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Abstract— We consider the problem of learning structured,
closed-loop policies (feedback laws) from demonstrations in
order to control under-actuated robotic systems, so that formal
behavioral specifications such as reaching a target set of states
are satisfied. Our approach uses a “counterexample-guided”
iterative loop that involves the interaction between a policy
learner, a demonstrator and a verifier. The learner is responsible
for querying the demonstrator in order to obtain the training
data to guide the construction of a policy candidate. This
candidate is analyzed by the verifier and either accepted as
correct, or rejected with a counterexample. In the latter case,
the counterexample is used to update the training data and
further refine the policy.

The approach is instantiated using receding horizon model-
predictive controllers (MPCs) as demonstrators. Rather than
using regression to fit a policy to the demonstrator actions, we
extend the MPC formulation with the gradient of the cost-to-go
function evaluated at sample states in order to constrain the set
of policies compatible with the behavior of the demonstrator.
We demonstrate the successful application of the resulting
policy learning schemes on two case studies and we show how
simple, formally-verified policies can be inferred starting from
a complex and unverified nonlinear MPC implementations. As
a further benefit, the policies are many orders of magnitude
faster to implement when compared to the original MPCs.

I. INTRODUCTION

Policy learning (i.e., learning feedback control laws) is a
fundamental problem in control theory and robotics, with
applications that include controlling under-actuated robotic
systems and autonomous vehicles. The main challenge lies in
designing a policy that provably achieves task specifications
such as eventually reaching a target set of states. In this
paper, we present an automated approach to policy learning
with three goals in mind: (a) compute policies that are guar-
anteed to satisfy a set of formal specifications, expressed in a
suitable logic; (b) represent policies as a linear combination
of a set of pre-defined basis functions which can include
polynomials, trigonometric functions, or even user-provided
functions, and (c) compute policies efficiently, in real time.
Finding policies that satisfy all three properties is not easy.
In this paper, we provide a partial solution to this problem
in the form of an automated method that learns from a
demonstrator. Using two case studies, we show that complex
controllers can be replaced by much simpler policies that
achieve all the three desired goals stated above.

Our approach relies on a demonstrator component that
can be queried for a given starting state and demonstrates
control inputs to achieve the desired goals. Specifically, we
use nonlinear, receding horizon model-predictive controllers
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(MPCs) as demonstrators. For a given input, the MPC
formulates a nonlinear optimization problem by “unrolling”
a predictive model of the system to some time horizon
T . The constraints and the objectives will ensure that the
behaviors of the system over the time horizon will satisfy
the properties of interest, while optimizing some key per-
formance metrics. A common solution to this problem lies
in training a policy that “mimics” the input-output map of
the MPC [14], [20]. Instead, our approach is based on two
new ideas. First, we extend the demonstrator to provide a
range of permissible control inputs for each state by using
the gradient of the MPC’s cost-to-go function. This allows
our search for a simple policy to succeed more often. Second,
we use a counterexample-guided approach that iterates be-
tween querying the demonstrator to learn a candidate policy
compatible with the demonstrator query results thus far, and
a verifier that checks if the candidate verifier conforms to
the specifications, producing a counterexample upon failure.
This minimizes the number of demonstrator queries.

We demonstrate the applicability of our approach on two
case studies that could not be solved previously, comparing
the new policy learner with off the shelf supervised learn-
ing methods. The two case studies involve (i) performing
maneuvers on a nonlinear ground vehicle model (illustrating
the result in the WebotsTM [19] robotics simulator), and (ii)
controlling a nonlinear model of a fixed aircraft wing called
the Caltech ducted fan [8]. We demonstrate in each case
that our approach can learn simple policies that satisfy all
the desired requirements of verification, simplicity, and fast
computation. The resulting policies are orders of magnitude
faster to execute when compared to the original MPCs from
which they were learned.

A. Related Work

Policy learning from demonstrations is a fundamental
problem in robotics, and the subject of much recent work.
Argall et al. provide a survey of various learning from
demonstration (LfD) approaches [2]. These approaches are
primarily distinguished by the nature of the demonstrators.
For instance, the demonstrator can be a human expert [12], an
offline sample-based planning technique (e.g. Monte-Carlo
Tree Search [4]), or an offline trajectory optimization based
technique [14]. In particular, our approach uses an offline
receding horizon MPC to provide demonstrations.

An alternative to learning policies is to learn value (poten-
tial or Lyapunov) functions. It is well known that systems that
can be controlled by relatively simple policies can require
potential functions that are complex and hard to learn. Thus,
a vast majority of approaches, including this paper, focus
on policy learning. However, there have been approaches
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to learning value functions, including Zhong et al. [34],
Khansari-Zadeh et al [12], and our previous work [25].
Notably, our previous work queries demonstrators and uses
counter-example learning in a similar manner in order to
learn potential (or control Lyapunov) function described as
an unknown polynomial of bounded degree. In contrast,
the approach of this paper learns policies directly, and
exploits the gradient of the cost-to-go functions to make the
demonstrator output a range of control inputs. This allows
for more policies to be retained at each iterative step. At the
same time, the fast convergence properties established in our
previous work are retained in our policy learning framework.

Another important limitation in iterative policy learning
is the lack of an adversarial component that can actively
identify and improve wrong policies [26], [5], [11]. In
contrast, our approach includes an adversarial verifier that
actively finds mistakes to fix the current policy. However,
an important drawback of doing so is our inability to learn
on the actual platform in real-time, unless the system can
recover from violations of the properties we are interested in.
Currently, all the learning is performed using mathematical
models.

The idea of generating controllers from rich temporal
property specifications underlies the field of formal syn-
thesis. A variety of recent approaches consider this prob-
lem, including discretization-based techniques that abstract
the dynamics to finite state machines and use automata-
theoretic approaches to synthesize controllers [18], [21],
[23], [27], formal parameter synthesis approaches that search
for unknown parameters so that the overall system satisfies
its specifications [33], [29], [9], [1], deductive approaches
that learn controllers and associated certificates such as the
Lyapunov function [24], [3], [30], [6]. Recent work [22], [32]
presents approaches to controller synthesis for temporal logic
based on the paradigm of counterexample-guided inductive
synthesis (CEGIS) [28]. Querying for demonstrations can be
viewed as a way of actively querying an oracle for positive
examples, which is also done in some CEGIS variants. Our
approach and these approaches are thus both instances of the
abstract framework of oracle-guided inductive synthesis [10].

II. BACKGROUND

Let R denote the set of real numbers, R+ denote non-
negative real numbers, and B : {true, false}. A column vector
[x1, x2, ..., xn]t is written as x. We write x ◦ y to denote
element-wise multiplication and x · y as the inner product.
For a set X , let Vol(X) be the volume of X and int(X) be
its interior.

In this paper, we consider the inference of a feedback
function (policy) for a given plant model and logical specifi-
cation. Let X ⊆ Rn be a state-space whose elements are state
vectors written as x, and U ⊆ Rm denote a set of control
actions whose elements are control inputs written as u. The
plant model is described by a function F : X × U → Rn
that describes the right-hand side of a differential equation
for the states:

.
x = F(x,u), x ∈ X , u ∈ U .

For technical reasons, F is assumed to be Lipschitz contin-
uous in x and u.

Definition 1 (Policy): A policy π : X → U maps each
state x ∈ X to an action u ∈ U .

In this paper, we will consider policies π that are Lipschitz
continuous over X . Given a plant, F and a policy π, a closed
loop system Ψ(F , π) with initial state x0 ∈ X yields a trace
(time trajectory) σ : R+ → X that satisfies

σ(0) = x0, and (∀ t ≥ 0)
.
σ(t) = F(σ(t), π(σ(t))) .

Given a state-space X , a specification ϕ maps time tra-
jectories σ : R+ → X to Boolean values true/false ,
effectively specifying desirable vs. undesirable trajectories,
i.e, ϕ : (R+ → X) → B. There are many useful specifica-
tion formalisms for time trajectories (e.g., Metric Temporal
Logic(MTL) [13]). While our approach is applicable to the
specification written in such a formalism, this work focuses
exclusively on reachability properties:

Definition 2 (Reachability): Given a compact initial set
I ⊂ X (σ(0) ∈ I) and a compact goal set G ⊂ X , the
system must reach some state in G : (∃ t ≥ 0) σ(t) ∈ G.

Definition 3 (Policy Correctness): A policy π is correct
w.r.t. a specification ϕ, if for all traces σ of the system
Ψ(F , π), ϕ(σ) holds. For short, we write Ψ(F , π) |= ϕ.

Given a plant F and specification ϕ, we consider the
policy synthesis problem in this paper.

Problem 1 (Policy Synthesis Problem): Given a plant F
and specification ϕ, find a policy π s.t. Ψ(F , π) |= ϕ.

The policy synthesis problem asks for a controller that
satisfies a given formal specification. This problem has been
considered through many formal synthesis approaches in the
recent past [22], [16], [6], [27], [21]. In the subsequent
section, we will describe the specific setup considered in
this paper.

III. FORMAL LEARNING FRAMEWORK

We propose a novel approach where the demonstrator
provides a set of feasible feedback for a given state. Figure 1
shows the three components involved in the formal learning
framework and their interactions.

The learner is a core component that iteratively attempts
to learn a policy using the demonstrator and verifier compo-
nents. At the end, it either successfully outputs a policy or
outputs FAIL, indicating failure.

The learner works over a space of policies Π fixed a priori
and at each iteration, it maintains a finite sample set Oi :
{(x1, U1), (x2, U2), . . . , (xi, Ui)}, with sample states xj ∈
X and corresponding set of control inputs Uj ⊆ U . The set
Oi can be viewed as a constraint over the set of policies in
Π, using the compatibility notion defined below:

Definition 4 (Compatibility Condition): A policy set π ∈
Π is compatible with Oi : {(xj , Uj), j = 1, . . . , i} if and
only if for all (xj , Uj) ∈ Oi, π(xj) ∈ Uj .

The demonstrator D inputs a state sample x ∈ X and
outputs a set of control inputs U ⊆ U . The demonstrator
outputs a set of possible control inputs U : D(x) that can
be applied instantaneously at x. We require that the following
correctness condition holds:



learner

verifier Output: fail

demonstrator Output: succ.

πj

xj+1

(xj+1, Uj+1)

NO CANDIDATE

SAT

{(x1, U1), . . . , (xj , Uj)}

Fig. 1. Schematic diagram of the policy learning framework.

Definition 5 (Demonstrator Correctness): For any policy
π if (∀x) π(x) ∈ D(x), then Ψ(F , π) |= ϕ.
Therefore, we conclude that an incorrect policy π “disagrees”
with the demonstrator output D(x) for some state x.

Lemma 3.1: Given a correct demonstrator D, a policy π
and a trace σ of Ψ(F , π) that violates the specification ϕ,
there exists a time t s.t. π(σ(t)) /∈ D(σ(t)).

The verifier inputs a policy π and property ϕ, outputting
SAT or UNSAT. Here SAT signifies that the closed loop
Ψ(F , π) consisting of the plant and the current policy
satisfies the specification ϕ, and UNSAT signifies that the
closed loop fails the property. In the latter case, the verifier
generates a trace σ : R+ 7→ X of the closed loop that violates
the property.
Iteration: At the start, the learner is instantiated with its
initial policy space Π (eg., all policies described that are
linear combinations of a set of given basis function) and the
initial sample set O0 = ∅.

At the ith iteration, sample set is denoted Oi. The follow-
ing steps are carried out:

1) The learner chooses a policy πi ∈ Π that is compatible
with Oi−1. Then, πi is fed to the verifier.

2) The verifier either accepts the policy as SAT, or pro-
vides a counterexample trace σi.

3) Using the demonstrator, a state xi : σi(t) is found for
which πi is not compatible with the demonstrator. I.e.
πi(xi) /∈ D(xi).

4) The learner updates Oi : Oi−1 ∪ {(xi,D(xi))}.
Theorem 1: If the formal learning framework terminates

with SUCCESS, then we obtain a policy π such that Ψ(F , π)
satisfies the desired property ϕ.

IV. REALIZING THE ORACLES

For simplicity, we will first start by describing how a
demonstrator can be realized.
Demonstrator: Given a state x ∈ X , the demonstrator
should output a set of control inputs U ⊆ U such that each
input u ∈ U can be applied at x without compromising
the desired property ϕ. We will focus on describing a
demonstrator for reachability properties for now. A more
general framework is left for future work.

Let G be a set of goal states that we wish to reach. We
will assume the following properties of our demonstrator:

D1: The demonstrator has an (inbuilt) policy π∗ that can
ensure that starting from any x ∈ X , the resulting trace σ(t)
reaches G in finite time.

Given any point x, we assume that π∗(x) can be computed
for any x ∈ X . However, such a computation can be
expensive and we do not know π∗ in a closed form.
D2: The demonstrator’s correctness is certified by a smooth
Lyapunov-like (value) function V such that
(a) for all x ∈ X \ int(G), V (x) ≥ 0,
(b) V is radially unbounded, and
(c) For all x ∈ X \ int(G), with u = π(x),

∇xV · F(x,u) ≤ −ε .

Once again, we assume that V is not available in a closed
form but that V (x) and ∇V (x) can be computed for
each x ∈ X .

Consider a demonstrator with a policy π∗ satisfying D2.
Lemma 4.1: Starting from any state x ∈ X \ int(G), the

closed loop trajectory of Ψ(F , π∗) eventually reaches int(G)
in finite time.

Let λ ∈ (0, 1] be a chosen constant. We will denote π∗(x)
by u∗. For any x ∈ X \ int(G), we define the set Uλ(x) ⊆ U
as satisfying:

Uλ(x) : {u ∈ U | (∇V )F(x,u) ≤ λ(∇V )F(x,u∗)} . (1)

Theorem 2: For any λ ∈ (0, 1] and any policy π such
that (∀ x ∈ X \ int(G)) π(x) ∈ Uλ(x), the closed loop
model Ψ(F , π) will satisfy the reachability property for G
(demonstrator correctness).
MPC Based Demonstrator: We will now briefly consider
how to implement a demonstrator for a reachability property
and extract a suitable proof V . To do so, we will use a stan-
dard receding horizon MPC trajectory optimization scheme
that discretizes the plant dynamics using a discretization step
δ > 0 and a terminal cost function that is chosen so that the
resulting MPC stablizes the plant F to a point x∗ ∈ int(G).
Let F̂ (x,u) be a discretization of F for the time-step δ. This
discretization approximates F and is derived using Euler or
Runge-Kutta scheme. We define V ∗(x) as the optimal value
of the following problem:

min
u(0),...,u(Nδ−δ)

N−1∑
j=0

Q(u(jδ),x(jδ)) +H(x(Nδ))

s.t. x(0) = x

x((j + 1)δ) = F̂ (x(jδ),u(jδ))
j = 0, . . . , N − 1 .

(2)

Likewise, π∗(x) is the optimal value for u(0) in (2). Under
some well-known (and well-studied) conditions, the MPC
scheme stabilizes the closed-loop dynamics to x∗ with the
optimal cost to go V ∗ as the desired Lyapunov function [17],
[7]. We consider the following strategy for a demonstrator:

1) We design an MPC controller with proper cost function
(usually Q and H are positive outside int(G) and
radially unbounded).

2) We adjust the cost function by trial and error until
the demonstrator works well on sampled initial states



x ∈ X and the cost decreases strictly along each of the
resulting trajectories.

3) The gradient ∇V ∗ can be estimated for a given x by
using the KKT conditions for the optimization prob-
lem (2) or using a numerical scheme that estimates the
gradient by sampling around x. We also note that some
methods like iLQR [15] provide local V ∗ in closed form
(and thus ∇V ∗) along with the solution π∗.

Verifier: Given a policy π and a property ϕ, the verifier
checks whether the closed loop Ψ(F , π) satisfies the property
ϕ and if not, produces a counterexample trace. The problem
of verifying non-trivial properties of nonlinear systems is
undecidable. Therefore a perfect verifier is not feasible.

In this section, we review two main sets of solutions: (a)
A verifier that attempt to approximately solve the verification
problems using decision procedures, as described in our
earlier work [25]. Such a verifier concludes that the system
satisfies the property or is likely buggy. It produces an
abstract counterexample that does not need to correspond to
a real trace of Ψ(F , π) but could nevertheless be used in the
learning loop (see [25] for further details); or alternatively
(b) a falsifier that tests Ψ(F , π) for a large number of
(carefully chosen) initial states x ∈ X , concluding either
a real counterexample or that the system likely satisfies the
property.

In this paper, we consider falsifiers that “invert” the
optimization problem from Eq. (2), as a search heuristic for
a counterexample to the property of reaching the goal G.

max
x(0)

N−1∑
j=0

(Q(u(jδ),x(jδ))) +H(x(Nδ))

s.t. x((j + 1)δ) = F̂ (x(jδ),u(jδ))
u(jδ) = π(x(jδ)) .

(3)

However, the optimization problem is over the unknown
initial state x(0) with the control values u(jδ) fixed by the
policy π to be falsified. We attempt to solve this problem
by using a combination of random choice of various x(0)
and a second order gradient descent search. Whereas this is
not guaranteed to find a falsifying input, it often does within
a few iterations, outperforming random simulations. On the
other hand, if M ≥ 106 (or a suitably large number) of trials
do not yield a falsification, we declare that the policy likely
satisfies the property.
Witness State Generation: Having found a counterex-
ample trace σ, we still need to find a state xi = σ(t) of
the trace to return back to the demonstrator. Ideally, we
choose a state x : σ(t) in the trace at time t such that
πi(x) /∈ Uλ(x), wherein Uλ(x) is the set returned by the
demonstrator (derived from the Lyapunov conditions) for
input x (Cf. Eq. (1)). For this purpose, we discretize the
time (using small enough time-step δ). At each discrete time
t, if the policy π is compatible with the demonstrator at σ(t),
we increment t.

V. LEARNER

Given a set of observations Oi, the learner finds a policy
that is compatible with the observations. Formally, the policy

is parameterized by θ and the policy space Π is represented
by the parameter space Θ. The learner wishes to find θ s.t.

(∀(xj , Uj) ∈ Oi) πθ(xj) ∈ Uj . (4)

This will be posed as a system of constraints over θ. Also,
let Θi ⊆ Θ be set of all such θ.

Let V be a finite set of basis functions {v1, . . . , vK} and
πθ be linear combinations of these functions:

πθ(x) :

K∑
k=1

θkvk(x) .

First, πθ is a linear function of θ. We will now derive the
constraints for the compatibility condition (Def. 4), given a
sample set Oi : {(x1, U1), . . . , (xi, Ui)}.

We will assume that each set Uj is a polyhedron

Uj : {u | Aju ≤ bj} .

Therefore, in Eq. (4), πθ(xj) ∈ Uj can be replaced
with Aj(

∑K
k=1 θkvk(xj)) ≤ bj . Since xj is known, the

compatibility conditions yield a polyhedron over θ.
Theorem 3: The compatibility conditions Θi, given a sam-

ple set Oi, form a linear feasibility problem.
Using ideas from Ravanbakhsh et al [25], we show that

the entire formal learning algorithm terminates in polynomial
time, if the learner selects the new parameters θ ∈ Θi at each
iteration, carefully.

By Theorem. 3, Θi for iteration i would be a polyhedron.
We consider two realistic assumptions:

1) Θ0 is a compact set, where Θ0 ⊆ [−∆,∆]K , ∆ > 0 is
an arbitrarily large constant.

2) The formal learning algorithm terminates whenever a
K-ball of radius δ does not fit inside Θi for some
arbitrarily small δ > 0 (not when Θi = ∅).

We design the learner in the following way. In the learning
process, Oi implicitly defines Θi. Given Θi, let the learner
return the center of the maximum volume ellipsoid (MVE)
inside Θi. The problem of finding the MVE is equivalent to
solving a SDP problem[31].

Theorem 4: If the learner returns the center of MVE
inside Θi at each iteration, the formal learning algorithm
terminates in K(log(∆)−log(δ))

− log(1− 1
K )

= O(K) iterations.
This theorem addresses an important issue in statistical

machine learning. If the model is not precise enough to
capture a feasible policy, the learning procedure terminates.
And one can use a more complicated model with a larger set
of features (basis functions). In other words, one can start
from a simple model with smaller number of parameters and
iteratively add new basis functions.

We will now illustrate the results of policy learning for
linear combinations of basis functions using two case studies.
The demonstrator is implemented by an MPC with quadratic
cost functions:

Q = [ut xt] diag(Q′) [ut xt]t , H = xt diag(H ′) x .

A second order method is used to solve Eq. (2). For the
falsifier, we use one million (106) simulations from randomly



generated initial states, interspersed with 103 iterations of
the adversarial falsifier chosen by solving eq. (3). If a
counterexample is found, it is reported. Otherwise, the policy
is declared likely correct. Also, we use the demonstrator to
randomly generate a single trace and initialize the dataset
with demonstrations along that trace.
Case-Study I (Car): A car with two axles is modeled by
state variables xt = [x y v α β], where β = tan(γ) and γ
is the degree between the front and back axles (Fig. 2(b)).
The dynamics are defined as follows:

.
x = v cos(α) ,

.
y = v sin(α) ,

.
v = u1 ,

.
α =

v

b
β ,

.
β = u2 ,

where b = 3. Also, u1 ∈ [−1, 1] and u2 ∈ [−3, 3] are inputs.
The goal is to follow a reference curve (the road), by

controlling the lateral deviation from the midpoint of the
reference, at constant speed v0 = 10m/s. For convenience
the y-axis always coincides with this lateral deviation. The
state variable for x is ignored in our model and velocity
v is taken relative to v0 (i.e, v := v − v0). The goal
set is G : (y, v, α, β) ∈ [−0.1, 0.1]4 and the initial set
I : (y, v) ∈ [−2, 2]2 × (α, β) ∈ [−1, 1]2. For the MPC,
the cost functions are defined by Q′ : [1 1 9 9 1 1] and
H ′ : [90 90 10 10], δ = 0.2, N = 10. We test that the MPC
can solve the control problem for many random initial states,
whereas a LQR controller with the same cost function fails:
I.e, starting from I , the goal G is not reached by some of
the executions of this controller. Since there are two inputs,
we use two different parameterizations πθ : [π1

θ1
, π2
θ2

], where
π1
θ1

(π2
θ2

) is used to learn u1 (u2). We consider each input
to be an affine combination of states (affine policy). Our
approach successfully finds an affine policy with only 16
demonstrations.

To study scalability of the method, we consider varying
number of cars which do not directly interact. Our goal is for
each lateral deviation to converge to a narrow range using
a single “centralized” policy to control all of the cars at the
same time. For l cars, there are 2l inputs, each of which is
an affine (linear) feedback with 4l+1 (4l) terms. The results
for up to 4 cars is shown in Table I.

Results indicates that the method converges much faster
when the policy is linear as opposed to being affine. This
suggests that selecting basis functions can significantly affect
the performance. Nevertheless, the termination is guaranteed
and the method is scalable to higher dimensional problems as
the complexity is polynomial in the number of states. After
all, we are using local search for falsifier and demonstrator
and using SDP solvers to implement the learner.

We note that falsification is quite fast for most of iterations
and it takes significant time only at the final iteration, where
the model is most likely correct. Moreover, the witness
generation is the most expensive computation especially for
larger problems. However, such active search for witnesses
helps to generate useful data and guarantees convergence of
the algorithm.

We implemented the controller for a car in the
WebotsTM [19] simulator. The cars in Webots have a map for
the road and simulate GPS-based localization with internal
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Fig. 2. Schematic View of the Case-Study I (a) and II (b)

TABLE I
RESULTS FOR CASE-STUDY I

#Cars K #Itr. Wit. Gen. T. Fals. T. Total T.

1 8 2 3 59 66
10 10 22 40 65

2 32 13 115 98 233
36 33 423 55 492

3 72 16 274 364 680
78 44 1903 141 2084

4 128 47 1360 257 1697
136 62 6766 187 7087

K is the number of model parameters. #Itr. is the number of iterations.
Total T. is the total computation time in seconds on a Mac Book Pro with
up to 4 GHz Intel Core i7 processor.

sensors for heading, steering angle and velocity. The car
model in Webots is much more complicated when compared
to our simple bicycle model. However, we use the bicycle
model to design the policy. The simulation traces for some
random initial states are shown in Fig. 4 demonstrate that the
learned controller is robust enough to compensate the model
mismatches. The simulations are shown for a straight as well
as a curved road segment.

Case-Study II (Caltech Ducted Fan): We consider an
example from Jadbabaie et al. [8], where authors develop a
mathematical model for the Caltech ducted fan. The state
xt = [v γ β

.
β h], consists of speed v, angle of velocity γ,

angle of the ducted fan β, angular velocity
.
β, and height h.

Fig. 2(b) shows a schematic view of the ducted fan.
The problem here is to stabilize the wing to move forward.

The dynamics are:

m
.
v =−D(v, α)−W sin(γ) + u cos(α+ δu)

mv
.
γ =L(v, α)−W cos(γ) + u sin(α+ δu)

J
..
β =M(v, α)− ulT sin(δu)
.
h =v sin(γ) ,

where α = β−γ, u is the thrust force, and δu in the angle
for direction of the thrust (ut = [u δu]) (Cf. [8] for a full
description).

The model has a steady state x∗t = [v0 0 β0 0 0], where
v0 = 6 and β0 = 0.177 (for input u∗t = [3.2 − 0.138]),
for which the ducted fan steadily moves forward. The fact
that dynamics are not affine in control is problematic as we
need each Uj to be a polyhedron. To get around this, we use
us : u sin(δu) and uc : u cos(δu) as our inputs, and rewrite
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Fig. 4. Simulation Results in Webots for Two Road Segments: (a) a straight
road, and (b) a curved road. The center of the road is shown with a black
line and traces are shown with colored lines starting from different states.

the equations. The dynamics of the new system are affine in
control and Uj would be a polyhedron. By setting x∗ and
u∗ as the origins and scaling down v, by 2.5 times

x := [0.4 1 1 1 1]t ◦ (x− x∗) , u := u− u∗ ,

the goal is to reach G : [−0.2, 0.2]5 from I : [−0.5, 0.5]5.
For the MPC, we use Q′ : [0.02 0.02 1 1 1 1 1],
H ′ : [15 15 15 15 15], δ = 0.3, N = 15. Let T :
{τ1(x), ..., τK′(x)} be set of terms defined over x. Basis
functions vk(x) : T αk (πθ :

∑
k θk T αk ) correspond to

monomials of terms in T , wherein αk ∈ NK′
is a vector

of natural number powers such that |αk|1 ≤ d for some
degree bound d > 0. Both inputs are parameterized with
terms T : {v, γ, β,

.
β, h, sin(β), cos(β)} and degree d is 2.

Using the formal learning algorithm with λ = 0.1, proper
parameters are found with 46 demonstrations. Several traces
of Ψ(F , π) for the learned policy π is shown in Fig. 3.

The results suggest that our framework can efficiently
yield reliable solution to reachability problems, given appro-

priate basis. Nevertheless, if the bases are not rich enough,
the method declares failure after few iterations. For example,
when T : {v, γ, β,

.
β, h}, the method terminates in 20

iterations without any solution.

Comparison with Linear Regression: We consider a sim-
ple supervised learning algorithm in which the demonstrator
generates optimal input ui for a given state xi. Using the
demonstrator we generate optimal traces starting from M
random initial states. Then, the states in the optimal traces
(and their corresponding inputs) are added to the training
data. Having a dataset {(x1,u1), . . . , (xj ,uj)}, one wishes
to find a policy with low error (at least) on the training
dataset. In a typical statistical learning procedure, one would
minimize the error between the policy and demonstrations:

min
θ

j∑
i=1

(πθ(xi)− ui)
2 .

For both case studies, we tried this statistical learning ap-
proach with different training data sizes: 10 < M < 1000. In
all experiments the falsifier found a trace where the learned
policy fails. We believe this notion of error used in regression
is merely a heuristic and may not be relevant. For example,
we noticed that because of input saturation, many states
in the training data have exactly the same corresponding
control inputs in the dataset and this prevents a simple linear
regression to succeed.

VI. CONCLUSION

We have presented a policy learning approach that com-
bines learning from demonstrations with formal verification,
and demonstrated its effectiveness on two case studies. We
showed cases where naive supervised learning fails due to its
simplicity, whereas our method can solve the problem. Our
future work will consider nonlinear models such as deep
neural networks as well as extensions to support a richer set
of properties beyond reachability.
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