
Using Deep Reinforcement Learning to Learn High-Level Policies on
the ATRIAS Biped

Tianyu Li1, Akshara Rai2, Hartmut Geyer2, Christopher G. Atkeson2

Abstract— Learning controllers for bipedal robots is a chal-
lenging problem, often requiring expert knowledge and exten-
sive tuning of parameters that vary in different situations.
Recently, deep reinforcement learning has shown promise
at automatically learning controllers for complex systems in
simulation. This has been followed by a push towards learning
controllers that can be transferred between simulation and
hardware, primarily with the use of domain randomization.
However, domain randomization can make the problem of
finding stable controllers even more challenging, especially
for underactuated bipedal robots. In this work, we explore
whether policies learned in simulation can be transferred to
hardware with the use of high-fidelity simulators and structured
controllers. We learn a neural network policy which is a part
of a more structured controller. While the neural network is
learned in simulation, the rest of the controller stays fixed,
and can be tuned by the expert as needed. We show that
using this approach can greatly speed up the rate of learning
in simulation, as well as enable transfer of policies between
simulation and hardware. We present our results on an ATRIAS
robot and explore the effect of action spaces and cost functions
on the rate of transfer between simulation and hardware. Our
results show that structured policies can indeed be learned
in simulation and implemented on hardware successfully. This
has several advantages, as the structure preserves the intuitive
nature of the policy, and the neural network improves the
performance of the hand-designed policy. In this way, we
propose a way of using neural networks to improve expert
designed controllers, while maintaining ease of understanding.

I. INTRODUCTION

Reinforcement learning is a continuously learning and
adapting framework that can generalize to multiple robots
and task scenarios. Such a framework is essential for
moving towards autonomous agents that can respond to
changes in their environment and learn to perform well
on new tasks. This potential has sparked great interest in
studying reinforcement learning approaches on complex,
real world problems. Recently deep reinforcement learning
(DRL) has achieved very impressive results and beyond
human performance on several complex long-horizon games
such as AlphaGo [1] and even starting with no human
input AlphaGoZero[2]. Similar progress has been achieved
in the domain of continuous control too, dealing with very
high dimensional state and action spaces. For example,
Deep Deterministic Policy Gradients (DDPG) [3] and Trust
Region Policy Optimization (TRPO) [4] can solve several
control challenges in the Mujoco simulation environment [5].

1Mechanical Engineering, Carnegie Mellon University, USA,
tli3@andrew.cmu.edu

2Robotics Institute, School of Computer Science, Carnegie Mellon Uni-
versity, USA, arai@andrew.cmu.edu, hgeyer@cs.cmu.edu,
cga@cs.cmu.edu

Fig. 1: Our test platform is CMU’s ATRIAS robot in a planar
setup.

[6] show that a variant of the Proximal Policy Optimization
(PPO) [7] can learn to control a very high degree of free-
dom humanoid robot in Mujoco, even in very challenging
environments. Similarly, [8] use a variant of DDPG to learn
to do dexterous manipulation with a high degree of freedom
hand in simulation.

While simulation results for deep RL are very impressive,
the simulation-hardware gap makes most controllers learned
in simulation unsuitable to be implemented on hardware.
This is partly because simulations are not perfect represen-
tations of real systems, but also because learning approaches
often tend to exploit simulation inaccuracies to achieve
better performance. Recent work learns parameters of expert
controllers on hardware sample-efficiently, for example [9]
and [10] use Bayesian Optimization. While these are promis-
ing, and robust even to hardware damage, they are limited
by the controllers they can represent. On the other hand,
high-dimensional neural network policies can approximate
arbitrarily complex controllers, but too expensive to optimize
on hardware. One approach to learn policies in simulation
and deploy on hardware is domain randomization [11]. It can
be used to learn robust neural network policies in simulation
by applying random perturbations to the dynamics and other
properties of the simulator. This approach has been applied to
manipulation problems [12], as well as quadrupedal locomo-
tion problems [13]. However, typical domain randomization
can lead to controllers that perform worse than controllers
trained without randomization [13], as well as make the
learning problem much harder [14] taking over 100 years
of simulation time to learn successful policies.

Domain randomization from scratch is especially challeng-
ing for under-actuated bipedal robots, as the basin of stability

ar
X

iv
:1

80
9.

10
81

1v
1 

 [
cs

.R
O

] 
 2

8 
Se

p 
20

18



around a controller is typically very small. As a result, it is
very difficult to randomly explore the space of controllers
to find successful controllers that stabilize a wide range
of dynamic models, and other disturbances. Moreover, the
learned controllers would typically be quasi-static in nature,
similar to [11] in behavior, which is not very impressive in
performance.

In this work, we study if a high-fidelity simulator and
structured neural network controllers can eliminate the need
for domain randomization in learning controllers for bipedal
robots. We use a high-fidelity simulation of the ATRIAS
robot [15] with ground height disturbances to learn a walking
controller in simulation. Then we test these controllers on
an actual bipedal robot and evaluate if they are capable of
realizing a stable walking gait on hardware.

We experiment with different controller structures, and
study their effect on transfer from simulation to hardware,
without any domain randomization. We show that struc-
tured neural network controllers have a fast training rate in
simulation as well as higher rate of transfer to hardware.
The structure also gives the user the power to modify the
controller, if required, without having to re-train the neural
network from scratch.

The main contributions of this paper are as follows:
1) We demonstrate a successful neural network policy

learned using deep reinforcement learning on a bipedal
robot hardware

2) We study the effect of action space on the success of
transfer between simulation and hardware

3) We present a way of using deep reinforcement learning
and neural networks to improve user-designed policies,
while maintaining their intuitive structure

II. LEARNING LOCOMOTION CONTROLLERS

In this section, we give a brief introduction of deep
reinforcement learning and explain how we train our neural
network policies in simulation.

A. Background

We formulate our locomotion control problem as a Markov
Decision Process (MDP) which can be represented as a tuple:
M = {S,A,r,τ,T}. Here S⊆ Rn is the set of states, A⊆ Rm

is the set of actions, r : S×A→r is the reward function, τ :
S×A→ S is the transition function which is robot’s dynamics
in our setting, T is the maximum episode length. We wish
to find a policy π : S→ A that can maximize the expected
sum of the reward over a trajectory:

η(π) = Eπ [
T

∑
i=1

ri ]

We use an actor-critic framework to solve this problem,
similar to [8]. The policy is modeled using a neural network
that takes as input the partial state of the robot and outputs
desired control actions. A second neural network models
the value function of the robot, which is the expected total
reward from the current state.

B. Imitation Learning

Exploration is one of the challenges in RL methods; we
need to try different actions in order to learn from and
learn about their consequences. If we start from nothing, the
learning process could be very slow [16] since the algorithms
put a lot of effort on exploring state-action space. One
way to reduce this issue is using behavior cloning [17].
Behavior cloning learns a policy over state-action pairs from
expert trajectory [18] by finding the policy parameters θ

that solve the following maximum-likelihood optimization
problem [16]:

maximizeθ ∑
(s,a∗)∈ρD

lnπθ (a∗|s) (1)

where ρD indicates the expert’s trajectory distribution, with
a∗ is actions that expert took, and s are the states visited.

Similarly, rewards accumulated during the expert’s demon-
strations can be used to pre-train a Q-function by minimizing
TD error [19]. As Q-function is the guidance for policy
update, a well pre-trained Q-function benefits actor training
as well.

In practice, imitation learning does not guarantee that the
cloned policy can work as good as the expert due to com-
pounding error caused by distributional shift in states seen
during training and testing [16], [20]. Moreover, the expert
controller might not perform sufficiently well in settings
where it is difficult to design a controller. For example, while
our expert controller is very stable on flat ground walking,
rough ground seems to present a challenge. This means that
the learned policy actually has to be updated to perform
well in this situation. Nevertheless, the expert is a good
initialization for the policy and makes the learning process
much faster.

C. Proximal Policy Optimization (PPO)

We used PPO [6], [7] as our deep RL algorithm. PPO is a
stable on-policy method that uses importance sampling and
a clipped objective function to update policy parameters. As
a result, the updated policy is close to the initializing policy
and the training is stable.

III. CONTROLLERS DESCRIPTION

In this section, we first describe a feedback based reactive
policy which is also our expert controller, used for initializing
our neural network policies. Then we introduce two types of
neural network controllers using a similar state and action
representation as the feedback based reactive policy. The first
neural network controller has a general architecture, with
little structure, while the second has a very similar structure
to the expert.

A. Feedback Based Reactive Policy (Expert Controller)

This feedback based reactive policy [21], is designed for
controlling the CoM height and torso pitch in stance, and the



leg placement location in swing:

Fx = Kpt(θdes−θ)+Kdt(−θ̇) (2)
Fz = Kpz(zdes− z)+Kdz(−ż) (3)
xp = k(vact − vtgt)+0.5 · v ·T (4)

Here, Fx is the desired horizontal ground reaction force
(GRF), Kpt and Kdt are the feedback gains on the torso pitch
angle θ and velocity θ̇ . Fz is the desired vertical GRF, Kpz
and Kdz are the feedback gains on the CoM vertical height
z and velocity ż. θdes and zdes are desired the torso lean
and vertical CoM height. xp is the desired swing leg foot
placement location, vact is the current measured horizontal
velocity of CoM and vtgt is the target velocity. T is the swing
time and the term 0.5 · v ·T is a feedforward term similar to
the Raibert controller [22]. Our controller tries to maintain
a fixed CoM height and torso pitch in stance, and regulate a
forward velocity through leg placement in swing.

The desired GRFs (Fx,Fz) are then sent to an inverse dy-
namics model of ATRIAS to generate desired motor torques
that realize the GRFs [23]. These torques are tracked with
low level motor velocity-based feedback loop that generates
the desired current in the motors.

Fig. 2: Pipeline of the expert controller for controlling
ATRIAS.

The swing trajectory starts from the current leg position
and terminates at the calculated foot position x f p with
ground-speed matching. Inverse kinematics then translates
this trajectory to desired joint positions and velocities. The
joints are controlled by sending a velocity commands to the
robot.

This feedback based reactive policy can walk in simulation
without any perturbations. However, this controller is not
robust enough, since in an environment with ground height
disturbances or torque noise it often falls after a few steps.
In addition, this controller cannot be directly implemented
on hardware. Due to differences between the simulation
and hardware such as error in models and parameters, that
do not transfer, this controller is not robust enough to
overcome these differences. This implies that further training
is essential to achieve a better performance. We discuss two
different types of controller that can be trained to obtain a
better and more robust policy.

B. Neural Network Policy

In our first setting, we create a general neural network
policy without much structure. Similar to the expert con-
troller, we design the action space of the neural network to
be horizontal and vertical ground reaction forces (GRFs) Fz,

Fx and the swing leg foot place location xp. The input space
is tha state of the CoM: (x,vact ,z,ż,θ ,θ̇ ). This means that the
structure of the neural network policy becomes:

π(x,vact ,z, ż,θ , θ̇)NN → (Fz,Fx,xp) (5)

The stance and swing control pipeline is similar to the expert
and shown in Figure 3.

Fig. 3: Pipeline of our first method for controlling ATRIAS.
Here τRF ,τRB,τLF ,τLB are torques in the right leg’s front and
back and left leg’s front and back motors.

While this policy still has the information about dynamics
constraints of the robot through the inverse dynamics and
inverse kinematics blocks, it loses the well-defined structure
of the expert. This means that the output of the neural
network is unpredictable, and the user does not have a lot of
control over the behavior of the robot. Roboticists typically
prefer controllers that can be understood and predictable, as
well as can be modified if needed. In our second controller,
we try to emulate this shared autonomy, which lets the user
control the overall behavior of the robot, and the neural
network helps improve the user-designed policy through deep
RL.

C. Neural Network in the Heuristic Policy

In our second setting, instead of directly predicting the
vertical and horizontal ground reaction force (Fz,Fx,xp) as
well as desired swing leg foot place location xp, we use a
neural network as part of the feedback based reactive step-
ping policy, described in Section III-A. While the original
policy has a fixed desired torso lean θdes, desired CoM height
zdes and fixed structure for xp, we learn these as a function
of the state of the CoM using a neural network. The neural
network now takes the state of the CoM as input, and predicts
the desired torso pitch, CoM height and an offset on the
footstep location.

π(x,vact ,z, ż,θ , θ̇)HP→ (θNN ,zNN ,xNN) (6)

When inserted into the expert controller, this gives a struc-
tured neural network policy, where neural network outputs
are used as part of a heuristic policy. It is worth noting that
this policy is capable of generating the same outputs as the
general neural network policy. For example, for any desired
Fx profile, it is always possible to find a θNN given Kpt , Kdt ,
θ and θ̇ . The pipeline is illustrated in Figure 4.

Fx = Kpt(θNN−θ)+Kdt(−θ̇) (7)
Fz = Kpz(zNN− z)+Kdz(−ż) (8)

xp = k(vact − vtgt)+0.5 · v ·T + xNN (9)



Fig. 4: Pipeline of our second method using a heuristic policy
and neural network for controlling ATRIAS.

There are several benefits to having such structure in our
policies. First and foremost, the user can predict the behavior
and understand the outputs of this policy. This is important
for policies implemented on robots to ensure safety of the
robot and its environment. Moreover, if the user wants to
test a slightly different setting than the simulation, she can
easily tune other parameters of this policy, keeping the neural
network fixed. Lastly, if the policy fails on hardware, it is
easy for the user to understand why that might be, and even
possible to fix other parts of the controller without re-training
the neural network.

IV. EXPERIMENT

In this section we describe our experimental platform - the
ATRIAS robot, followed by our simulation and hardware
experiments. Our experiments compare a general neural
network policy with a more structured policy, where the
neural network helps modulate an expert controller. We
compare both policies in simulation and hardware.

A. ATRIAS robot

The ATRIAS robot (Figure.1) is our test bipedal robot
platform. It weights about 64kg, with most of its mass
concentrated around its torso, and its rotational inertia about
its center of mass (CoM) is about 2.2kgm2. In this work, we
only focus on planar walking, enforced with the help of a
boom. Details of the robot and our simulator can be found
in [15]. The simulator is designed in MATLAB Simulink
environment and is high-fidelity. It has non-linear contact
models, as described in [15] for realistic contact forces, as
well as detailed actuator dynamics, like spring deflections
and gear dynamics.

B. SIMULATION EXPERIMENTS

We trained our neural network controllers in simulation
before implementing on hardware. This is because we use
Proximal Policy Optimization (PPO) as our learning algo-
rithm. PPO needs to collect a large amount of data points
at each iteration. When our current policy is not good
enough, we would not be able to collect much data since
the robot might fall at the very beginning of experiment.
In order to collect enough number of data points, we need
to do a large number of trials, making it near impossible
to train on hardware. However, since we train our policies

in simulation, the resulting controllers might work well in
simulation environment but when implemented on hardware,
they might fall. In order to overcome this issue, we add
ground height disturbances to learn robust controllers in
simulation.

Fig. 5: Simulation of ATRIAS with ground height dis-
turbance. Different colors indicate different ground height
disturbances. Maximum ground height disturbance is ± 10
cm.

The reward function is defined focusing on matching the
desired walking speed and preventing large angular velocity
of the torso. We also add a large penalty if the controller
falls:

rewardt =

{
−C1 · (vact,t − vtgt)

2−C2 · (θ̇t)
2 +1, i f walk

−C3 ∗Tsim, i f f all
(10)

where vact,t is the vector is the actual forward velocity
of the robot at time t, vtgt is the target velocity, θ̇t is the
angular velocity of torso pitch, Tsim is the simulation time,
C1,C2,C3 are positive fixed parameters. This kind of cost
function is similar to prior work on optimizing locomotion
controllers, and it can easily distinguish points that walk from
points that fall. The longer the controller can survive, the
closer to the target speed, the less torso pitch the higher
total reward the controller can get. In this setting,C1 = 1,
C2 = 0.3, C3 = 0.01. In our observation, often the highest
scoring controllers in simulation tend to exploit simulation
inaccuracies. For example, some controllers tend to jerk the
torso to achieve speeds closer to the target speed. While these
perform well in simulation, they tend to fail on hardware.

1) Neural Network Policy: The first set of simulation ex-
periments were with the Neural Network Policy (NN Policy),
described in Section III-B. The first step for Neural Network
Policy was behavior cloning. After initialization, our NN
policy could walk on flat ground, but it had difficulties with
ground height disturbances. This was unsurprising because
the ’expert controller’ also cannot walk on ground with
ground height disturbance. Hence, we had to train the policy
further to achieve acceptable performance.

We trained 10 different NN policies, the rewards for which
are shown on Figure 8. The rewards shown is the averaged
reward of one iteration which consisted on 30,000 data
points. As shown in the plot, the reward keeps growing as



Fig. 6: Sequence of frames from a single walking cycle (left
to right).

training goes on, starting from the average cost of the expert.
This shows that PPO achieves a very stable training with little
to no forgetting of the initial expert.

Fig. 7: A time lapse of Neural Network Policy walking
around the boom with ground height disturbance in simu-
lation.

Fig. 8: Training plot of Neural Network Policy (green) and
Neural Network with Heuristic Policy (blue). Each of them
is averaged of 5 trials data. In our training, we collected
30000 data in one iteration. For each simulation episode,
we simulated 10 seconds if the controller keeps walking,
and in simulation our time step was 0.001s. Thus, we could
collect no more than 10000 data in a single episode, which
also means in one iteration we needed data at least from 3
different episodes. By collecting data from more than one
episodes, we could average the total rewards to determine
the performance of the controller, also eliminating ‘lucky’
runs.

The NN policy achieved good reward improvement com-
pared to the initialization. After training, the NN policy
could walk with ground height disturbance with a reasonable
success rate. Figure 6 and Figure 7 shows the NN policy
walking with ground height disturbance.

2) Neural network with heuristic policy: The second set
of simulation experiment uses a neural network in a heuristic
policy, described in section III-C. By initializing this policy
to the target values of the ’expert controller’, the initial policy

Fig. 9: A plot of the stance leg SEA torques measured
during one run of the NN policy on hardware. The torques
are 0 during swing and follow a double hump pattern in
stance. Note the high initial torques in the first two steps as
compared to the rest of the walking cycle.

was able to walk on flat ground but cannot walk on rough
ground.

The training plot of Heuristic Policy is shown on Figure 8.
As shown on the plot, the Heuristic Policy reward improves
faster than the NN policy but reaches its peak in very few
iterations. It then remains at that reward for the rest of
iterations. The initial fast improvement is expected because
as the heuristic policy uses the structure of the feedback-
based reactive stepping policy, the search for reasonable
parameters is simple. Hence, walking controllers are found
much faster. However, the same structure also imposes a
strong bias on the search, and as a result, it is hard to find
controllers that can perform as well as the pure NN controller
in simulation. However, as we describe later, even though
the best reward achieved by Heuristic controllers is lower,
the rate of transfer to hardware is much higher than the NN
policy.

C. HARDWARE EXPERIMENTS

We tested 5 NN policies and 5 heuristic policies in our
first set of hardware experiment, with the reward function
described in Function 10.

There is a large mismatch between simulation and hard-
ware starting conditions for our system. Starting from rest
is a significant challenge for bipedal robots, especially
underactuated robots like ATRIAS. ATRIAS is incapable
of balancing by standing in place, and needs to continue
stepping to stay upright. Typically, a start-up routine is
designed for these robots to reach some initial walking gait,
and then the controller to be tested is initiated. For example
[24] start by executing a stepping motion in air, and a human
holds on to the robot as its lowered onto the ground. We
train our controllers to start from rest in both simulation
and hardware, to avoid having to design a start-up routine.
However, our simulation leg is not initially loaded, so the
simulation has to make an initial push to keep the CoM from
going too low. On the other hand, on hardware the robot
starts in position control in the air and then is lowered. So
as stance starts, there is already sufficient force in the leg,
and the initial push (from simulation) makes the robot leave
ground. Such a controller falls on hardware. This behavior is



Fig. 10: A time lapse of ATRIAS walking around the boom during a run of a NN with heuristic policy.

illustrated in Figure 9 where the first two steps on hardware
experience higher leg forces than the rest of the steps.

1) Neural network policy: 2 out of 5 of the NN policy
could walk on hardware. But all of the NN policies shared
the same issue that at the beginning of walking they would
jump up. This behavior can also be seen in our simulation.
The initializing ’expert controller’ has a jump up behavior
at the beginning of walking, and our NN policy also inherits
this behavior. In simulation, this behavior would not lead
to falling, but on hardware, ATRIAS would fall as soon
as it tries to start walking because of the initial jump. On
hardware, 2 out of 5 controllers could overcome the initial
disturbance and then started normal walking pattern. 3 out 5
controllers, however could not recover from this disturbance.
This led to a 40% rate of transfer of learned policies between
simulation and hardware.

2) Neural network with heuristic policy: 4 out 5 con-
trollers trained with neural network as part of the heuristic
structure were able to walk on hardware. There are a few
reasons for the success of the NN with heuristic structure
policy, over the pure NN policy. Firstly, the initial discrep-
ancy between simulation and hardware leg force is already
compensated for by the heuristic structure. In the simulation,
the NN predicts a desired height, and the feedback on this
desired height results in a high leg force, as the actual height
of the robot is lower. On hardware, the actual height of
the robot is close to this desired height, so it automatically
reduces the initial leg force. Unlike pure NN policy, where
the forces were high on both simulation and hardware, now
the initial forces are only high when the actual state of the
robot is different from the desired. This structure in our
policy, hence, makes the generalization from simulation to
hardware very simple and intuitive.

Secondly, since the structure of the policy is readable by an
expert, the expert can still edit the policy after being trained
in simulation. For example, if the NN was trained on a lower
velocity but the expert wanted to run the robot on a higher
velocity, the heuristic structure allows to directly edit this
target. Similarly, we observed that some of our controllers
were falling because of speeding, and we increased the
feedback gain k on velocity feedback, described in Equation
9. This modification significantly improved the success rate
of policies learned in simulation on hardware.

These experiments highlight the advantages of structure
in learned policies. While the NN helped us improve our
heuristic policy, as shown in Figure 8, by learning a state-
dependant desired height, pitch and footstep location, it also
kept the intuitive structure of the heuristic. So, it was able to
better reject disturbances between simulation and hardware,
as well as be modified for slightly different test situations,
without needing re-learning. This allowed a 80% rate of
transfer of learned policies between simulation and hardware.

V. CONCLUSIONS AND DISCUSSION

In this work, we used deep reinforcement learning to learn
two neural network policies to control the ATRIAS biped in
simulation, and study their effectiveness at transferring to
hardware. One of the policies uses a general neural network,
while the second builds on the structure of a heuristic policy.
We show that introducing structure into neural network
policies can vastly improve the transfer rate of policies
between simulation and hardware. A structured policy can
guarantee the safety of the robot, as well as, allow a user to
intervene if the controller fails. In our experiments, such a
controller led to a 80% rate of transfer between simulation
and hardware, as compared to 20% for a traditional NN
policy. These results show that incorporating neural networks
into heuristic policies can help improve the performance of
the policy, and increase the rate of transfer of NN policies
between simulation and hardware.

In our hardware setup, the initial condition in simulation
and hardware was very different, which led to a lot of
controllers failing on hardware. This is a common problem in
locomotion systems, especially bipeds. One way of learning
more robust policies to such disturbances can be to use
cost functions that encourage conservative controllers. We
conducted such experiments with a cost that penalized high
torques and found that the transfer improved to a 100%
for NN policy with heuristic structure. In general, it is
worth studying control frameworks that can switch between
conservative and high performing controllers, based on the
mismatch between simulation and hardware. For example,
we might want to start with a conservative controller, and
then transition to a high-performance controller once we have
achieved a cyclic gait. We leave this for future work.



REFERENCES

[1] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

[2] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[4] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International Conference on Machine
Learning, 2015, pp. 1889–1897.

[5] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in Intelligent Robots and Systems (IROS), 2012
IEEE/RSJ International Conference on. IEEE, 2012, pp. 5026–5033.

[6] N. Heess, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez,
Z. Wang, A. Eslami, M. Riedmiller et al., “Emergence of locomotion
behaviours in rich environments,” arXiv preprint arXiv:1707.02286,
2017.

[7] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[8] A. Rajeswaran, K. Lowrey, E. V. Todorov, and S. M. Kakade, “Towards
generalization and simplicity in continuous control,” in Advances in
Neural Information Processing Systems, 2017, pp. 6550–6561.

[9] R. Antonova, A. Rai, and C. G. Atkeson, “Deep kernels for optimizing
locomotion controllers,” in Conference on Robot Learning, 2017, pp.
47–56.

[10] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[11] I. Mordatch, K. Lowrey, and E. Todorov, “Ensemble-cio: Full-body
dynamic motion planning that transfers to physical humanoids,” in
Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International
Conference on. IEEE, 2015, pp. 5307–5314.

[12] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-
real transfer of robotic control with dynamics randomization,” arXiv
preprint arXiv:1710.06537, 2017.

[13] J. Tan, T. Zhang, E. Coumans, A. Iscen, Y. Bai, D. Hafner, S. Bo-
hez, and V. Vanhoucke, “Sim-to-real: Learning agile locomotion for
quadruped robots,” arXiv preprint arXiv:1804.10332, 2018.

[14] OpenAI, :, M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz,
B. McGrew, J. Pachocki, A. Petron, M. Plappert, G. Powell, A. Ray,
J. Schneider, S. Sidor, J. Tobin, P. Welinder, L. Weng, and W. Zaremba,
“Learning Dexterous In-Hand Manipulation,” ArXiv e-prints, Aug.
2018.

[15] W. C. Martin, A. Wu, and H. Geyer, “Robust spring mass model
running for a physical bipedal robot,” in Robotics and Automation
(ICRA), 2015 IEEE International Conference on. IEEE, 2015, pp.
6307–6312.

[16] A. Rajeswaran, V. Kumar, A. Gupta, J. Schulman, E. Todorov,
and S. Levine, “Learning complex dexterous manipulation with
deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[17] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation,” Neural Computation, vol. 3, no. 1, pp. 88–97,
1991.

[18] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems, 2016, pp. 4565–
4573.

[19] A. Sendonaris and C. G. Dulac-Arnold, “Learning from demon-
strations for real world reinforcement learning,” arXiv preprint
arXiv:1704.03732, 2017.

[20] S. Ross and D. Bagnell, “Efficient reductions for imitation learning,”
in Proceedings of the thirteenth international conference on artificial
intelligence and statistics, 2010, pp. 661–668.

[21] A. Rai, R. Antonova, S. Song, W. Martin, H. Geyer, and C. G. Atkeson,
“Bayesian optimization using domain knowledge on the atrias biped,”
arXiv preprint arXiv:1709.06047, 2017.

[22] M. H. Raibert, Legged robots that balance. MIT press, 1986.

[23] A. Wu and H. Geyer, “Highly robust running of articulated bipeds in
unobserved terrain,” in Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on. IEEE, 2014, pp. 2558–
2565.

[24] C. Hubicki, J. Grimes, M. Jones, D. Renjewski, A. Spröwitz, A. Abate,
and J. Hurst, “Atrias: Design and validation of a tether-free 3d-capable
spring-mass bipedal robot,” The International Journal of Robotics
Research, vol. 35, no. 12, pp. 1497–1521, 2016.


	I INTRODUCTION
	II Learning Locomotion Controllers
	II-A Background
	II-B Imitation Learning
	II-C Proximal Policy Optimization (PPO)

	III CONTROLLERS DESCRIPTION
	III-A Feedback Based Reactive Policy (Expert Controller)
	III-B Neural Network Policy
	III-C Neural Network in the Heuristic Policy

	IV EXPERIMENT
	IV-A ATRIAS robot
	IV-B SIMULATION EXPERIMENTS
	IV-B.1 Neural Network Policy
	IV-B.2 Neural network with heuristic policy

	IV-C HARDWARE EXPERIMENTS
	IV-C.1 Neural network policy
	IV-C.2 Neural network with heuristic policy


	V CONCLUSIONS AND DISCUSSION
	References

