. Automated Cost Balancing

In order to obtain reproductions that successfully imitate
demonstrations of a wide variety of skills, the weights
wC , wG, and wL have to be chosen with care. Indeed, they
preferentially weight the costs defined in each differential
coordinate and thereby manipulate the relative incentive for
successful imitation in each coordinate system.

We learn these weights directly from the available demon-
strations. Note that, for known weights, the constrained
optimization problem in (11) is convex in X . We estimate
the weights in the following form

ŵC =
αC
βC

; ŵG =
αG
βG

; ŵL =
αL
βL

(16)

where βC , βG, βL ∈ (0, 1], such that
∑
i βi = 1, are posi-

tive scaling factors used to correct for inherent differences in
the magnitudes of the costs, and αC , αG, αL ∈ [0, 1], such
that

∑
i αi = 1, are positive weights used to preferentially

weight the cost defined in each coordinate system. MCCB
estimates the scaling factors βi’s as follows

βi =

∑N
j=1 Ji(X

j
d)∑

l

∑N
j=1 Jl(X

j
d)
, ∀i, l = {C,G,L} (17)

With the scaling factors compensating the inherent scale
difference in the costs, we compute the preferential weighting

factors αi’s that minimize reproduction error. To this end, we
formulate the following meta optimization problem

{αC , αG, αL} = arg min
αC ,αG,αL

N∑
j=1

SSE(Xj
r ,X

j
d) (18)

s.t.
∑
i

αi = 1, ∀i = {C,G,L} (19)

where SSE(·) denotes the sum of squared errors computed
over time, and Xj

r is the solution to the following optimiza-
tion problem

Xj
r = arg min

X

(
αC
βC

)
JC(X) +

(
αG
βG

)
JG(X)

+

(
αL
βL

)
JL(X) (20)

s.t. PxX = X∗j (21)

where PxX = X∗j denotes specific linear constraints per-
taining to the demonstration Xj

d , such as initial, target, and
via points. Solving the above meta-optimization problem
results in the preferential weights αi’s that minimize re-
production errors of the solutions generated by the original
constrained optimization problem in (11)-(12).

IV. EXPERIMENTAL EVALUATION

This section describes the design and discusses the results
of four experiments conducted to evaluate MCCB. In each
experiment, we compared the performances of the following
approaches:

1) Cartesian-coordinates: wC = 1, wG = 0, wL = 0
2) Tangent-coordinates: wC = 0, wG = 1, wL = 0
3) Laplacian-coordinates: wC = 0, wG = 0, wL = 1
4) Uniform weighting: wC = 1/3, wG = 1/3, wL = 1/3
5) MCCB: wC = ŵC , wG = ŵG, wL = ŵL

We measured the performance of each approach by the
following geometric and kinematic metrics: Swept Error
Area (SEA) [23], Sum of Squared Errors (SSE), Dynamic
Time Warping Distance (DTWD), and Frechet Distance (FD)
[24]. These metrics allow us to evaluate different aspects
of each method’s performance. The SEA and SSE metrics
penalize both spatial and temporal misalignment, and thus
evaluate kinematic performance. On the other hand, the
DTWD and FD metrics penalize spatial misalignment while
disregarding time misalignment, and thus evaluate geometric
performance. Further, the SEA, SSE, and DTWD metrics
evaluate aggregate performance by summing over or aver-
aging across all the samples of each reproduction. The FD
metric, on the other hand, computes the shortest possible
cord length required to connect the demonstration and the
reproduction in space while allowing time re-parametrization
of either trajectory, and thus measures maximal deviation in
space. Note that the SEA metric is restricted to 2-dimensional
data, so we only report it for one of our experiments.

In all the experiments, we used the position constraints
in (12) to enforce both initial and end point constraints
uniformly across all the methods being compared. Further,

Fig. 3: Qualitative performance of MCCB on the LASA hand-
writing dataset. Demonstration (gray), reproductions (blue), and
expected mean position (dashed red) are shown.

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

10

20

30

40
Swept Error Area (m

2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

200

400

600

800

1000

1200

Sum of Squared

Distances (m
2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

50

100

150

200

250

300

Dynamic Time

Warping Distance

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

2

4

6

8

Frechet Distance

Fig. 4: Box plots, with mean (brown star) and median (red line),
illustrate the performance of each approach on the handwriting task.

we uniformly set the number of Gaussian basis functions to
five across all the coordinates and all the experiments.

A. Handwriting Skill

This experiment evaluates MCCB on the publicly avail-
able LASA human handwriting library [5], that consists of
handwriting motions collected from pen input using a Tablet
PC. The library contains a total of 25 handwriting motions,
each with 7 demonstrations.

Fig. 3 shows that MCCB yields reproductions that are
qualitatively similar to the demonstrations while satisfying
the end-point constraints across all motions. As shown in
Fig. 4, quantitative analysis indicates that MCCB (ᾱC =
0.1814, ᾱG = 0.4958, ᾱL = 0.3228)2 and three of the
four baselines performed comparably with respect to the
SEA, FD, SSE, and DTWD metrics, while the Cartesian

2Weighting factors averaged over all 25 skills in the LASA dataset

Fig. 5: Snapshots illustrating the experimental setup for the picking
(left), pressing (center), and pushing (right) skills.

baseline performed poorly in comparison. This is consistent
with the fact that the demonstrations within the LASA dataset
emphasize strong similarities in shape.

B. Picking Skill

The second experiment evaluates the performance of
MCCB in a picking task (Fig. 5). The data consists of
six kinesthetic demonstrations, each a 3-dimensional robot
end-effector position trajectory recorded as a human guided
the robot in picking up two magnets atop two blocks. We
enforced two via-point constraints (one at each picking point)
in addition to the end-point constraints.

As shown in Fig. 6(a), MCCB generated reproductions
that are qualitatively similar to the demonstrations while
satisfying all the position constraints. Quantitative evalu-
ations reveal that learning in tangent coordinates yielded
better reproductions than learning in Cartesian and Laplacian
coordinates (Fig. 7). This was expected since the demonstra-
tions of this task, much like the LASA dataset, emphasize
shape similarity. Further, MCCB (αC = 0.2362, αG =
0.5451, αL = 0.2187) yielded the best performance, with
respect to all three metrics. In fact, uniform weighting
yielded poorer results, with respect to all three metrics, than
when considering only the tangent coordinates. The results
of this experiment show that while multi-coordinate methods
can yield strong performance, it is critical that we balance
the weights appropriately.

C. Pressing Skill

In this experiment, we evaluated MCCB’s ability to learn
pressing skills (Fig. 5). The data consists of six kinesthetic
demonstrations, each a 3-dimensional robot end-effector po-
sition trajectory recorded as a human guided the robot in
pressing two cylindrical pegs into their respective holes.

As shown in Fig. 6(b), MCCB successfully reproduced
the demonstrations. Note that MCCB is capable of auto-
matically capturing and reproducing the consistencies across
the demonstrations in certain regions without any position
constraints. Fig. 8 illustrates the performance of MCCB and
the baselines with respect to three different metrics. Learning
in Cartesian coordinates resulted in the better performance
compared to learning in tangent and Laplacian coordinates.
Quantitative evaluations further demonstrate that MCCB
(αC = 0.6735, αG = 0.2034, αL = 0.1231) consistently
yielded the best performance with respect to all three metrics.
The results of this experiment, in light of the results in
Section IV-B, suggest that the relative importance of each
of the differential coordinates vary across different skills.

(b) Pressing(a) Picking (b) Pushing

Fig. 6: Qualitative performance of MCCB on the picking, pressing, and pushing datasets. Demonstration (gray), reproductions (blue),
expected mean position (dashed red), initial (black squares), and target (black stars) are shown.

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.02

0.04

0.06

0.08

0.1

0.12

Frechet Distance

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.05

0.1

0.15

0.2

0.25

0.3

Sum of Squared Distances (m
2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

1

2

3

4

Dynamic Time Warping Distance

Fig. 7: Box plots, with mean (brown star) and median (red line),
illustrate the performance of each approach on the picking dataset.

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.05

0.1

0.15

0.2

0.25
Frechet Distance

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.5

1

1.5

2

2.5

3

Sum of Squared Distances (m
2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

2

4

6

8

10

12

14

Dynamic Time Warping Distance

Fig. 8: Box plots, with mean (brown star) and median (red line),
illustrate the performance of each approach on the pressing dataset.

D. Pushing Skill

The final experiment evaluates the performance of MCCB
in a pushing task (Fig. 5). The data consists of six kinesthetic
demonstrations, each a 3-dimensional robot end-effector po-
sition trajectory recorded as a human guided the robot in
sliding closed the lid of a wooden box.

As shown in Fig. 6(c), MCCB successfully generated
reproductions that are similar to the demonstrations. As
evidenced by quantitative evaluations in Fig. 9, encoding
demonstrations in the Laplacian coordinates yielded better
performance, with respect to all three metrics, when com-
pared to learning only in either of the other two coordinates,
while, MCCB (αC = 0.0123, αG = 0.045, αL = 0.9427)
consistently outperformed all the other approaches. Note that
learning in the Laplacian coordinates alone resulted in better
performance than uniformly weighting of all the coordinates.
These results are consistent with the results from the previous
sections and indicate that MCCB yields consistently good
performance. The results are summarized in Table I.

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.05

0.1

0.15

0.2

0.25

0.3
Frechet Distance

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

0.5

1

1.5

2

2.5

3

3.5

Sum of Squared Distances (m
2
)

C
ar

te
si
an

Tan
ge

nt

La
pl
ac

e

U
ni
fo

rm

M
C
C
B

0

2

4

6

8

10

12

Dynamic Time Warping Distance

Fig. 9: Box plots, with mean (brown star) and median (red line),
illustrate the performance of each approach on the pushing dataset.

Single Coordinate Multi-Coordinate
Cartesian Tangent Laplacian Uniform W. MCCB

Handwriting X X X X X X
Picking X X
Pressing X X
Pushing X X

TABLE I: Orange check marks denote the most relevant coordinate
and green check marks denote the best performing method.

V. DISCUSSION AND CONCLUSION
We introduced MCCB, a learning framework for encod-

ing demonstrations in multiple differential coordinates, and
automated balancing of costs defined in those coordinates.
As shown in Table I, we demonstrated that the relative
effectiveness of each coordinate system is not consistent
across a variety of tasks since any given skill might be better
suited for learning in one (or more) coordinate system(s).
Furthermore, uniform weighting of costs in different coor-
dinates does not consistently yield the best results across
different skills. Indeed, uniform weighting, in some cases,
yielded poorer performances compared to when only one
coordinate system was used. On the other hand, MCCB
learned to balance the costs and consistently yielded the best
performance. Since the weights are learned directly from the
demonstrations, MCCB makes no task-specific assumptions
and does not require tedious parameter tuning. Note that
although we used GMMs as the base representation in this
work, MCCB is agnostic to the statistical model used to
encode the demonstrations in each coordinate system, and
thus can be combined with other techniques, such as [10]–
[16]. Furthermore, MCCB can be extended to include more
coordinate systems that capture additional trajectory features.

ACKNOWLEDGMENT
This research is supported in part by NSF NRI 1637758.

REFERENCES

[1] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[2] A. Billard, S. Calinon, R. Dillmann, and S. Schaal, “Robot program-
ming by demonstration,” in Springer handbook of robotics. Springer,
2008, pp. 1371–1394.

[3] P. Pastor, H. Hoffmann, T. Asfour, and S. Schaal, “Learning and
generalization of motor skills by learning from demonstration,” in
IEEE International Conference on Robotics and Automation (ICRA),
2009, pp. 763–768.

[4] S. Calinon, F. Guenter, and A. Billard, “On learning, representing,
and generalizing a task in a humanoid robot,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 37, no. 2,
pp. 286–298, 2007.

[5] S. M. Khansari-Zadeh and A. Billard, “Learning stable nonlinear
dynamical systems with gaussian mixture models,” IEEE Transactions
on Robotics, vol. 27, no. 5, pp. 943–957, 2011.

[6] H. C. Ravichandar and A. Dani, “Learning position and orientation
dynamics from demonstrations via contraction analysis,” Autonomous
Robots, pp. 1–16, 2018.

[7] K. Neumann, A. Lemme, and J. J. Steil, “Neural learning of stable
dynamical systems based on data-driven lyapunov candidates,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2013, pp. 1216–1222.

[8] S. Levine and V. Koltun, “Learning complex neural network policies
with trajectory optimization,” in International Conference on Machine
Learning, 2014, pp. 829–837.

[9] M. Schneider and W. Ertel, “Robot learning by demonstration with
local gaussian process regression,” in IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2010, pp. 255–260.

[10] M. A. Rana, M. Mukadam, S. R. Ahmadzadeh, S. Chernova, and
B. Boots, “Towards robust skill generalization: Unifying learning from
demonstration and motion planning,” in Proceedings of the 2017
Conference on Robot Learning (CoRL), 2017.

[11] J. Umlauft and S. Hirche, “Learning stable stochastic nonlinear dy-
namical systems,” in International Conference on Machine Learning,
2017, pp. 3502–3510.

[12] S. R. Ahmadzadeh, M. A. Rana, and S. Chernova, “Generalized
cylinders for learning, reproduction, generalization, and refinement of
robot skills.” in Robotics: Science and Systems, 2017.

[13] S. Calinon, D. Bruno, and D. G. Caldwell, “A task-parameterized
probabilistic model with minimal intervention control,” in IEEE In-
ternational Conference on Robotics and Automation (ICRA), 2014,
pp. 3339–3344.

[14] A. Paraschos, C. Daniel, J. R. Peters, and G. Neumann, “Probabilistic
movement primitives,” in Advances in neural information processing
systems, 2013, pp. 2616–2624.

[15] T. Osa, A. M. G. Esfahani, R. Stolkin, R. Lioutikov, J. Peters,
and G. Neumann, “Guiding trajectory optimization by demonstrated
distributions,” IEEE Robotics and Automation Letters, vol. 2, no. 2,
pp. 819–826, 2017.

[16] T. Nierhoff, S. Hirche, and Y. Nakamura, “Spatial adaption of robot
trajectories based on laplacian trajectory editing,” Autonomous Robots,
vol. 40, no. 1, pp. 159–173, 2016.

[17] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “Chomp:
Gradient optimization techniques for efficient motion planning,” in
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2009, pp. 489–494.

[18] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, no. 9, pp. 1251–1270, 2014.

[19] A. D. Dragan, K. Muelling, J. A. Bagnell, and S. S. Srinivasa, “Move-
ment primitives via optimization,” in IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2015, pp. 2339–2346.

[20] Y. Lipman, O. Sorkine, D. Cohen-Or, D. Levin, C. Rossi, and H.-
P. Seidel, “Differential coordinates for interactive mesh editing,” in
Shape Modeling Applications. IEEE, 2004, pp. 181–190.

[21] B. Lévy, “Laplace-beltrami eigenfunctions towards an algorithm that”
understands” geometry,” in IEEE International Conference on Shape
Modeling and Applications, 2006, pp. 13–13.

[22] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with
statistical models,” Journal of artificial intelligence research, vol. 4,
pp. 129–145, 1996.

[23] S. M. Khansari-Zadeh and A. Billard, “Learning control lyapunov
function to ensure stability of dynamical system-based robot reaching
motions,” Robotics and Autonomous Systems, vol. 62, no. 6, pp. 752–
765, 2014.

[24] M. M. Fréchet, “Sur quelques points du calcul fonctionnel,” Rendiconti
del Circolo Matematico di Palermo (1884-1940), vol. 22, no. 1, pp.
1–72, 1906.

	I Introduction
	II Related Work
	III Methodology
	III-A Differential Coordinate Transformations
	III-B Encoding in Multiple Differential Coordinates
	III-C Imitation via Optimization
	III-D Automated Cost Balancing

	IV Experimental Evaluation
	IV-A Handwriting Skill
	IV-B Picking Skill
	IV-C Pressing Skill
	IV-D Pushing Skill

	V Discussion and Conclusion
	References

