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Abstract— Soft robots are challenging to model due in large
part to the nonlinear properties of soft materials. Fortunately,
this softness makes it possible to safely observe their behavior
under random control inputs, making them amenable to large-
scale data collection and system identification. This paper
implements and evaluates a system identification method based
on Koopman operator theory in which models of nonlinear
dynamical systems are constructed via linear regression of
observed data by exploiting the fact that every nonlinear system
has a linear representation in the infinite-dimensional space of
real-valued functions called observables. The approach does not
suffer from some of the shortcomings of other nonlinear system
identification methods, which typically require the manual
tuning of training parameters and have limited convergence
guarantees. A dynamic model of a pneumatic soft robot arm is
constructed via this method, and used to predict the behavior
of the real system. The total normalized-root-mean-square
error (NRMSE) of its predictions is lower than that of several
other identified models including a neural network, NLARX,
nonlinear Hammerstein-Wiener, and linear state space model.

I. INTRODUCTION

Soft robots incorporate non-rigid materials into their mor-
phology to facilitate compliant interactions with the external
world. This compliance allows them to manipulate delicate
objects, adapt to unstructured environments, and interact
safely with coexisting humans [1], [2], [3]. Since their
utility is derived from their compliance, control methods that
preserve and/or exploit this property are desirable.

Accurate models facilitate better control performance.
When an accurate model is available, predictive controllers
can be built by using the model to calculate a feedforward
term, then adding a feedback term to account for minor
model uncertainty and disturbances. If an accurate model
is unavailable, feedback must be relied upon more heavily.
This poses several problems for soft robots. First, feedback
requires sensing, but the morphology of soft robots precludes
the use of most conventional sensors. Suitable alternatives
are currently in development [4], [5], [6], [7], but are not
yet readily available. Second, relying heavily on feedback
to compensate for an inaccurate model has been illustrated
to reduce the compliance of soft robotic systems [8]. That
is, excessive feedback negates the desirable compliance of
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Fig. 1. By providing an infinite-dimensional linear representation of a
dynamical system, Koopman operator theory enables linear system iden-
tification of nonlinear systems. This process proceeds in three steps, as
described in Section II: (1) Measured states of the system are lifted to
the space of real-valued functions of the state and input. (2) Least-squares
regression is performed on the lifted data to obtain an approximation of the
Koopman operator, Ut. (3) An approximation of the nonlinear vector field
F is obtained via its one-to-one relationship with the Koopman operator.

a soft robot by replacing its natural dynamics with those
of a slower, stiffer system. Therefore, accurate models are
required to control soft robots in a manner that reduces
dependence on feedback and simultaneously preserves com-
pliance.

Models for soft robots can be separated into two cat-
egories: physics-based models and data-driven models.
Physics-based models are constructed from observations of
component material properties and first-principles, while
data-driven models are constructed from observations of sys-
tem behavior. Physics-based models have the ability to make
predictions about a system’s behavior before the system is
constructed. Thus, they are often used to inform the design
and construction of soft robots intended for particular tasks
[9], [10], [11], [12], [13]. However, the infinite degrees
of freedom and nonlinear behavior of soft materials make
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it difficult to construct accurate physics-based models of
soft robots without making simplifying assumptions such as
constant curvature [14], [15], quasi-static [16], [17], [18],
or simplified geometry [19], [20], [21]. These models only
describe behavior well in the subset of robot configurations
where the assumptions hold; hence, they are limited in
applicability.

Data-driven models are more broadly applicable since
they do not make structural assumptions about the system.
Data-driven models are constructed from observations of
system behavior rather than from first-principles. Hence,
given sufficient data, they are capable of describing system
behavior well over the entire range of observations. By virtue
of their soft bodies, it is often possible to safely command
arbitrary control inputs without risk of damaging a soft
robot or nearby human operators. Soft robots are therefore
amenable to data collection over their entire operation range,
making them particularly well suited for data-driven system
identification techniques.

To capture the characteristic nonlinear behaviors of most
soft robots, identification of a nonlinear model is nec-
essary. Unfortunately, identifying a nonlinear model from
data typically consists of solving a nonlinear, non-convex
optimization problem, for which global convergence is not
guaranteed [22]. Furthermore, most nonlinear system identi-
fication methods require the manual initialization and tuning
of training parameters, which have an obscure impact on
the resulting model. A neural network, for example, may
be able to capture the nonlinear behavior of a soft robot
[23]; however, its accuracy depends on the number of hidden
layers, number of nodes per layer, activation function, and
termination condition used during training, which must be
selected through trial and error until acceptable results are
achieved.

Linear model identification, on the other hand, does not
suffer from the typical shortcomings of nonlinear identifica-
tion since linear models can be identified via linear regression
[24]. However, linear models are poorly suited to capture the
behavior of soft robots since their characteristic behavior is
distinctly nonlinear [1].

In this work, we employ Koopman operator theory to
generate nonlinear, data-driven models of soft robots via
linear regression (see Fig. 1). This approach relies on the
idea of lifting nonlinear dynamical systems to an infinite
dimensional space, where those systems have a linear repre-
sentation. In this space, it is possible to describe the dynamic
behavior of a system by a linear operator rather than a
nonlinear vector field [25]. This linear operator, called the
Koopman operator, is identified via linear regression [26], so
it does not suffer from the convergence and tuning problems
that are characteristic of neural networks and other nonlinear
system identification methods.

Our primary contribution is demonstrating, on a real
system, a data-driven method for constructing globally valid
nonlinear models that does not require the manual tuning
of multiple training parameters. To do so, we apply the
Koopman based system identification method described in

[27] and [28] to create a dynamic model of a soft robot arm
and verify that it captures the system’s true dynamic behavior
better than the models generated by several other state-of-
the-art nonlinear system identification methods including a
neural network, a nonlinear auto-regressive with exogenous
inputs model (NLARX), a nonlinear Hammerstein-Wiener
model, and a state space model. Koopman operator theory
has previously been used to perform model-based control of
nonlinear systems [29]. However, to the author’s knowledge,
this technique has never before been used to identify the
dynamic model of a real system, much less a soft robot.
We believe that this system identification method applied
to soft robots will enable the rapid development of new
and effective control strategies by making accurate nonlinear
dynamic models easier to construct.

The rest of this paper is organized as follows: In Section
II we formally introduce the Koopman operator and describe
the system identification method. In Section III we describe
the soft robot and experimental procedure used for collecting
input-output data of the system. In Section IV we summarize
the results of applying various nonlinear system identification
techniques to the collected data and compare the perfor-
mances of the models generated. In Section V concluding
remarks and perspectives are provided.

II. KOOPMAN OPERATOR METHOD FOR SYSTEM
IDENTIFICATION

The system identification method utilized in this work
exploits the fact that any finite-dimensional nonlinear system
has an equivalent infinite-dimensional linear representation
in the space of real-valued functions of the system’s state
and input. In this space of real-valued functions, the (linear)
Koopman operator describes the flow of functions along
trajectories of the system. The relationship between the finite
and infinite dimensional representations of the system is bi-
jective and well-defined [30]. This enables us to approximate
the Koopman operator via linear regression on observed data,
then extract the equivalent nonlinear system representation.
The remainder of this section summarizes the system identifi-
cation method presented in [27] and [28] applied to a system
with known input, which is later employed and validated on
a real soft robotic system.

A. Overview of Lifting Technique

Consider a dynamical system

ẋ = F (x, u) (1)

where x ∈ Rn is the state of the system, u ∈ Rm is the
input and F is continuously differentiable in x. Denote by
φ(t, x0, u) the solution to (1) at time t when beginning with
the initial condition x0 at time 0 and a constant input u
applied for all time between 0 and t. For simplicity, we
denote this map, which is referred to as the flow map, by
φt(x0, u) instead of φ(t, x0, u).

The system can be lifted to an infinite dimensional func-
tion space F = L2(X ×U,R) where X ⊂ Rn and U ⊂ Rm
are compact subsets and L2(X × U,R) is the space of



square integrable real-valued functions with domain X ×U .
Elements of F are called observables. In F , the flow of
the system is characterized by the set of Koopman operators
U t : F → F , for each t ≥ 0, which describes the evolution
of the observables f ∈ F along the trajectories of the system
according to the following definition:

U tf = f ◦ φt (2)

As desired, U t is a linear operator even if the system (1) is
nonlinear, since for f1, f2 ∈ F and λ1, λ2 ∈ R

U t(λ1f1 + λ2f2) = λ1f1 ◦ φt + λ2f2 ◦ φt

= λ1U
tf1 + λ2U

tf2.
(3)

Thus the Koopman operator provides a linear representation
of the flow of the system in the infinite-dimensional space
of observables (see Fig. 1) [25].

One can show that there is a one-to-one correspondence
between the infinite-dimensional Koopman operator and
finite-dimensional vector field. To understand this relation-
ship, consider the time derivative of an observable, ḟ , along
trajectories of the system:

ḟ(x, u) =
∂f

∂x

dx

dt
+
∂f

∂u

du

dt
(4)

=
∂f

∂x
F (x, u) (5)

= (F · ∇x)f(x, u) (6)

where the second relation follows since u is held constant
and where ∇x is the gradient with respect to x. Since
this equation holds for all observables, we introduce the
infinitesimal generator of the Koopman operator A : F → F
[30, Equation 7.6.5] which is defined in terms of the vector
field F as

A = F · ∇x (7)

The infinitesimal generator thus describes the dynamics
of the observables along trajectories of the system (i.e.
ḟ = Af ). Recalling that the Koopman operator describes the
flow of observables, one can show that the Koopman operater
is associated with its infinitesimal generator via the following
relation:

U t = eAt =

∞∑
k=0

tk

k!
Ak (8)

In Section II-D Equations (7) (8) are used to solve for the
vector field F when the Koopman operator U t is known.

By providing a linear representation of a system with a
one-to-one correspondence to its nonlinear representation,
Koopman operator theory enables linear system identification
of nonlinear systems. This process proceeds in three steps
which are summarized by Algorithm 1. In step one, measured
states of the system are lifted to the space of observables.
Step two consists of performing least-squares regression on
the lifted data to obtain an approximation of the Koopman
operator. In step three, an approximation of the nonlinear
vector field F is obtained using (7) and (8). The following
three subsections describe each of these steps in more detail.

Algorithm 1: Koopman-Based System Identification
Input: {(xk, uk), (xk+1, uk)} for k = 1, ...,K
Step 1: Lift data via (10)
Step 2: Approximate Koopman operator, ŪTs via (14)
Step 3: Approximate Vector Field, F̄ via (18) and (21)
Output: F̄

B. Step 1: Lifting the Data

The first step of the Koopman-based system identification
method consists of converting empirical data into a form
that can be used to identify a linear model in the space
of observables. Theoretically this process would consist of
“lifting” state measurements into the infinite-dimensional
space of observables F . To be implementable, however,
measurements can only be lifted into a finite-dimensional
subspace. Define F̄ ⊂ F to be the subspace of F spanned
by N linearly independent basis functions {ψk}Nk=1 (e.g.
monomials, sinusoids, exponentials). Any observable f̄ ∈ F̄
can be written as a linear combination of elements of the
basis

f̄ = α1ψ1 + · · ·+ αNψN . (9)

Note that the vector of coefficients α =
[
α1 · · · αN

]T
provides a vector representation for f̄ ∈ F̄ . To evaluate f̄ at
a given state x and constant input u, we introduce the lifting
function ψ : Rn × Rm → RN defined as:

ψ(x, u) =
[
ψ1(x, u) · · · ψN (x, u)

]T
(10)

Then, f̄(x, u) can be expressed in vector form as

f̄(x, u) = αTψ(x, u). (11)

We refer to ψ(x, u) as an N -dimensional “lifted” version of
(x, u), since multiplying ψ(x, u) by the vector representation
of an observable yields the value of the observable at (x, u).

C. Step 2: Approximating the Koopman Operator

The second step of the Koopman-based system identi-
fication method is to identify the Koopman operator that
best describes the flow of the lifted versions of measured
data points. While the Koopman operator is theoretically
infinite-dimensional, for practical purposes we identify a
finite-dimensional approximation of it in F̄ which we denote
by Ū t. Note that Ū t can be represented by an N×N matrix
which operates on observables via matrix multiplication:

Ū tα = β (12)

where α, β are vector representations of observables in F̄ .
Our goal is to find a Ū t that describes the action of the
infinite dimensional Koopman operator U t as accurately as
possible in the L2-norm sense on the finite dimensional
subspace F̄ of all observables. Therefore, to perfectly mimic
the action of U t acting on an observable in F̄ ⊂ F , the
following should be true

(Ū tα)Tψ(x, u) = αTψ
(
φt(x, u), u

)
. (13)



Since this is a linear equation, it follows that for a given
x ∈ Rn, u ∈ Rm, solving (13) for Ū t yields the best approx-
imation of U t on F̄ in the L2-norm sense:

Ū t =
(
ψ(x, u)T

)†
ψ(φt(x, u), u)T (14)

where superscript † denotes the least-squares pseudoinverse.
To approximate the Koopman operator from a set of

experimental data, we take K+1 discrete state measurements
with sampling period Ts. Under the assumption that the
control input is constant between samples, we separate the
data into a set of K so-called “snapshot pairs” of the form
{(xk, uk), (yk, uk)} ∈ R(n×m)×2 where

yk = φTs(xk, uk) + σk (15)

and σk denotes measurement noise. For our basis of F̄ ,
we choose the basis of monomials of x and u with
total degree less than or equal to w, which implies
N = (n+m+ w)!/

(
(n+m)!w!

)
[27, Section III]. We

then lift all of the snapshot pairs according to (10) and
compile them into the following K ×N matrices:

Ψx =


ψ(x1, u1)T

...
ψ(xK , uK)T

 Ψy =


ψ(y1, u1)T

...
ψ(yK , uK)T

 (16)

ŪTs is chosen so that it yields the least squares best fit to all
of the observed data, which, following from (14), is given
by

ŪTs := Ψ†xΨy. (17)

D. Step 3: Obtaining the Vector Field

The final step of the Koopman-based system identification
method is to identify the nonlinear vector field by making
use of the one-to-one correspondence between the infinite
and finite dimensional system representations. As earlier, our
goal is to find an F̄ that describes the behavior of the vector
field F as accurately as possible in the L2-norm sense on
the finite dimensional subspace F̄ .

The vector field is related to the Koopman operator
through its infinitesimal generator according to Equation (7).
With the approximation of the Koopman operator ŪTs found
in Section II-C, we can solve for the infinitesimal generator
of the set of Koopman operators Ā by inverting (8):

Ā =
1

Ts
log Ū t ∈ RN×N (18)

where log denotes the principal matrix logarithm [31, Chap-
ter 11]. Note that the principal matrix logarithm is only
defined for matrices whose eigenvalues all have non-negative
real components, and that Ū t may have zero or negative
eigenvalues when the number of data points is too small [27].
Therefore this method might fail if the number of data points
is insufficient. In this instance, more system measurements
can be taken to resolve the issue.

With Ā known, (7) can be used to identify F̄ . Consider
A applied to an observable f ∈ F . According to (7), this is

equivalent to the inner product of the vector field F and the
gradient of f with respect to x:

Af(x, u) =
∂f(x, u)

∂x
F (x, u). (19)

Let α ∈ RN be the vector representation f̄ , the projection of
f onto F̄ . Then from (11) the finite-dimensional equivalent
of (19) is given by

(Āα)Tψ(x, u) = αT
∂ψ(x, u)

∂x
F̄ . (20)

We seek the vector field F̄ such that (20) holds as well
as possible in the L2-norm sense for all observed data.
Therefore we choose the least-square solution to (20) over
the set of all observed data points

{
(xk, uk)|k = 1, ...,K

}
which is given by

F̄ =


∂ψ(x1,u1)

∂x
...

∂ψ(xK ,uK)
∂x


† 
ĀT · · · 0

...
. . .

...
0 · · · ĀT



ψ(x1, u1)

...
ψ(xK , uK)

 .
(21)

For a more thorough treatment of this process, see [27], [28].

III. SYSTEM IDENTIFICATION OF A SOFT ROBOT

To demonstrate and evaluate the performance of the
method outlined in Section II, we applied it to a continu-
ously deformable soft robot arm and compared the resulting
model to those generated by several other nonlinear system
identification techniques. In the following, we describe in
detail the robotic hardware, experimental setup, measurement
procedure, and the data processing involved in the system
identification process, as well as the process by which
performance was evaluated and compared across models.

A. Hardware Description

The soft robot used in this experiment consisted of three
pneumatically driven McKibben actuators (also known as
Pneumatic Artificial Muscles or PAMs) adhered together by
latex rubber and connected to a common base mount on
one end and to an end effector on the other (see Fig. 2).
During the trials, the pressure inside each actuator was varied
using a pneumatic pressure regulator (Enfield TR-010-g10-
s), and the displacement and velocity of the end effector was
measured at 60Hz using a commercial motion capture system
(Phase Space Impulse X2E).

For this robot, it is our primary interest to control the
motion of the end effector. Hence, we chose a state rep-
resentation of the system which is capable of describing
the dynamics of the end effector as an ordinary differential
equation, namely the position and velocity of the end effector
with respect to a global coordinate frame, as shown in Fig. 2

~x =
[
x1 x2 x3 ẋ1 ẋ2 ẋ3

]T
(22)



TABLE I
DATA COLLECTION PARAMETERS

Trial
1 2 3 4 5 6

Length (min) 40:06 31:26 8:16 26:09 28:38 31:35
Tu (s) 3.0 3.5 4 5 5 8

B. Randomized Control Input

To generate a representative sampling of the system’s
behavior over its entire operation range, a randomized input
was applied. The control input into the system u was a
set of three 0 − 10V signals into the pressure regulators
corresponding to actuator pressures of ≈ 0− 140 kPa

u(t) =
[
u1(t) u2(t) u3(t)

]T
, ui ∈ [0, 10] (23)

Before each trial, a 3×Ku table Υ of uniformly distributed
random numbers between zero and ten was generated to be
used as an input lookup table. Ku was chosen to be large
enough to provide inputs over the entire length of each trial.
Each control input was smoothly varied between elements in
consecutive columns of the table over a transition period Tu
with a time offset of Tu/3 between each of the three control
signals,

ui(t) =
(Υi,k+1 −Υi,k)

Tu

(
t+

(i− 1)Tu
3

)
+ Υi,k (24)

where k = floor
(
t/Tu

)
is the current index into the lookup

table at time t.

C. Data Collection

Data collection proceeded in 6 trials each lasting an aver-
age of ≈ 27 minutes. The input transition period Tu varied
from trial to trial, taking values between 3 and 8 seconds
(see Table I for the specific values for each trial). After
collecting data, raw position and velocity measurements were
put through a moving average filter with window size of
1s to reduce noise, then sampled uniformly with a period
Ts = 0.02 seconds. Sampled velocity measurements were
put through a second moving average filter with window size
of 1 second due to the higher noise content of the velocity
signal. The time-series data from each trial was partitioned
into training and validation sets. Three 10 second validation
sets were extracted from each trial and the remainder of the
trial data was used for training.

D. Model Comparison

We generated a state space model from the technique
described in section II using a monomial basis of maximum
degree w = 3 and the collected training data. We then
evaluated its accuracy by comparing model simulations to
each of the validation data sets (Fig. 3). Goodness of fit for
the trajectory of a state y was calculated using the normalized

Motion-capture
 Markers

Fig. 2. System identification was performed on a soft robot consisting of
three PAMs adhered together. Active motion capture markers on the base
and end effector enabled tracking of the position and velocity of the end
effector relative to the fixed global coordinate frame marked by unit vectors
x̂1, x̂2, x̂3 where x̂1 is pointing into the page. The robot’s range of motion
given control inputs defined in (24) is depicted.

root-mean-square error (NRMSE), defined:

RMSE =

√∑Ntotal
k=1 (yk − ŷk)

2

Ntotal
(25)

NRMSE =

(
RMSE

ymax − ymin

)
· 100% (26)

where ŷ is the simulated value of the state, Ntotal is the
total number of points, and ymin/max are the measured mini-
mum/maximum values of the state observed over all trials.

The performance of our model was benchmarked against a
linear state space, nonlinear Hammerstein-Wiener, nonlinear
auto-regressive with exogenous inputs (NLARX), and a
feedforward neural network model. The models were trained
and evaluated on the non-lifted time-series data from the
experiments described in Section III, and generated using
either the Matlab System Identification Toolbox or Neural
Network Toolbox [32]. The state space model was generated
using the subspace method [24, Chapter 7] and specified
to be 6 dimensional, i.e. the same dimension as the state
defined in 22. The neural network model was trained using
the Levenberg-Marquardt backpropogation algorithm and
sigmoid activation functions. It was trained several times
using combinations of 10-30 hidden neurons and 1-10 delays.
Only the results for the best of these models, corresponding
to 10 hidden neurons and 10 delays, is displayed in Fig. 4
and Table II.

IV. RESULTS

The model generated by the Koopman system identifica-
tion method has a total RMSE averaged across position states
and velocity states of 5.98 mm and 3.66 mm/s, respectively.
As shown in Table II, this corresponds to a total NRMSE



Fig. 3. The measured position of the robot end effector over a 30 second
time window (black,dotted) superimposed with the position predicted by the
Koopman-based model (blue) given the same initial condition and control
inputs. Coordinates are defined with respect to the global coordinate frame
depicted in Fig. 2.

Fig. 4. Shown is the total NRMSE averaged across all states for each of
the models, with the standard deviation designated by the black bar. The
average NRMSE of the Koopman-based model is less than half of that of
the other models, with a standard deviation of less than one third of the
other models.

averaged across all states of 2.1%. By this metric, it performs
more than twice as well as the best competing linear and
nonlinear models which have average NRMSEs of 4.6%
and 4.5%, respectively (see Fig. 4). The Koopman model
also exhibits the smallest standard deviation of the NRMSE
across states. This implies that the Koopman model more
consistently captures the real behavior of all six states of the
system, rather than just a subset of them. Fig. 3 illustrates the
ability of the Koopman-based model to predict the position
of the end effector over a 30 second time horizon.

V. DISCUSSION AND CONCLUSION

We have successfully applied a system identification tech-
nique based on Koopman operator theory to a soft robot

TABLE II
TOTAL NRMSE (%) OVER ALL VALIDATION TRIALS

States Std.
Model

x1 x2 x3 x4 x5 x6
Avg. Dev.

Koopman 2.4 2.0 2.9 1.7 1.5 2.0 2.1 0.5
Neural Net 5.8 4.0 6.6 3.9 2.8 3.5 4.5 1.5
State Space 5.1 3.1 9.9 3.0 1.8 4.8 4.6 2.9

Ham.-Weiner 7.0 4.5 6.9 3.0 2.3 3.1 4.5 2.0
NLARX 5.0 3.0 12.0 3.8 2.1 2.8 4.8 3.7

and shown that the model generated outperforms those
constructed by several other state-of-the-art nonlinear system
identification methods. Perhaps unsurprisingly, the linear
state space model was unable to capture the nonlinear
dynamics of the robot as well as the Koopman model. As
for the nonlinear models, there are several likely reasons
why the performance of the Koopman model was superior.
Since the Koopman model is a state space model, simulations
can be initialized from the same initial condition as the real
system. This is not the case for the other learned nonlinear
models which do not have an internal state corresponding to
the physical state of the robot. Rather, they act as black-box
models only capable of mapping inputs to outputs.

Another advantage of the Koopman model is that its qual-
ity does not depend on an initial model estimate or tuning
parameters. By iterating over the set of all initializations
and tuning parameters, one may be able to generate better
performing models than those shown; unfortunately, this
multivariate trial-and-error process may not affect results in
a predictable way. In contrast, the only tuning parameter
involved in the Koopman method is the maximum degree of
the monomial basis functions, which has a magnitude that is
directly proportional to model accuracy.

While the results here are promising, there are practical
challenges to extending the Koopman approach to higher
dimensional systems. As the dimension of the state space
increases, so does the size of the monomial basis set of
the finite-dimensional subspace of observables. This greatly
increases the size of the matrix equations that must be
solved, leading to computational intractability for sufficiently
high dimensional systems. However, if some information
about the system is known beforehand, this issue could
be counteracted by choosing a more suitable basis for the
observables. For example, if the system exhibits oscillatory
motion, a lower dimensional fourier basis may be more
suitable than a monomial basis to represent the behavior.
Such an extension of the method is left to future work.

Soft robots are notoriously difficult to model, but amenable
to large-scale data collection and data-driven modeling meth-
ods. This paper demonstrates the utility of Koopman operator
theory to make accurate nonlinear dynamical models easier
to construct, enabling the rapid development of control strate-
gies that exploit the unique characteristics of soft robots.
Future work will aim to generalize this approach to higher
dimensional models, non-polynomial models, and models
that account for external loading and contact forces.
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