
Closing the Sim-to-Real Loop:
Adapting Simulation Randomization with Real World Experience

Yevgen Chebotar1,2 Ankur Handa1 Viktor Makoviychuk1

Miles Macklin1,3 Jan Issac1 Nathan Ratliff1 Dieter Fox1,4

Fig. 1. Policies for opening a cabinet drawer and swing-peg-in-hole tasks trained by alternatively performing reinforcement learning with multiple agents
in simulation and updating simulation parameter distribution using a few real world policy executions.

Abstract— We consider the problem of transferring policies
to the real world by training on a distribution of simulated
scenarios. Rather than manually tuning the randomization of
simulations, we adapt the simulation parameter distribution
using a few real world roll-outs interleaved with policy training.
In doing so, we are able to change the distribution of simulations
to improve the policy transfer by matching the policy behavior
in simulation and the real world. We show that policies trained
with our method are able to reliably transfer to different robots
in two real world tasks: swing-peg-in-hole and opening a cabinet
drawer. The video of our experiments can be found at https:
//sites.google.com/view/simopt.

I. INTRODUCTION

Learning continuous control in real world complex en-
vironments has seen a wide interest in the past few years
and in particular focusing on learning policies in simula-
tors and transferring them to the real world, as we still
struggle with finding ways to acquire the necessary amount
of experience and data in the real world directly. While
there have been recent attempts on learning by collecting
large scale data directly on real robots [1, 2, 3, 4], such an
approach still remains challenging as collecting real world
data is prohibitively laborious and expensive. Simulators
offer several advantages, e.g. they can run faster than real-
time and allow for acquiring large diversity of training data.
However, due to the imprecise simulation models and lack
of high fidelity replication of real world scenes, policies
learned in simulations often cannot be directly applied on
real world systems, a phenomenon also known as the reality
gap [5]. In this work, we focus on closing the reality gap by
learning policies on distributions of simulated scenarios that
are optimized for a better policy transfer.

Training policies on a large diversity of simulated sce-
narios by randomizing relevant parameters, also known as
domain randomization, has shown a considerable promise for

1NVIDIA, USA
2University of Southern California, Los Angeles, CA, USA
3University of Copenhagen, Copenhagen, Denmark
4University of Washington, Seattle, WA, USA
@ychebota@usc.edu,{ahanda,vmakoviychuk,

mmacklin,jissac,nratliff,dieterf}@nvidia.com

the real world transfer in a range of recent works [6, 7, 8, 9].
However, design of the appropriate simulation parameter
distributions remains a tedious task and often requires a
substantial expert knowledge. Moreover, there are no guar-
antees that the applied randomization would actually lead to
a sensible real world policy as the design choices made in
randomizing the parameters tend to be somewhat biased by
the expertise of the practitioner. In this work, we apply a
data-driven approach and use real world data to adapt sim-
ulation randomization such that the behavior of the policies
trained in simulation better matches their behavior in the
real world. Therefore, starting with some initial distribution
of the simulation parameters, we can perform learning in
simulation and use real world roll-outs of learned policies
to gradually change the simulation randomization such that
the learned policies transfer better to the real world without
requiring the exact replication of the real world scene in
simulation. This approach falls into the domain of model-
based reinforcement learning. However, we leverage recent
developments in physics simulations to provide a strong
prior of the world model in order to accelerate the learning
process. Our system uses partial observations of the real
world and only needs to compute rewards in simulation,
therefore lifting the requirement for full state knowledge or
reward instrumentation in the real world.

II. RELATED WORK

The problem of finding accurate models of the robot and
the environment that can facilitate the design of robotic con-
trollers in the real world dates back to the original works on
system identification [10, 11]. In the context of reinforcement
learning (RL), model-based RL explored optimizing policies
using learned models [12]. In [13, 14], the data from real
world policy executions is used to fit a probabilistic dynamics
model, which is then used for learning an optimal policy.
Although our work follows the general principle of model-
based reinforcement learning, we aim at using a simulation
engine as a form of parameterized model that can help us to
embed prior knowledge about the world.

ar
X

iv
:1

81
0.

05
68

7v
4

 [
cs

.R
O

]
 5

 M
ar

 2
01

9

https://sites.google.com/view/simopt
https://sites.google.com/view/simopt

Overcoming the discrepancy between simulated models
and the real world has been addressed through identifying
simulation parameters [15], finding common feature rep-
resentations of real and synthetic data [16], using genera-
tive models to make synthetic images more realistic [17],
fine-tuning the policies trained in simulation in the real
world [18], learning inverse dynamics models [19], multi-
objective optimization of task fitness and transferability to
the real world [20], training on ensembles of dynamics
models [21] and training on a large variety of simulated
scenarios [6]. Domain randomization of textures was used
in [7] to learn to fly a real quadcopter by training an image
based policy entirely in simulation. Peng et al. [22] use
randomization of physical parameters of the scene to learn a
policy in simulation and transfer it to a real robot for pushing
a puck to a target position. In [9], randomization of physical
properties and object appearance is used to train a dexterous
robotic hand to perform in-hand manipulation. Yu et al. [23]
propose to not only train a policy on a distribution of simu-
lated parameters, but also learn a component that predicts the
system parameters from the current states and actions, and
use the prediction as an additional input to the policy. In
[24], an upper confidence bound on the estimated simulation
optimization bias is used as a stopping criterion for a robust
training with domain randomization. In [25], an auxiliary
reward is used to encourage policies trained in source and
target environments to visit the same states.

Combination of system identification and dynamics ran-
domization has been used in the past to learn locomotion
for a real quadruped [26], non-prehensile object manipula-
tion [27] and in-hand object pivoting [28]. In our work, we
recognize domain randomization and system identification
as powerful tools for training general policies in simulation.
However, we address the problem of automatically learning
simulation parameter distributions that improve policy trans-
fer, as it remains challenging to do it manually. Furthermore,
as also noticed in [29], simulators have an advantage of
providing a full state of the system compared to partial
observations of the real world, which is also used in our
work for designing better reward functions.

The closest to our approach are the methods from [30,
31, 32, 33, 34] that propose to iteratively learn simulation
parameters and train policies. In [30], an iterative system
identification framework is used to optimize trajectories
of a bipedal robot in simulation and calibrate the simu-
lation parameters by minimizing the discrepancy between
the real world and simulated execution of the trajectories.
Although we also use the real world data to compute the
discrepancy of the simulated executions, we are able to
use partial observations of the real world instead of the
full states and we concentrate on learning general policies
by finding simulation parameter distribution that leads to
a better transfer without the need for exact replication of
the real world environment. [31] suggests to optimize the
simulation parameters such that the value function is well
approximated in simulation without replicating the real world
dynamics. We also recognize that exact replication of the real

world dynamics might not be feasible, however a suitable
randomization of the simulated scenarios can still lead to
a successful policy transfer. In addition, our approach does
not require estimating the reward in the real world, which
might be challenging if some of the reward components
can not be observed. [32] and [33] consider grounding the
simulator using real world data. However, [32] requires a
human in the loop to select the best simulation parameters,
and [33] needs to fit additional models for the real robot
forward dynamics and simulator inverse dynamics. Finally,
our work is closest to the adaptive EPOpt framework of
Rajeswaran et al. [34], which optimizes a policy over an
ensemble of models and adapts the model distribution using
data from the target domain. EPOpt optimizes a risk-sensitive
objective to obtain robust policies, whereas we optimize
the average performance which is a risk-neutral objective.
Additionally, EPOpt updates the model distribution by em-
ploying Bayesian inference with a particle filter, whereas
we update the model distribution using an iterative KL-
divergence constrained procedure. More importantly, they
focus on simulated environments while in our work, we
develop an approach that is shown to work in the real world
and apply it to two real robot tasks.

III. CLOSING THE SIM-TO-REAL LOOP

A. Simulation randomization
LetM = (S,A, P,R, p0, γ, T) be a finite-horizon Markov

Decision Process (MDP), where S and A are state and action
spaces, P : S×A×S → R+ is a state-transition probability
function or probabilistic system dynamics, R : S × A → R
a reward function, p0 : S → R+ an initial state distribution,
γ a reward discount factor, and T a fixed horizon. Let τ =
(s0, a0, . . . , sT , aT) be a trajectory of states and actions and
R(τ) =

∑T
t=0 γ

tR(st, at) the trajectory reward. The goal
of reinforcement learning methods is to find parameters θ
of a policy πθ(a|s) that maximize the expected discounted
reward over trajectories induced by the policy: Eπθ [R(τ)]
where s0 ∼ p0, st+1 ∼ P (st+1|st, at) and at ∼ πθ(at|st).

In our work, the system dynamics are either induced
by a simulation engine or real world. As the simulation
engine itself is deterministic, a reparameterization trick [35]
can be applied to introduce probabilistic dynamics. In par-
ticular, we define a distribution of simulation parameters
ξ ∼ pφ(ξ) parameterized by φ. The resulting probabilistic
system dynamics of the simulation engine are Pξ∼pφ =
P (st+1|st, at, ξ).

As it was shown in [6, 7, 9], it is possible to design
a distribution of simulation parameters pφ(ξ), such that a
policy trained on Pξ∼pφ would perform well on a real
world dynamics distribution. This approach is also known
as domain randomization and the policy training maximizes
the expected reward under the dynamics induced by the
distribution of simulation parameters pφ(ξ):

max
θ

EPξ∼pφ [Eπθ [R(τ)]] (1)

Domain randomization requires a significant expertise and
tedious manual fine-tuning to design the simulation param-

RL SimOpt

RealitySimulation

Training

sim distribution

Fig. 3. The pipeline for optimizing the simulation parameter distribution.
After training a policy on current distribution, we sample the policy both in
the real world and for a range of parameters in simulation. The discrepancy
between the simulated and real observations is used to update the simulation
parameter distribution in SimOpt.

eter distribution pφ(ξ). Furthermore, as we show in our
experiments, it is often disadvantageous to use overly wide
distributions of simulation parameters as they can include
scenarios with infeasible solutions that hinder successful
policy learning, or lead to exceedingly conservative policies.
Instead, in the next section, we present a way to automate
the learning of pφ(ξ) that makes it possible to shape a
suitable randomization without the need to train on very wide
distributions.

B. Learning simulation randomization

The goal of our framework is to find a distribution of
simulation parameters that brings observations or partial
observations induced by the policy trained under this distri-
bution closer to the observations of the real world. Let πθ,pφ
be a policy trained under the simulated dynamics distribution
Pξ∼pφ as in the objective (1), and let D(τobξ , τ

ob
real) be a mea-

sure of discrepancy between real world observation trajecto-
ries τobreal = (o0,real . . . , oT,real) and simulated observation
trajectories τobξ = (o0,ξ . . . , oT,ξ) sampled using policy πθ,pφ
and the dynamics distribution Pξ∼pφ . It should be noted
that the inputs of the policy πθ,pφ and observations used
to compute D(τobξ , τ

ob
real) are not required to be the same.

The goal of optimizing the simulation parameter distribution
is to minimize the following objective:

min
φ

EPξ∼pφ
[
Eπθ,pφ

[
D(τobξ , τ

ob
real)

]]
(2)

This optimization would entail training and real robot evalua-
tion of the policy πθ,pφ for each φ. This would require a large
amount of RL iterations and more critically real robot trials.
Hence, we develop an iterative approach to approximate the
optimization by training a policy πθ,pφi on the simulation
parameter distribution from the previous iteration and using it

Algorithm 1 SimOpt framework
1: pφ0

← Initial simulation parameter distribution
2: ε← KL-divergence step for updating pφ
3: for iteration i ∈ {0, . . . , N} do
4: env← Simulation(pφi)
5: πθ,pφi ← RL(env)

6: τobreal ∼ RealRollout(πθ,pφi)
7: ξ ∼ Sample(pφi)
8: τobξ ∼ SimRollout(πθ,pφi , ξ)
9: c(ξ)← D(τobξ , τ

ob
real)

10: pφi+1
← UpdateDistribution(pφi , ξ, c(ξ), ε)

for both, sampling the real world observations and optimizing
the new simulation parameter distribution pφi+1

:

min
φi+1

EPξi+1∼pφi+1

[
Eπθ,pφi

[
D(τobξi+1

, τobreal)
]]

(3)

s.t. DKL

(
pφi+1‖pφi

)
≤ ε,

where we introduce a KL-divergence step ε between the
old simulation parameter distribution pφi and the updated
distribution pφi+1

to avoid going out of the trust region of
the policy πθ,pφi trained on the old simulation parameter dis-
tribution. Fig. 3 shows the general structure of our algorithm
that we call SimOpt.

C. Implementation

Here we describe particular implementation choices for
the components of our framework used in this work. How-
ever, it should be noted that each of the components is
replaceable. Algorithm 1 describes the order of running all
the components in our implementation. The RL training is
performed on a GPU based simulator using a parallelized
version of proximal policy optimization (PPO) [36] on a
multi-GPU cluster [37]. We parameterize our simulation
parameter distribution as a Gaussian, i.e. pφ(ξ) ∼ N (µ,Σ)
with φ = (µ,Σ). We choose weighted `1 and `2 norms
between simulation and real world observations for our
observation discrepancy function D:

D(τobξ , τ
ob
real) = (4)

w`1

T∑
i=0

|W (oi,ξ − oi,real)|+ w`2

T∑
i=0

‖W (oi,ξ − oi,real)‖22,

where w`1 and w`2 are the weights of the `1 and `2 norms,
and W are the importance weights for each observation
dimension. We additionally apply a Gaussian filter to the
distance computation to account for misalignments of the
trajectories.

As we use a non-differentiable simulator we employ a
sampling-based gradient-free algorithm based on relative
entropy policy search [38] for optimizing the objective (3),
which is able to perform updates of pφ with an upper
bound on the KL-divergence step. By doing so, the simulator
can be treated as a black-box, as in this case pφ can be
optimized directly by only using samples ξ ∼ pφ and
the corresponding costs c(ξ) coming from D(τobξ , τ

ob
real).

Sampling of simulation parameters and the corresponding
policy roll-outs is highly parallelizable, which we use in
our experiments to evaluate large amounts of simulation
parameter samples.

As noted above, single components of our framework
can be exchanged. In case of availability of a differentiable
simulator, the objective (3) can be defined as a loss function
for optimizing with gradient descent. Furthermore, for cases
where `1 and `2 norms are not applicable, we can employ
other forms of discrepancy functions, e.g. to account for
potential domain shifts between observations [16, 39, 40].
Alternatively, real world and simulation data can be addition-
ally used to train D(τobξ , τ

ob
real) to discriminate between the

observations by minimizing the prediction loss of classifying
observations as simulated or real, similar to the discriminator
training in the generative adversarial framework [41, 42, 43].
Finally, a higher-dimensional generative model pφ(ξ) can
be employed to provide a multi-modal randomization of the
simulated environments.

IV. EXPERIMENTS

In our experiments we aim at answering the following
questions: (1) How does our method compare to standard
domain randomization? (2) How learning a simulation pa-
rameter distribution compares to training on a very wide
parameter distribution? (3) How many SimOpt iterations and
real world trials are required for a successful transfer of
robotic manipulation policies? (4) Does our method work
for different real world tasks and robots?

We start by performing an ablation study in simulation
by transferring policies between scenes with different initial
state distributions, such as different poses of the cabinet in
the drawer opening task. We demonstrate that updating the
distribution of simulation parameters leads to a successful
policy transfer in contrast to just using an initial distribution
of the parameters without any updates as done in standard
domain randomization. As we observe, training on very wide
parameter distributions is significantly more difficult and
prone to fail compared to initializing with a conservative
parameter distribution and updating it using SimOpt after-
wards.

Next, we show that we can successfully transfer policies
to real robots, such as ABB Yumi and Franka Panda, for
complex articulated tasks such as cabinet drawer opening,
and tasks with non-rigid bodies and complex dynamics, such
as swing-peg-in-hole task with the peg swinging on a soft
rope. The policies can be transferred with a very small
amount of real robot trials and leveraging large-scale training
on a multi-GPU cluster.

A. Tasks

We evaluate our approach on two robot manipulation
tasks: cabinet drawer opening and swing-peg-in-hole.

1) Swing-peg-in-hole: The goal of this task is to put a peg
attached to a robot hand on a rope into a hole placed at a 45
degrees angle. Manipulating a soft rope leads to a swinging

Fig. 4. An example of a wide distribution of simulation parameters in the
swing-peg-in-hole task where it is not possible to find a solution for many
of the task instances.

motion of the peg, which makes the dynamics of the task
more challenging. The task set up in the simulation and real
world using a 7-DoF Yumi robot from ABB is depicted in
Fig. 1 on the right. Our observation space consists of 7-DoF
arm joint configurations and 3D position of the peg. The
reward function for the RL training in simulation includes
the distance of the peg from the hole, angle alignment with
the hole and a binary reward for solving the task.

2) Drawer opening: In the drawer opening task, the robot
has to open a drawer of a cabinet by grasping and pulling it
with its fingers. This task involves an ability to handle contact
dynamics when grasping the drawer handle. For this task, we
use a 7-DoF Panda arm from Franka Emika. Simulated and
real world settings are shown in Fig. 1 on the left. This task is
operated on a 10D observation space: 7D robot joint angles
and 3D position of the cabinet drawer handle. The reward
function consists of the distance penalty between the handle
and end-effector positions, the angle alignment of the end-
effector and the drawer handle, the opening distance of the
drawer and an indicator function ensuring that both robot
fingers are on the handle.

We would like to emphasize that our method does not
require the full state information of the real world, e.g. we do
not need to estimate the rope diameter, rope compliance etc.
to update the simulation parameter distribution in the swing-
peg-in-hole task. The output of our policies consists of 7 joint
velocity commands and an additional gripper command for
the drawer opening task.

B. Simulation engine

We use NVIDIA Flex as a high-fidelity GPU based physics
simulator that uses maximal coordinate representation to
simulate rigid body dynamics. Flex allows a highly parallel
implementation and can simulate multiple instances of the
scene on a single GPU. We use the multi-GPU based
RL infrastructure developed in [37] to leverage the highly
parallel nature of the simulator.

C. Comparison to standard domain randomization

We aim at understanding what effect a wide simulation
parameter distribution can have on learning robust poli-
cies, and how we can improve the learning performance
and the transferability of the policies using our method to
adjust simulation randomization. Fig. 4 shows an example
of training a policy on a significantly wide distribution of
simulation parameters for the swing-peg-in-hole task. In this
case, peg size, rope properties and size of the peg box
were randomized. As we can observe, a large part of the
randomized instances does not have a feasible solution, i.e.
when the peg is too large for the hole or the rope is too
short. Finding a suitably wide parameter distribution would
require manual fine-tuning of the randomization parameters.

Moreover, learning performance of standard domain ran-
domization depends strongly on the variance of the parameter
distribution. We investigate this in a simulated cabinet drawer
opening task with a Franka arm which is placed in front of
a cabinet. We randomize the position of the cabinet along
the lateral direction (X-coordinate) while keeping all other
simulation parameters constant. We train our policies on a
2 layer neural network with fully connected layers of 64
units each with PPO for 200 iterations. As we increase the
variance of the cabinet position, we observe that the policies
learned tend to be conservative i.e. they do end up reaching
the handle of the drawer but fail to open it. This is shown
in Fig. 5 where we plot the reward as a function of number
of iterations used to train the RL policy. We start with a
standard deviation of 2cm (σ2 = 7e − 4) and increase it
to 10cm (σ2 = 0.01). As shown in the plot, the policy is
sensitive to the choice of this parameter and only manages to
open the drawer when the standard deviation is 2cm. We note
that the reward difference may not seem that significant but
realize that it is dominated by the reaching reward. Increasing
variance further, in an attempt to cover a wider operating
range, can often lead to simulating unrealistic scenarios
and catastrophic breakdown of the physics simulation with
various joints of the robot reaching their limits. We also
observed that the policy is extremely sensitive to the variance
in all three axes of the cabinet position i.e. policy only ever
converges when the standard deviation is 2cm and fails to
learn even reaching the handle otherwise.

In our next set of experiments, we show that our method
is able to perform policy transfer from the source to target
drawer opening scene where position of the cabinet in the
target scene is offset by a distance of 15cm and 22cm. Such
large distances would have required the standard deviation of
the cabinet position to be at least 10cm for any naı̈ve domain
randomization based training which fails to produce a policy
that opens the drawer as shown in Fig. 5. The policy is first
trained with RL on a conservative initial simulation param-
eter distribution. Afterwards, it is run on the target scene to
collect roll-outs. These roll-outs are then used to perform
several SimOpt iterations to optimize simulation parameters
that best explain the current roll-outs. We noticed that the
RL training can be sped up by initializing the policy with

Fig. 5. Performance of the policy training with standard domain random-
ization for different variances of the distribution of the cabinet position
along the X-axis in the drawer opening task.

Fig. 6. Initial distribution of the cabinet position in the source environment,
located at extreme left, slowly starts to change to the target environment
distribution as a function of running 5 iterations of SimOpt.

the weights from the previous SimOpt iteration, effectively
reducing the number of needed PPO iterations from 200 to 10
after the first SimOpt iteration. The whole process is repeated
until the learned policy starts to successfully open the drawer
in the target scene. We found that it took overall 3 iterations
of doing RL and SimOpt to learn to open the drawer when
the cabinet was offset by 15cm. We further note that the
number of iterations increases to 5 as we increase the target
cabinet distance to 22cm highlighting that our method is able
to operate on a wider range of mismatch between the current
scene and the target scene. Fig. 6 shows how the source
distribution variance adapts to the target distribution variance
for this experiment and Fig. 7 shows that our method starts
with a conservative guess of the initial distribution of the
parameters and changes it using target scene roll-outs until
policy behavior in target and source scenes starts to match.

D. Real robot experiments

In our real robot experiments, SimOpt is used to learn
simulation parameter distribution of the manipulated objects
and the robot. We run our experiments on 7-DoF Franka

Fig. 7. Policy performance in the target drawer opening environment trained on randomized simulation parameters at different iterations of SimOpt. As
the source environment distribution gets adjusted, the policy transfer improves until the robot can successfully solve the task in the fourth SimOpt iteration.

Fig. 8. Running policies trained in simulation at different iterations of SimOpt for real world swing-peg-in-hole and drawer opening tasks. Left: SimOpt
adjusts physical parameter distribution of the soft rope, peg and the robot, which results in a successful execution of the task on a real robot after two
SimOpt iterations. Right: SimOpt adjusts physical parameter distribution of the robot and the drawer. Before updating the parameters, the robot pushes too
much on the drawer handle with one of its fingers, which leads to opening the gripper. After one SimOpt iteration, the robot can better control its gripper
orientation, which leads to an accurate task execution.

Panda and ABB Yumi robots. The RL training and SimOpt
simulation parameter sampling is performed using a cluster
of 64 GPUs for running the simulator with 150 simulated
agents per GPU. In the real world, we use object tracking
with DART [44] to continuously track the 3D positions of the
peg in the swing-peg-in-hole task and the handle of the cab-
inet drawer in the drawer opening task, as well as initialize
positions of the peg box and the cabinet in simulation. DART
operates on depth images and requires 3D articulated models
of the objects. We learn multi-variate Gaussian distributions
of the simulation parameters parameterized by a mean and
a full covariance matrix, and perform several updates of the
simulation parameter distribution per SimOpt iteration using
the same real world roll-outs to minimize the number of real
world trials.

1) Swing-peg-in-hole: Fig. 8 (left) demonstrates the be-
havior of real robot execution of the policy trained in
simulation over 3 iterations of SimOpt. At each iteration,
we perform 100 iterations of RL in approximately 7 minutes
and 3 roll-outs on the real robot using the currently trained
policy to collect real world observations. Then, we run 3
update steps of the simulation parameter distribution with
9600 simulation samples per update. In the beginning, the
robot misses the hole due to the discrepancy of the simu-
lation parameters and the real world. After a single SimOpt
iteration, the robot is able to get much closer to the hole,
however not being able to insert the peg as it requires a slight
angle to go into the hole, which is non-trivial to achieve using
a soft rope. Finally, after two SimOpt iterations, the policy
trained on a resulting simulation parameter distribution is
able to swing the peg into the hole in 90% of the times
when evaluated on 20 trials.

We observe that the most significant changes of the simu-
lation parameter distribution occur in the physical parameters
of the rope that influence its dynamical behavior and the
robot parameters that influence the policy behavior, such as
scaling of the policy actions. More details on the initial and

Fig. 9. Covariance matrix heat maps over 3 SimOpt updates of the swing-
peg-in-hole task beginning with the initial covariance matrix.

updated Gaussian distribution parameters can be found in
Appendix B. Fig. 9 shows the development of the covariance
matrix over the iterations. We can observe some correlation
in the top left block of the matrix, which corresponds to the
robot joint compliance and damping values. This reflects the
fact that these values have somewhat opposite effect on the
robot behavior, i.e. if we overshoot in the compliance we can
compensate with increased damping.

2) Drawer opening: For drawer opening, we learn a
Gaussian distribution of the robot and cabinet simulation
parameters. More details on the learned distribution and
its initialization are provided in Appendix B. Fig. 8 (right)
shows the drawer opening behavior before and after perform-
ing a SimOpt update. During each SimOpt iteration, we run
200 iterations of RL for approximately 22 minutes, perform 3
real robot roll-outs and run 20 update steps of the simulation
distribution using 9600 samples per update step. Before
updating the parameter distribution, the robot is able to reach
the handle and start opening the drawer. However, it cannot
exactly replicate the learned behavior from simulation and
does not keep the gripper orthogonal to the drawer, which
results in pushing too much on the handle from the bottom
with one of the robot fingers. As the finger gripping force
is limited, the fingers begin to open due to a larger pushing
force. After adjusting the simulation parameter distribution
that includes robot and drawer properties, the robot is able
to better control its gripper orientation and by evaluating on
20 trials can open the drawer at all times keeping the gripper
orthogonal to the handle.

V. CONCLUSIONS

Closing the simulation to reality transfer loop is an im-
portant component for a robust transfer of robotic policies.
In this work, we demonstrated that adapting simulation
randomization using real world data can help in learning
simulation parameter distributions that are particularly suited
for a successful policy transfer without the need for exact
replication of the real world environment. In contrast to
trying to learn policies using very wide distributions of sim-
ulation parameters, which can simulate infeasible scenarios,
we are able to start with distributions that can be efficiently
learned with reinforcement learning, and modify them for
a better transfer to the real world scenario. Our framework
does not require full state of the real environment and reward
functions are only needed in simulation. We showed that
updating simulation distributions is possible using partial
observations of the real world while the full state still can be
used for the reward computation in simulation. We evaluated
our approach on two real world robotic tasks and showed
that policies can be transferred with only a few iterations of
simulation updates using a small number of real robot trials.

In this work, we applied our method to learning uni-modal
simulation parameter distributions. We plan to extend our
framework to multi-modal distributions and more complex
generative simulation models in future work. Furthermore,
we plan to incorporate higher-dimensional sensor modalities,
such as vision and touch, for both policy observations and
factors of simulation randomization.

ACKNOWLEDGEMENTS

We would like to thank Alexander Lambert, Balakumar
Sundaralingam and Giovanni Sutanto for their help with the
robot experiments, and David Ha, James Davidson, Lerrel
Pinto and Fabio Ramos for their helpful feedback on the
draft of the paper. We would also like to thank the GPU
cluster and infrastucture team at NVIDIA for their help all
the way through this project.

REFERENCES

[1] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and
D. Quillen. Learning hand-eye coordination for robotic
grasping with deep learning and large-scale data col-
lection. I. J. Robotics Res., 37(4-5):421–436, 2018.

[2] L. Pinto and A. Gupta. Supersizing self-supervision:
Learning to grasp from 50k tries and 700 robot hours.
In ICRA, 2016.

[3] A. Yahya, A. Li, M. Kalakrishnan, Y. Chebotar, and
S. Levine. Collective robot reinforcement learning with
distributed asynchronous guided policy search. In IROS,
2017.

[4] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Her-
zog, E. Jang, D. Quillen, E. Holly, M. Kalakrishnan,
V. Vanhoucke, and S. Levine. Qt-opt: Scalable deep
reinforcement learning for vision-based robotic manip-
ulation. CoRR, abs/1806.10293, 2018.

[5] N. Jakobi, P. Husbands, and I. Harvey. Noise and
the reality gap: The use of simulation in evolutionary

robotics. In European Conference on Artificial Life.
Springer, 1995.

[6] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba,
and P. Abbeel. Domain randomization for transferring
deep neural networks from simulation to the real world.
In IROS, 2017.

[7] F. Sadeghi and S. Levine. Cad2rl: Real single-image
flight without a single real image. RSS, 2017.

[8] S. James, A. J. Davison, and E. Johns. Transferring
end-to-end visuomotor control from simulation to real
world for a multi-stage task. CoRR, abs/1707.02267,
2017.

[9] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefow-
icz, B. McGrew, J. Pachocki, A. Petron, M. Plappert,
G. Powell, A. Ray, J. Schneider, S. Sidor, J. Tobin,
P. Welinder, L. Weng, and W. Zaremba. Learning dex-
terous in-hand manipulation. CoRR, abs/1808.00177,
2018.

[10] L. Ljung. System identification – theory for the user.
Prentice Hall, 1999.

[11] F. Giri and E.-W. Bai. Block-oriented Nonlinear System
Identification. London: Springer-Verlag London, 2010.

[12] M. P. Deisenroth, G. Neumann, and J. Peters. A survey
on policy search for robotics. Foundations and Trends
in Robotics, pages 388–403, 2013.

[13] M. P. Deisenroth and C. E. Rasmussen. Pilco: A model-
based and data-efficient approach to policy search. In
ICML, 2011.

[14] M. P. Deisenroth, C. E. Rasmussen, and D. Fox.
Learning to control a low-cost manipulator using data-
efficient reinforcement learning. In RSS, 2011.

[15] S. Kolev and E. Todorov. Physically consistent state
estimation and system identification for contacts. In
Humanoids, 2015.

[16] E. Tzeng, C. Devin, J. Hoffman, C. Finn, X. Peng,
S. Levine, K. Saenko, and T. Darrell. Towards adapting
deep visuomotor representations from simulated to real
environments. CoRR, abs/1511.07111, 2015.

[17] K. Bousmalis, A. Irpan, P. Wohlhart, Y. Bai, M. Kel-
cey, M. Kalakrishnan, L. Downs, J. Ibarz, P. Pastor,
K. Konolige, S. Levine, and V. Vanhoucke. Using
simulation and domain adaptation to improve efficiency
of deep robotic grasping. CoRR, abs/1709.07857, 2017.

[18] A. A. Rusu, M. Vecerik, T. Rothrl, N. Heess, R. Pas-
canu, and R. Hadsell. Sim-to-real robot learning from
pixels with progressive nets. In CoRL, 2017.

[19] P. F. Christiano, Z. Shah, I. Mordatch, J. Schneider,
T. Blackwell, J. Tobin, P. Abbeel, and W. Zaremba.
Transfer from simulation to real world through learning
deep inverse dynamics model. CoRR, abs/1610.03518,
2016.

[20] S. Koos, J.-B. Mouret, and S. Doncieux. Crossing
the reality gap in evolutionary robotics by promoting
transferable controllers. In GECCO. ACM, 2010.

[21] I. Mordatch, K. Lowrey, and E. Todorov. Ensemble-
cio: Full-body dynamic motion planning that transfers
to physical humanoids. In IROS, 2015.

[22] X. B. Peng, M. Andrychowicz, W. Zaremba, and
P. Abbeel. Sim-to-real transfer of robotic control with
dynamics randomization. In ICRA, 2018.

[23] W. Yu, J. Tan, C. K. Liu, and G. Turk. Preparing for
the unknown: Learning a universal policy with online
system identification. In RSS, 2017.

[24] F. Muratore, F. Treede, M. Gienger, and J. Peters.
Domain randomization for simulation-based policy op-
timization with transferability assessment. In CoRL,
2018.

[25] M. Wulfmeier, I. Posner, and P. Abbeel. Mutual
alignment transfer learning. CoRR, abs/1707.07907,
2017.

[26] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai,
D. Hafner, S. Bohez, and V. Vanhoucke. Sim-to-real:
Learning agile locomotion for quadruped robots. In
RSS, 2018.

[27] K. Lowrey, S. Kolev, J. Dao, A. Rajeswaran, and
E. Todorov. Reinforcement learning for non-prehensile
manipulation: Transfer from simulation to physical sys-
tem. In SIMPAR, 2018.

[28] R. Antonova, S. Cruciani, C. Smith, and D. Kragic.
Reinforcement learning for pivoting task. CoRR,
abs/1703.00472, 2017.

[29] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba,
and P. Abbeel. Asymmetric actor critic for image-based
robot learning. CoRR, abs/1710.06542, 2017.

[30] J. Tan, Z. Xie, B. Boots, and C. K. Liu. Simulation-
based design of dynamic controllers for humanoid
balancing. In IROS, 2016.

[31] S. Zhu, A. Kimmel, K. E. Bekris, and A. Boularias.
Fast model identification via physics engines for data-
efficient policy search. In IJCAI. ijcai.org, 2018.

[32] A. Farchy, S. Barrett, P. MacAlpine, and P. Stone.
Humanoid robots learning to walk faster: From the real
world to simulation and back. In AAMAS, 2013.

[33] J. Hanna and P. Stone. Grounded action transformation
for robot learning in simulation. In AAAI, 2017.

[34] A. Rajeswaran, S. Ghotra, S. Levine, and B. Ravindran.
Epopt: Learning robust neural network policies using
model ensembles. CoRR, abs/1610.01283, 2016.

[35] D. P. Kingma and M. Welling. Auto-encoding varia-
tional Bayes. CoRR, abs/1312.6114, 2013.

[36] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov. Proximal policy optimization algorithms.
CoRR, abs/1707.06347, 2017.

[37] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez,
M. Macklin, and D. Fox. Gpu-accelerated robotic sim-
ulation for distributed reinforcement learning. CoRL,
2018.

[38] J. Peters, K. Mlling, and Y. Altun. Relative entropy
policy search. In AAAI, 2010.

[39] E. Tzeng, J. Hoffman, T. Darrell, and K. Saenko.
Simultaneous deep transfer across domains and tasks.
In ICCV, 2015.

[40] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang,
S. Schaal, and S. Levine. Time-contrastive networks:

Self-supervised learning from video. In ICRA, 2018.
[41] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Ben-
gio. Generative adversarial nets. In NIPS, 2014.

[42] J. Ho and S. Ermon. Generative adversarial imitation
learning. In NIPS, 2016.

[43] K. Hausman, Y. Chebotar, S. Schaal, G. S. Sukhatme,
and J. J. Lim. Multi-modal imitation learning from un-
structured demonstrations using generative adversarial
nets. In NIPS, 2017.

[44] T. Schmidt, R. A. Newcombe, and D. Fox. Dart: Dense
articulated real-time tracking. In RSS, 2014.

APPENDIX

A. Comparison to trajectory-based parameter learning

In our work, we run a closed-loop policy in simulation
to obtain simulated roll-outs for SimOpt optimization. Al-
ternatively, we could directly set the simulator to states and
execute actions from the real world trajectories as proposed
in [30, 31]. However, such a setting is not always possible
as we might not be able to observe all required variables
for setting the internal state of the simulator at each time
point, e.g. the current bending configuration of the rope in
the swing-peg-in-hole task, which we are able to initialize
but can not continually track with our real world set up.

Without being able to set the simulator to the real world
states continuously, we still can try to copy the real world
actions and execute them in an open-loop manner in simula-
tion. However, in our simulated experiments we notice that
especially when making particular state dimensions unob-
servable for SimOpt cost computation, such as X-position of
the cabinet in the drawer opening task, executing a closed-
loop policy still leads to meaningful simulation parameter
updates compared to the open-loop execution. We believe
in this case the robot behavior is still dependent on the
particular simulated scenario due to the closed-loop nature of
the policy, which also reflects in the joint trajectories of the
robot that are still included in the SimOpt cost function. This
means that by using a closed-loop policy we can still update
the simulation parameter distribution even without explicitly
including some of the relevant observations in the SimOpt
cost computation.

B. Simulation parameters

Tables I and II show the initial mean, diagonal values
of the initial covariance matrix and the final mean of the
Gaussian simulation parameter distributions that have been
optimized with SimOpt in drawer opening (Table I) and
swing-peg-in-hole (Table II) tasks.

µinit diag(Σinit) µfinal

Robot properties
Joint compliance (7D) [-6.0 . . . -6.0] 0.5 [-6.5 . . . -6.1]

Joint damping (7D) [3.0 . . . 3.0] 0.5 [2.4 . . . 2.7]

Gripper compliance -11.0 0.5 -10.9

Gripper damping 0.0 0.5 0.34

Joint action scaling (7D) [0.26 . . . 0.26] 0.01 [0.19 . . . 0.35]

Cabinet properties
Drawer joint compliance 7.0 1.0 8.3

Drawer joint damping 2.0 0.5 0.81

Drawer handle friction 0.001 0.5 2.13

TABLE I
DRAWER OPENING: SIMULATION PARAMETER DISTRIBUTION.

µinit diag(Σinit) µfinal

Robot properties
Joint compliance (7D) [-8.0 . . . -8.0] 1.0 [-8.2 . . . -7.8]

Joint damping (7D) [-3.0 . . . -3.0] 1.0 [-3.0 . . . -2.6]

Joint action scaling (7D) [0.5 . . . 0.5] 0.02 [0.25 . . . 0.44]

Rope properties
Rope torsion compliance 2.0 0.07 1.89

Rope torsion damping 0.1 0.07 0.48

Rope bending compliance 10.0 0.5 9.97

Rope bending damping 0.01 0.05 0.49

Rope segment width 0.004 2e-4 0.007

Rope segment length 0.016 0.004 0.017

Rope segment friction 0.25 0.03 0.29

Rope density 2500.0 8.0 2500.12

Peg properties
Peg scale 0.33 0.01 0.30

Peg friction 1.0 0.06 1.0

Peg mass coefficient 1.0 0.06 1.06

Peg density 400.0 10.0 400.07

Peg box properties
Peg box scale 0.029 0.01 0.034

Peg box friction 1.0 0.2 1.01

TABLE II
SWING-PEG-IN-HOLE: SIMULATION PARAMETER DISTRIBUTION.

C. SimOpt parameters

Tables III and IV show the SimOpt distribution update
parameters for swing-peg-in-hole and drawer opening tasks
including REPS [38] parameters, settings of the discrepancy
function D(τobξ , τ

ob
real), weights of each observation dimen-

sion in the discrepancy function, and reinforcement learning
settings such as parallelized PPO [36, 37] training parameters
and task reward weights.

Simulation distribution update parameters
Number of REPS updates per SimOpt iteration 3

Number of simulation parameter samples per update 9600

Timesteps per simulation parameter sample 453

KL-threshold 1.0

Minimum temperature of sample weights 0.001

Discrepancy function parameters
L1-cost weight 0.5

L2-cost weight 1.0

Gaussian smoothing standard deviation (timesteps) 5

Gaussian smoothing truncation (timesteps) 4

Observation dimensions cost weights
Joint angles (7D) 0.05

Peg position (3D) 1.0

Peg position in the previous timestep (3D) 1.0

PPO parameters
Number of agents 100

Episode length 150

Timesteps per batch 64

Clip parameter 0.2

γ 0.99

λ 0.95

Entropy coefficient 0.0

Optimization epochs 10

Optimization batch size per agent 8

Optimization step size 5e-4

Desired KL-step 0.01

RL reward weights
L1-distance between the peg and the hole -10.0

L2-distance between the peg and the hole -4.0

Task solved (peg completely in the hole) bonus 0.1

Action penalty -0.7

TABLE III
SWING-PEG-IN-HOLE: SIMOPT PARAMETERS.

Simulation distribution update parameters
Number of REPS updates per SimOpt iteration 20

Number of simulation parameter samples per update 9600

Timesteps per simulation parameter sample 453

KL-threshold 1.0

Minimum temperature of sample weights 0.001

Discrepancy function parameters
L1-cost weight 0.5

L2-cost weight 1.0

Gaussian smoothing standard deviation (timesteps) 5

Gaussian smoothing truncation (timesteps) 4

Observation dimensions cost weights
Joint angles (7D) 0.5

Drawer position (3D) 1.0

PPO parameters
Number of agents 400

Episode length 150

Timesteps per batch 151

Clip parameter 0.2

γ 0.99

λ 0.95

Entropy coefficient 0.0

Optimization epochs 5

Optimization batch size per agent 8

Optimization step size 5e-4

Desired KL-step 0.01

RL reward weights
L2-distance between end-effector and drawer handle -0.5

Angular alignment of end-effector with drawer handle -0.07

Opening distance of the drawer -0.4

Keeping fingers around the drawer handle bonus 0.005

Action penalty -0.005

TABLE IV
DRAWER OPENING: SIMOPT PARAMETERS.

	I Introduction
	II Related Work
	III Closing the Sim-to-Real Loop
	III-A Simulation randomization
	III-B Learning simulation randomization
	III-C Implementation

	IV Experiments
	IV-A Tasks
	IV-A.1 Swing-peg-in-hole
	IV-A.2 Drawer opening

	IV-B Simulation engine
	IV-C Comparison to standard domain randomization
	IV-D Real robot experiments
	IV-D.1 Swing-peg-in-hole
	IV-D.2 Drawer opening

	V Conclusions
	Appendix
	A Comparison to trajectory-based parameter learning
	B Simulation parameters
	C SimOpt parameters

