
Decentralization of Multiagent Policies
by Learning What to Communicate

James Paulos∗, Steven W. Chen∗, Daigo Shishika, and Vijay Kumar

Abstract— Effective communication is required for teams of
robots to solve sophisticated collaborative tasks. In practice it is
typical for both the encoding and semantics of communication
to be manually defined by an expert; this is true regardless of
whether the behaviors themselves are bespoke, optimization
based, or learned. We present an agent architecture and
training methodology using neural networks to learn task-
oriented communication semantics based on the example of
a communication-unaware expert policy. A perimeter defense
game illustrates the system’s ability to handle dynamically
changing numbers of agents and its graceful degradation in
performance as communication constraints are tightened or the
expert’s observability assumptions are broken.

I. INTRODUCTION

Teams of cooperative robots hold unique advantages over
single actors across many task domains. Examples include
mapping [1], [2], search [3], [4], precision agriculture [5],
[6], and logistics and delivery [7]. There are, however,
fundamental challenges to designing effective multi-robot
systems. The first is the high dimensionality of a team’s
joint state space, which makes the planning problem difficult
even in a full information setting. The second is that in
realistic settings the information to support those decisions
is spread throughout the team. As a result, today’s deployed
systems often require a central authority and/or effectively
unrestricted communication, both of which can lead to brittle
solutions with limited scalability.

This work envisions a team of robots which work col-
lectively as peers towards a common goal. Teammates can
be dynamically added or removed, disrupting no explicit
hierarchy or rigid agent specialization. Our methodology
is to train agents as a team to mimic the actions of an
expert policy. During training the expert policy may be
centralized, full information, poorly scaling, communication-
naive; during deployment the agents will make due with local
information and well defined communications constraints.

The key to task success is effective communication, but it
is far from obvious how to manually engineer it. Information
can be irrelevant, redundant, or salient but non-actionable.
Messages themselves may wish to convey summaries of
state, intended actions, or commands to other agents. We

We gratefully acknowledge the support of ARL grant ARL DCIST
CRA W911NF-17-2-0181, ONR grant N00014-07-1-0829, and ARO grant
W911NF-13-1-0350. This work was supported in part by the Semiconductor
Research Corporation (SRC) and DARPA. We additionally thank NVIDIA
for generously providing support through the NVAIL program.

The authors are with the GRASP Lab at the University of Penn-
sylvania, Philadelphia, USA. {jpaulos, chenste, shishika,
kumar}@seas.upenn.edu

∗These authors are co-first authors.

co-train agents’ communication and decision processes as
layered neural networks, where a small number of activations
represent network links between agents in the team. In this
way we learn communications that support the task.

Evolutionary methods can be used to co-evolve agents
represented by neural networks [8]. Beyond these methods,
there is a rich history of multi-agent reinforcement learn-
ing (MARL) [9], where a common approach is centralized
training of decentralized policies [10], [11]. Recently, many
works have explored multi-agent analogues to single-agent
deep reinforcement learning algorithms [12], [13]. These
prior works focus on reinforcement learning as a paradigm
to train a network, whereas our focus is on structuring the
network in a way to decentralize known centralized policies.

Deep reinforcement learning has been applied to to multi-
agent problems to explore learned communication protocols.
In [14] agents learn to encode meaning in discrete com-
municative actions (“on/off”) to solve puzzles such as the
“Switch Riddle.” A common element of these games is a
rigid number of participants and strictly serial and sequential
communication. Nearer to our vision, [15] considers multi-
turn games with agents in a grid world. Outside of rein-
forcement learning, [16] views communication as a selective
exchange of private state and seeks policies to maximize the
mutual information between states and optimal actions.

The primary contribution of this paper is an architecture
for training decentralized agent policies based on examples
of centralized, expert team play. This necessarily entails
learning communication strategies, and the framework makes
explicit that effective communication is a task-oriented prop-
erty. Section II formulates our search for a distributed policy
and the limitation of when such solutions can be expected to
exist. Section III notes characteristics unique to mobile robot
teams that will inform our architecture, which is detailed in
Section IV. We introduce a perimeter defense game in Sec-
tion V to demonstrate our architecture, evaluate performance
in Section VI, and discuss future work in Section VII.

II. DECENTRALIZATION PROBLEM

A multiagent Markov Decision Process (MMDP) [17] is
a tuple

M = 〈X ,α, {Ui}i∈α, f , q, T 〉

where: X ,α are sets of states and agents; Ui is the set of
possible actions for agent i; f(x, {ui}i∈α) : X ×{Ui}i∈α →
∆X is a transition rate function; q(x, {ui}i∈α) : X ×
{Ui}i∈α → R is a cost rate function; and T is a finite time
horizon.

ar
X

iv
:1

90
1.

08
49

0v
2 

 [
cs

.R
O

] 
 2

5 
M

ar
 2

01
9



In the centralized setting, the objective is to find an
optimal centralized policy Φ∗c(x) : X → {Ui}i∈α such that
∀x ∈ X , Φ∗c minimizes:

min
Φ

J(x) =

∫ T

t=0

q(x(t),Φ(x(t)))

s.t.
dx(t)

dt
= f(x(t),Φ(x(t))),

x(0) = x.

(1)

In the distributed setting, there is a private observation
function yi(x) : X → Yi, where Yi is the observation space
for agent i. The team observation function is Y (x) : X →
{Yi}i∈α, which corresponds to the set of private observations
Y (x) = {yi(x)}i∈α. These observation functions are set by
the environment and not the agents.

We make the assumption that the state can be determined
using only the current team observation:

Assumption 1 (Jointly Fully Observable). There exists a
surjective function g({yi}i∈α) : {Yi}i∈α → X .

The MDP under this assumption has been previously
called a decentralized MDP (as opposed to a decentralized
POMDP) in other contexts [18]. With this assumption, each
agent i has a communication function and action function:

ψi(yi) : Yi → Ci

µi(yi, {ψj}j∈α) : Yi × {Cj}j∈α → Ui
where ψi computes the communication an agent broadcasts
to other agents based on its private observation yi; and µi
computes the action based on the private observation yi and
received communications {ψj}j∈α.

The distributed policy Φd({yi}i∈α) : {Yi}i∈α →
{Ui}i∈α is the set of predicted actions Φd(y) = {ui}i∈α
given the communication and action functions. In this setting,
the objective is to find a set of optimal communication and
action functions {ψ∗i }i∈α, {µ∗i }i∈α such that ∀x ∈ X , the
resulting distributed policy Φ∗d minimizes Eqn. (1).

Frequently, it may be difficult to directly search for op-
timal distributed policies, but optimal or close to optimal
centralized policies are readily available, thus motivating the
following problem.

Decentralization Problem: Given a centralized policy Φc,
the objective of the decentralization problem is to find the
set of communication and action functions {ψi}i∈α, {µi}i∈α
such that Φc(x) = Φd({yi}i∈α). Assumption 1 is a suffi-
cient, but not necessary, condition that the decentralization
problem is feasible.

Note that this problem only seeks to find the distributed
analogue to a centralized policy, and does not directly deal
with optimizing Eqn. (1). However, in most contexts, Φc

is found by minimizing Eqn. (1). As a result, the objective
function J(x) can be used as a measure of quality for Φd.

III. PROPERTIES

We are interested in problems concerning homogeneous
agents which are defined as having the same communication
and action functions ψ, µ. In addition, individuals in a team

may fail, and it is desirable to have the policy Φ be applicable
for teams of variable size. The codomain of policy Φ is then
the set of all sets of arbitrary size of the form {U , . . . ,U} ,
i.e. the power set 2U [19].

The restriction to homogeneous agents results in a specific
invariance property for the policy. Intuitively, swapping two
agents with each other should not have an effect on what a
third agent does. This intuition is formalized by the concept
of permutation invariance [19]. A function g : 2S → Z
acting on sets is permutation invariant if for any permutation
π, g({s1, . . . sM}) = g({sπ(1), . . . sπ(M)}.

In addition, at the team level, the set of actions {ui}i∈α
should automatically rearrange themselves as the agents
swap order. This notion is formalized by the concept of
permutation equivariance [20], [21]. A function g : SM →
ZM is permutation equivariant if for any permutation π,
g(π([s1, . . . sM ])) = π(g([s1, . . . sM ])).

In the MMDP with homogeneous agents, the following
invariances must hold for the action function and policy:
1. The action function µ is permutation invariant to the

communications ψ, and as a result, to the agents α.
2. The policy Φ is permutation equivariant to the agents α.

For our specific scenario, our agents observe interchange-
able objects in the environment. We would like to impose
that the communication function ψ is permutation invariant
to these objects, and should also be able to handle variable
sizes of these objects.

IV. TRAINING ARCHITECTURE
Neural networks are suitable for the decentralization prob-

lem, and multi-agent systems in general, due to their connec-
tionistic approach to computation. When properly designed,
a neural network that represents the distributed policy Φd

for the team can be shattered into sub-networks to recover
individual communication and action functions ψ and µ for
agents. This insight implies that by operating at the aggregate
team level, for example training the network using supervised
learning to fit the centralized policy Φc, the communication
and decision functions will automatically be learned.

Using multi-layer perceptron (MLP) and permutation in-
variant neural network (PIN) components, we can impose
structure on the network such that it satisfies the properties
of Sec. III by construction. An MLP φ(s; θ) with L layers
is a composition of L affine functions λj(s) := Wjs + bj ,
each except the last one followed by a nonlinear activation
function h, so that:

φ(s; θ) = λL ◦ h ◦ λL−1 ◦ · · · ◦ h ◦ λ1(s),

where θ := {W1:L, b1:L} are the affine function parameters
to be optimized, and h is a fixed function which we choose
to be a rectified linear unit (ReLU) or leaky rectified linear
unit (Leaky ReLU) [22]. The MLP is a fixed-to-fixed function
that takes in a vector of fixed size, and outputs a vector of
fixed size. More structured architectures can be constructed
by assigning some of the parameters beforehand, for example
setting a specific weight and bias to be 0 in order to remove a
connection, or by sharing weights across or between layers.



Perception Module Communication 

Encoder 

Module

Perception Module

Perception 

Network +

xD

yN

y1

x1

xN
v
a

r
ia

b
le

 #
 a

tt
a

c
k

e
r
s

x1

y1

xN

yN

xD

yD

…

Communication Encoder 

Module

Encoder 

Network

comm

Decision Module

Decision 

Network

decision

unobserved attacker

observed attacker

other defender

defender

transmitted communication

received communication

Communication 

Decoder 

Module

Decision Module

𝜌 𝜏 𝜎 𝜐

𝜓 𝜇

Communication Decoder 

Module

Decoder 

Network +

yD

Fig. 1. Network Architecture. The communication ψ and decision µ are functions of the individual agents. The whole diagram represents the entire
distributed policy Φd across all agents.

The PIN [19] is a neural network that takes as input a
set of instances and outputs a vector of fixed size. A PIN
consists of two MLPs φ, γ arranged in the form χ(S) =
φ
(∑

s∈S γ(s)
)
, where the input is a set S. The PIN thus

destroys the ordering in the set S through the summation
operation. In addition, due to weight sharing, it is a variable-
to-fixed neural network, since the same MLP γ is applied to
each instance s ∈ S.

Fig. 1 depicts an architecture that obeys the properties
highlighted in Sec. III, and can be easily shattered to obtain
the communication and action functions ψ and µ for each
agent. The colored blocks on the top of Fig. 1 depict the
sub-network for a single agent. It consists of 2 PINs in order
to handle 2 types of permutation invariance: action function
µ is permutation invariant to communications and agents;
and communication function ψ is permutation invariant to
the objects. Within each PIN, there are 2 MLPs, thus our
architecture consists of 4 modules, with each module shown
to have a different color. These 4 modules are replicated for
each agent in the team to form the distributed policy Φd,
represented by the entire diagram. This replication process
enforces both the homogeneity in the agents, as well as the
variable size property of the distributed policy.

The composition of these modular blocks leads to natural
interpretation for each module. The first module is an MLP
ρ(y) : Y → Rp, called the perception module, and the
second module is an MLP τ(ρ) : Rp → C called the
communication encoder module. The perception module
is responsible for perceiving the world and processing it
into some meaningful information called a perception feature

ρ, and the communication encoder module takes ρ and
computes the communication to be transmitted.

Usually, we want to impose permutation invariance to
certain parts of the observations, for example to semantic
objects in the environment, but not other parts such as
position or velocity information, i.e. y = {ωi}i∈Ω× ȳ. As a
result, our perception module ρ consists of two sub-network
MLPs, ρa and ρd, where ρa processes the object information
we want to be invariant to, and ρd processes other inputs. The
perception feature is then the concatenation of the outputs of
these two sub-networks ρ = [ρd(ȳ),

∑
i∈Ω ρa(ωi)], and the

composition τ ◦ρ is a PIN that computes the communication
ψ(y) and is invariant to the objects.

These communication functions τ ◦ρ are then run on every
agent in the team, to get the set of communications {ψi}i∈α.
These communications are one of the most fundamental
components of the neural network, as they represent the
actual messages that will be sent between the agents of the
teams. The width of these messages, i.e. the size of the
message vector, should be small, since transmitting large
messages is not desirable. As a result, they represent a
bottleneck layer that is a compressed representation of the
perceived information.

The third module is an MLP σ({ψi}i∈α) : 2C → Rq ,
called the communication decoder module that takes in the
set of communications from the team and outputs a decoded
feature σ. The fourth module is an MLP ν(ρ×σ) : Rp+q →
U , called the decision module. The action function is then
computed µ(y, {ψi}i∈α) = ν

([
ρ(y),

∑
i∈α σ(ψi)

])
, and is

a PIN that is permutation invariant to the communications,



and as a result, the agents.
These action functions ν ◦ σ are run on every agent in

the team to get the set of individual actions ui. Φd is
computed by aggregating these individual actions into a set
Φd = {ui}i∈α. This aggregation procedure ensures that the
network is permutation equivariant to the agents, as swapping
the order of input of the agents will correspondingly swap
the output actions.

The replication of the modules across the agents ensures
that they are homogeneous since they each have the same
communication and action functions. The usage of the PIN
architecture allows for the neural network to handle variable
sizes of both agents and objects, and also imposes the desired
properties of permutation invariance and equivariance. In
addition, the PIN architecture naturally results in a modular
composition with semantic interpretation, and the joining of
the 2 PINs creates a bottleneck layer representing the actual
transmitted and received communication messages.

We specified that message width should be small, and this
notion can be made more precise by looking at the number
of bits needed to represent that message. We can use tools
from other areas of deep learning research to express this
idea. Training with limited-precision numbers [23], [24] is
an orthogonal area of research in neural networks where
the motivation is to use lower precision representations
in order to speed up computation and energy efficiency
without sacrificing performance. The conversion of float to
limited-precision representations is a technique known as
quantization. It has a clear application in the context of
multi-agent systems, since the quantization technique can be
placed on the bottleneck communication layer as a means
of controlling message size. We can thus use quantization to
make a message small by limiting both the message width
size, as well as the number of bits each message can use.

V. PERIMETER DEFENSE GAME

We evaluate our architecture in a team perimeter defense
game that naturally introduces dynamically varying numbers
of teammates as well as varying degrees of private and shared
information. A team of defenders move on the perimeter of a
unit circle and seek to capture incoming intruders before the
intruders reach the circle interior. Several simulated games
are illustrated in Fig. 2. All agents move at unit speed,
defenders capture intruders by closing within a distance
ε = 0.1, and both defender and intruder are consumed during
capture.

In the controls literature this scenario has been formulated
as a full information differential game [25]. Expert policies
for both the defenders and intruders have been introduced
based on the concept of maximum matching assignments
between defenders and intruders. These assignment-based
strategies are combinatorial in nature and assume centralized
information and full observability. Nevertheless, we use this
expert, centralized, communication-unaware policy to train a
team of cooperative defenders who share information through
learned communication channels.

2 vs. 2

defender
intruder

capture
intrusion

3 vs. 3

7 vs. 7 15 vs. 15

Fig. 2. Simulated games where defenders execute the learned policy.
Overlapping defender paths are offset for clarity.

In our version of this game, each defender knows only
its own position and the position of its observed intruders
as x, y coordinates. Any information about other defenders’
locations or unseen intruders’ locations will need to come
through active communication. We consider both the situa-
tion where defenders see all intruders within a 360◦ field of
view (making the joint state strictly observable) and the more
difficult case where defenders’ observations are limited to an
outwardly directed 180◦ field of view as depicted at the left
of Fig. 1. This version of the game violates Assumption 1,
as some attackers may not be seen by any defender.

VI. EVALUATION

We train the neural network using supervised learning
where the the expert Φc is the maximum matching algorithm.
We randomly sample 10 million examples from each possible
scenario (e.g. 5 vs. 3) and query Φc for the expert action to
generate a dataset.

Each network ρa, ρd of the perception module has 5 layers
of size 1024, and the perception feature vector is of size
2048. The remaining modules each have 3 layers of size
1024, and the decoded feature is of size 2048. Each layer is
followed by the Leaky ReLU activation function. We train
the network in TensorFlow on an NVIDIA DGX-1 using
a batch size of 1024 and a learning rate of 3e−4 that is
dropped by a third every 50, 000 iterations. We randomly
sample from the dataset using a manually defined biased
sample that weights more difficult scenarios higher. Total
training time for one network takes ∼ 12 hours for 200, 000
iterations.

A. Simulation Methodology

Games are instantiated with equal numbers of defenders
and intruders starting from random position. We simulate



MM Expert Learned

Fig. 3. Actions of one defender as a function of one intruder’s location
in a 4 vs. 4 game. Dark green is move counterclockwise, light green is
clockwise, and in grey it does not matter.

games to completion in order to evaluate how learning to
replicate the expert’s action choices at training time leads to
successful online outcomes. As the games progress, both the
size of the team and the number of observed targets change as
defenders and intruders are consumed. The intruders execute
an intelligent but uncooperative policy motivated by [25].

Simulations for several games are depicted in Fig. 2, where
the defense team are trained agents with an 180◦ field of view
restriction. From some random starting configurations it is
fundamentally impossible for any defense policy to capture
all intruders. For this reason we evaluate the performance of
our learned policies by comparing the number of intruders
captured to the expert policy. In the shown 7 vs. 7 game
the missed intruder is also missed by the expert policy, and
in fact could never be captured. In the 15 vs. 15 game the
trained model slightly underperforms the expert policy. The
figure shows three of the fifteen intruders are missed, but the
expert policy misses only one.

B. Visualizing Actions

Each agent faces the decision of choosing one action based
on available information about the (nd + 2na)-dimensional
game state1. A slice of this continuous decision domain
is sampled in Fig. 3 for a 4 vs. 4 game. The top left
diagram illustrates the appropriate action for the highlighted
purple defender as a function of the position of one roaming
intruder. The three other defenders and three other intruders
are held fixed in their shown locations. The defender should
move counterclockwise if the final intruder is in a dark

1While not explicit in the representation, the defender positions lie on a
1-dimensional manifold (the circle).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
team size

0.0

2.5

5.0

7.5

10.0

12.5

nu
m

be
ro

fc
ap

tu
re

s

Performance vs. Team Size

expert
trained (360)
trained (180)

Fig. 4. Average number of captures in varying size n vs. n games.

green region, and clockwise if it lies in a light green region.
The top left figure shows this defender should usually move
left, but can be called upon to move right if an intruder
appears in the small light green region. The bottom left
figure illustrates actions for a different defender in the team,
and now includes grey regions where the assignment-based
expert policy chooses not to employ that defender.

Note that the precise location of an intruder can affect the
required defender response even if the intruder is far from
the defender. Intuitively, the appearance of an intruder can
trigger a cascade of necessary reassignments that ultimately
affect seemingly unrelated defenders.

The right column of Fig. 3 shows the defender actions
elected by the trained network based on peer communication.
The top figure shows a fairly faithful rendering of the expert
policy. Below we see that the trained network has simplified
decision boundaries, because when the expert does not use
a defender, the trained networks choice does not matter.

C. Varying Team Size

The network was trained using examples of teams of up
to size 9; in testing we look at performance in teams of up
to size 15. Fig. 4 depicts the average number of captures in
n vs. n games of increasing size. We compare the centralized
expert policy (using the full game state) to learned policies
employing a message width of size one under both 360◦ and
180◦ fields of view constraints. Team performance closely
approximates the expert policy in spite of communications
bottlenecks up to the trained team size. As teams grow much
larger than those seen during training, performance begins
to lag the expert policy, but the decline in performance is
graceful and does not seem to indicate a catastrophic loss of
team cohesion and cooperative play.

D. Varying Message Width

We compare the performance of models trained with
varying message widths in Fig. 5. Messages are tuples of
quantized 8-bit values, and we try constraining the message
length anywhere from from length 0 (no communication) to
length 7. Both trained distributed policies perform poorly
with respect to the baseline centralized policy when no
communication takes place.



0 1 2 3 4 5 6 7
message size

5.0

5.2

5.4

5.6

nu
m

be
ro

fc
ap

tu
re

s
Impact of Communication on 7 vs. 7 Performance

expert
trained (360)
trained (180)

Fig. 5. Score vs. communication width.

The policy with a full 360◦ field of view of intruders
attains near expert-level performance at a message width of 1
(all agents broadcast a single 8-bit value), and increasing the
message width does not significantly raise performance. Each
defender need only hear all the other defenders’ locations to
infer the full joint state, and agents have learned to encode
this information into a single scalar value.

An effective message encoding when the field of view is
limited to 180◦ is more difficult to engineer. Each defender
is not merely the only teammate to know its own location, it
might be the only teammate to see any number of attackers.
In spite of this difficulty, the trained model achieves near
expert performance with a message size of only two 8-bit
values. This is suggestive that the agents are not merely
summarizing local observations – they are learning to discern
task-oriented information that supports the decision process.

Fig. 6 provides qualitative insight into how these com-
munication channels are being used in a 7 vs. 3 game
with a message width of one. The left plot shows how
one defender’s broadcast value changes as one intruder is
moved around the playing field. The right plot shows how
that defender’s broadcast value changes as its own position is
varied. As expected, the 360◦ field of view policy generates
messages that are a function only of the defender’s own
position, and not attacker locations. The agent has learned to
omit redundant information (attackers seen by everyone else)
and summarize critical information (the self x,y coordinates
encoded as an angular value). Agents with only a 180◦

field of view must learn a more sophisticated policy. Their
message values are a function of the defender position, but
observed attackers are also taken into account.

VII. DISCUSSION
A motivation for this work was the recurring observa-

tion that due to the distributed nature of neural network
computation, many neural network mechanisms (i.e. PIN,
quantization) have clear application to multi-agent systems.
For example, we may want to impose other invariances, such
as spatial invariance or a graph connectivity structure through
Convolutional Neural Networks [22] and their generalization,
the Graph Neural Network [26]. In addition, Fully Convolu-
tional Networks [27] could address variable size inputs.

Originally developed to improve network training, batch
normalization [28] can standardize the range of the message

0 π 2π

−5

0

5

10

15

0 π 2π
θ

C
om

m
 M

es
sa

ge

Roving Attacker

θ

Roving Defender

trained (360)
trained (180)

Fig. 6. Impact of attacker (left) and defender (right) position on com-
munication message. Grey are areas where attacker is not visible to 180
defender.

activations, which increases comparability of the quantiza-
tion process across models. In addition, we can apply L1, L2

regularization to the communication message. These regular-
ization techniques are justified by the Minimum Description
Length (MDL) principle [29], which finds the best compres-
sion of data, or in our case, message. Dropout [30] was
originally developed to prevent overfitting by randomly drop-
ping connections during training. In real world multi-agent
scenarios, communications from agents may be dropped, and
we can model this phenomenon during training by using a
dropout layer at the team communication level. When viewed
in the lens of multi-agent systems, all of these mechanisms
gain an additional, practical interpretation, strengthening our
belief that neural networks should play a fundamental role
in multi-agent systems.

VIII. CONCLUSIONS

This paper poses a policy decentralization problem for
multirobot teams: given a centralized policy Φc which is a
function of the full joint state, find an equivalent decentalized
policy Φd which can be implemented by agents obeying local
observation and communications constraints. We suggest a
construction of Φd in terms of individual agent communica-
tion functions ψi and action functions µi, and we describe
sufficient conditions under which such a Φd will exist.

We describe a modular neural network architecture for
training teams of identical agents which naturally addresses
variable team size and obeys certain invariants inherent to
multirobot policies. This architecture provides a machinery
for automatically approximating ψi and µi, providing both
communication and action policies at the agent level.

We evaluate our approach in a multi-agent perimeter
defense game. Simulation results demonstrate that compact
communication policies are learned, and that at test time
these agents can generalize to teams larger than those they
were trained in.

A wide range of frameworks and analytic tools have
be effectively applied to centralized multiagent problems.
Learning to leverage this past success to develop distributed,
communication aware policies is a path to more scalable,
resilient, and effective robot teams.



REFERENCES

[1] S. Saeedi, M. Trentini, M. Seto, and H. Li, “Multiple-robot simulta-
neous localization and mapping: A review,” Journal of Field Robotics,
vol. 33, no. 1, pp. 3–46, 2016.

[2] A. Howard, “Multi-robot simultaneous localization and mapping using
particle filters,” The International Journal of Robotics Research,
vol. 25, no. 12, pp. 1243–1256, Dec. 2006.

[3] Y. Liu and G. Nejat, “Multirobot cooperative learning for semiau-
tonomous control in urban search and rescue applications,” Journal of
Field Robotics, vol. 33, no. 4, pp. 512–536, 2016.

[4] G. Kantor, S. Singh, R. Peterson, D. Rus, A. Das, V. Kumar, G. Pereira,
and J. Spletzer, “Distributed search and rescue with robot and sensor
teams,” in Field and Service Robotics, ser. Springer Tracts in Advanced
Robotics. Springer, Berlin, Heidelberg, 2006, vol. 24, pp. 529–538.

[5] A. Barrientos, J. Colorado, J. del Cerro, A. Martinez, C. Rossi,
D. Sanz, and J. a. Valente, “Aerial remote sensing in agriculture: A
practical approach to area coverage and path planning for fleets of mini
aerial robots,” Journal of Field Robotics, vol. 28, no. 5, pp. 667–689,
2011.

[6] W. Kazmi, M. Bisgaard, F. Garcia-Ruiz, K. D. Hansen, and A. la Cour-
Harbo, “Adaptive surveying and early treatment of crops with a team of
autonomous vehicles,” in Proceedings of the 5th European Conference
on Mobile Robots (ECMR 2011), Orebro, Sweden, 2011, pp. 253–258.

[7] R. D’Andrea, “A revolution in the warehouse: A retrospective on
Kiva Systems and the grand challenges ahead,” IEEE Transactions
on Automation Science and Engineering, vol. 9, no. 4, pp. 638–639,
Oct. 2012.

[8] R. Miikkulainen, E. Feasley, L. Johnson, I. Karpov, P. Rajagopalan,
A. Rawal, and W. Tansey, “Multiagent learning through neuroevolu-
tion,” in Advances in Computational Intelligence. Springer, Berlin,
Heidelberg, Jun. 2012, pp. 24–46.

[9] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive survey
of multiagent reinforcement learning,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C: Applications and Reviews, vol. 38,
no. 2, pp. 156–172, Mar. 2008.

[10] L. Kraemer and B. Banerjee, “Multi-agent reinforcement learning as
a rehearsal for decentralized planning,” Neurocomputing, vol. 190, pp.
82–94, May 2016.

[11] F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis, “Optimal and
approximate Q-value functions for decentralized POMDPs,” Journal
of Artificial Intelligence Research, vol. 32, pp. 289–353, May 2008.

[12] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch,
“Multi-agent actor-critic for mixed cooperative-competitive environ-
ments,” in Advances in Neural Information Processing Systems 30
(NIPS 2017), 2017, pp. 6379–6390.

[13] J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson,
“Counterfactual multi-agent policy gradients,” in Thirty-Second AAAI
Conference on Artificial Intelligence, Apr. 2018.

[14] J. N. Foerster, Y. M. Assael, N. de Freitas, and S. Whiteson, “Learning
to communicate to solve riddles with deep distributed recurrent Q-
Networks,” preprint, arXiv:1602.02672, Feb. 2016.

[15] S. Sukhbaatar, A. Szlam, and R. Fergus, “Learning multiagent com-
munication with backpropagation,” in Advances in Neural Information
Processing Systems 29 (NIPS 2016), 2016, pp. 2252–2260.

[16] R. Dobbe, D. Fridovich-Keil, and C. Tomlin, “Fully decentralized
policies for multi-agent systems: An information theoretic approach,”
in Advances in Neural Information Processing Systems 30 (NIPS
2017), 2017, pp. 2941–2950.

[17] C. Boutilier, “Planning, learning and coordination in multiagent deci-
sion processes,” in Proceedings of the 6th Conference on Theoretical
Aspects of Rationality and Knowledge, Mar. 1996, pp. 195–210.

[18] C. Amato, G. Chowdhary, A. Geramifard, N. K. Ure, and M. J.
Kochenderfer, “Decentralized control of partially observable Markov
decision processes,” in 52nd IEEE Conference on Decision and
Control, Firenze, Dec. 2013, pp. 2398–2405.

[19] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov,
and A. J. Smola, “Deep sets,” in Advances in Neural Information
Processing Systems 30 (NIPS 2017), 2017, pp. 3391–3401.

[20] S. Ravanbakhsh, J. Schneider, and B. Poczos, “Deep learning with
sets and point clouds,” preprint, arXiv:1611.04500, Feb. 2017.

[21] S. Ravanbakhsh, J. Schneider, and B. Póczos, “Equivariance through
parameter-sharing,” in Proceedings of the 34th International Confer-
ence on Machine Learning, Sydney, Australia, Jun. 2017, pp. 2892–
2901.

[22] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT
Press, Nov. 2016.

[23] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International Conference
on Machine Learning, Lille, France, Jun. 2015, pp. 1737–1746.

[24] M. Courbariaux, Y. Bengio, and J.-P. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,” in
Advances in Neural Information Processing Systems 28 (NIPS 2015),
2015, pp. 3123–3131.

[25] D. Shishika and V. Kumar, “Local-game decomposition for multiplayer
perimeter-defense problem,” in 2018 IEEE Conference on Decision
and Control (CDC), Miami Beach, Dec. 2018, pp. 2093–2100.

[26] F. Gama, A. G. Marques, G. Leus, and A. Ribeiro, “Convolutional
neural network architectures for signals supported on graphs,” IEEE
Transactions on Signal Processing, vol. 67, no. 4, pp. 1034–1049, Feb.
2019.

[27] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 3431–3440.

[28] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
Conference on Machine Learning, Jun. 2015, pp. 448–456.

[29] A. R. Barron and T. M. Cover, “Minimum complexity density estima-
tion,” IEEE Transactions on Information Theory, vol. 37, no. 4, pp.
1034–1054, Jul. 1991.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, “Dropout: A simple way to prevent neural networks from
overfitting,” Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, Jan. 2014.


	I INTRODUCTION
	II DECENTRALIZATION PROBLEM
	III PROPERTIES
	IV TRAINING ARCHITECTURE
	V PERIMETER DEFENSE GAME
	VI EVALUATION
	VI-A Simulation Methodology
	VI-B Visualizing Actions
	VI-C Varying Team Size
	VI-D Varying Message Width

	VII DISCUSSION
	VIII CONCLUSIONS
	References

