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Abstract— We consider the feedback design for stabilizing a
rigid body system by making and breaking multiple contacts
with the environment without prespecifying the timing or the
number of occurrence of the contacts. We model such a system
as a discrete-time hybrid polynomial system, where the state-
input space is partitioned into several polytopic regions with
each region associated with a different polynomial dynamics
equation. Based on the notion of occupation measures, we
present a novel controller synthesis approach that solves finite-
dimensional semidefinite programs as approximations to an
infinite-dimensional linear program to stabilize the system. The
optimization formulation is simple and convex, and for any
fixed degree of approximations the computational complexity
is polynomial in the state and control input dimensions. We
illustrate our approach on some robotics examples.

I. INTRODUCTION

In robot locomotion and manipulation, it is common that
a legged robot balances itself or a robotic hand manipulates
an object by making and breaking multiple contacts with the
environment. However, there are no simple rules to stabilize
such a system. Local stabilization methods, such as linear-
quadratic regulator (LQR), are unable to reason about the
change of system dynamics. In this paper, we model the
system as a hybrid system, or more specifically a piecewise
polynomial system, i.e., a system whose state-input space is
partitioned into several polytopic regions, with each region
associated with a different polynomial dynamics equation.
Such a hybrid system modeling approach is a natural fit
for many problems in robotics. For example, a system with
contacts is hybrid, with each hybrid mode associated with a
particular contact mode.

Controller synthesis for hybrid systems is a long-standing
challenging problem. The earliest work [1] dates back to
1960s, where the hybrid model and the optimization for-
mulation for controlling the system were introduced. More
recently, Branicky et al. considered several algorithms for
optimal control of hybrid systems [2], [3] and derived
necessary conditions for the existence of optimal control
law [4]. Approaches based on dynamic programming [4]–
[6] and the maximum principle [7]–[10] were proposed by
several authors to solve the hybrid optimal control problem.
(More reviews on hybrid systems can be found in [11]–
[15].) Approaches based on dynamic programming design
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Fig. 1. Examples used in this work. (A) Linear inverted pendulum with
an elastic wall. (B) Variable height inverted pendulum (legged robot).

control policies for the whole discretized state space and
the computational complexity grows exponentially with re-
spect to the dimension of the state. Approaches based on
the maximum principle are trajectory optimization methods,
which design a trajectory for a specific initial state, and
they usually assume mode switch sequences are fixed, while
we are more interested in methods that automatically find
mode switch sequences. Recent works based on the hybrid
minimum principle and gradients [16], [17] do drop the
assumption of fixed mode switch sequences. Posa et al. [18]
avoided the mode switch problem by formulating the linear
complementarity problem for physical contacts. However, we
are interested in designing control policies that cover most of
the state space rather than designing a trajectory for a fixed
initial state. Sampling based approaches [19]–[21] achieve a
compromise between covering the state space with control
policies and designing a single trajectory for an initial state,
and are promising for high-dimensional systems.

Piecewise-affine (PWA) systems, a special class of hybrid
systems, where the state-input space is divided into poly-
topic regions with each region associated with a different
affine dynamics equation, have been extensively studied.
PWA systems can arise by linearizing the dynamics of a
nonlinear/hybrid system at a few points in the state space
[22], [23]. The optimal control policy for PWA systems
can be computed offline by (i) dynamic programming and
multi-parametric convex programming [24]–[31], or (ii) rep-
resenting the system as a mixed logical dynamical (MLD)
system and then applying multi-parametric mixed integer
convex programming [32]–[34], or (iii) enumerating mode
switch sequences and applying multi-parametric convex pro-
gramming [35]. In general, the computational time of these
methods grows exponentially as the number of time steps
grow until, if possible, convergence. Lyapunov-function-
based approaches have also been used for the feedback
control of PWA systems, where linear or bilinear matrix
inequalities are formed to search for a PWA controller
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and a piecewise-quadratic Lyapunov function that proves
the stability of the closed-loop system [36]–[38]. The main
drawbacks of these approaches are that the formulations are
usually too conservative and hence may not be able to find
feasible solutions for practical problems, and that bilinear
matrix inequalities are non-convex and often intractible. We
think that piecewise polynomial functions, which include
PWA functions as a special case, are better characterizations
of the true dynamics of many systems.

Recent years has seen the development of the occupa-
tion measure approach [39]. The general framework of the
approach is to first formulate the problem as an infinite-
dimensional linear programming (LP) problem on measures
and its dual on continuous functions, and to then approximate
the LP by a hierarchy of finite-dimensional semidefinite
programming (SDP) programs on moments of measures
and their duals on sums-of-squares (SOS) polynomials. The
approach has been applied to approximating the region
of attraction, the maximum controllable set, or the for-
ward/backward reachable set for discrete-time/continuous-
time autonomous/controlled hybrid/non-hybrid polynomial
systems [40]–[45]. It has also been applied to controller
synthesis for those systems [42], [46]–[49].

The closest work to this paper is [49], in which the
authors used occupation measures to design controllers for
continuous-time hybrid systems. The main difference is that
we focus on discrete-time systems as digital computers
control robots via discrete signals. Also, we usually test
our closed-loop systems in simulators [50] that use time-
stepping schemes and complementarity problems [51], [52]
to model contacts. Previous works [42], [47] on controller
synthesis for discrete-time non-hybrid systems using occu-
pation measures lack the notion of “the state finally landing
in the target set”, as is commonly used in continuous-time
systems, and hence enforcing the system to reach a target
set depends completely on the objective function, which can
be hard to tune. Our previous work [48] solved this problem
by proposing a new form of the Liouville equation.

In this paper, based on our previous work [48], we find
what we call “the one-step transition sets” and formulate an
optimization problem for discrete-time hybrid systems with
the goal of steering as many initial states to the target set as
possible in finite time. As far as we know, this is the first time
that occupation measure approach has been applied to con-
troller synthesis for discrete-time hybrid polynomial systems.
The advantages of our approach include the following: (i)
The approach only needs to solve SDPs, which are convex.
For a fixed degree of SDP approximations, the computational
complexity is polynomial in the state and control dimensions,
and hence in principle our approach is more scalable than
those based on dynamic programming. (ii) The approach
does not fix any mode switch sequences beforehand, and it
finds them automatically. (iii) The approach does controller
synthesis for all initial states simultaneously instead of only
one initial state. (iv) The approach does not fix the number
of time steps. (v) As will be shown by the examples, the
controller can take a simple form and is efficient to be applied

online, implying low degrees of the SDP approximations
work well in some cases. In the last section, we will discuss
the limitations of our approach. For example, the controllable
set has to be checked a posteriori.

A. Notations

Let N (resp. R) be the set of nonnegative integers (resp.
real numbers). Let n ∈ N. Let R[x] := R[x1, . . . , xn] be the
ring of polynomials in x := (x1, . . . , xn), and let Rr[x] be
the set of polynomials in R[x] with degree at most r. Let
Σ[x] denote the cone of SOS polynomials in x, and Σr[x]
the cone of SOS polynomials of degree up to 2r.

Let X ⊆ Rn be a compact set. Let C(X) denote the
space of all continuous functions on X . It is a Banach space
equipped with the sup-norm. Its topological dual C′(X) is
the set of all continuous linear functionals on C(X). C+(X)
denotes the cone of non-negative elements of C(X), i.e.,
it is the cone of non-negative functions on X . If µ is a
finite measure on the Borel σ-algebra B(X), then µ is a
Radon measure [53]. Let M(X) denote the Banach space
of finite signed Radon measures on B(X) equipped with
the total variation norm, and M+(X) is the cone of (un-
signed) Radon measures. By Riesz Representation Theorem,
M(X) is isometrically isomorphic to C′(X). The topology
in M+(X) is the weak-star topology, while the topology
in C+(X) is the strong topology of uniform convergence.
For µ, ν ∈ M(X), if ν − µ ∈ M+(X), then we say µ is
dominated by ν, and denote it by µ ≤ ν. For a measure
space (X,A, µ) and V ∈ A, let A|V = {A ⊆ V |A ∈ A}
and let µV : A|V → [0,+∞] denote the restriction of µ on
A|V , i.e., µV (A) = µ(A), for A ∈ A|V . More reviews on
real and functional analysis can be found in [54], [55].

II. PROBLEM FORMULATION

Let n,m, s ∈ N. Consider the discrete-time hybrid control-
affine polynomial system H = (X,U, I,S, φ):
• I = {1, . . . , s} is the set of indices of the state space

cells. Each (discrete state) i ∈ I is called a “mode".
• The state constraint set X ⊆ Rn is the union of all

state space cells Xi’s, X =
⋃
i∈I Xi. The state space

cell Xi ⊆ Rn is a compact set with nonempty interior,
∀i ∈ I. Xi ∩Xj has empty interior, ∀i 6= j ∈ I.

• U ⊆ Rm is the control input constraint set.
• The dynamics in the cell Xi is given by xt+1 =
φi(xt, ut) := fi(xt) + gi(xt)ut, for (xt, ut) ∈ Xi×U ,
where fi and gi are polynomials, i ∈ I, and the vectors
xt and ut represent the state and the control input at
time t, respectively. The dynamics of the system at time
t is completely determined by the cell in which the state
xt resides. The dynamics at the boundary Xi ∩ Xj is
defined to be φk, where k = min{i, j}.

• S = {(i, j) ∈ I × I : ∃xk ∈ Xi, uk ∈ U, s.t. xk+1 =
φi(xk, uk) ∈ Xj} is the set of ordered pairs (i, j) of
indices denoting possible switches from cell i to cell j.

Problem 1. Given a discrete-time hybrid control-affine
polynomial system H and a target set Z ⊆ X , design a



state feedback controller u : X → U that maximizes the
volume of the set X0 where the trajectory starting from X0

under u reaches Z in finite time.

To solve this problem, we are going to design piecewise
polynomial controllers expressed as u = ui(x) ∈ U if
x ∈ Xi, where ui(x) is a polynomial in x, i ∈ I. In the
end, our controller would be an approximation of the optimal
controller, and we show by examples that the approximate
controller is good enough for practical purposes.

Assume X := {x ∈ Rn|hXj (x) ≥ 0, hXj (x) ∈ R[x], j =

1, . . . , nX}, and Xi := {x ∈ Rn|hXi
j (x) ≥ 0, hXi

j (x) ∈
R[x], j = 1, . . . , nXi

}, i ∈ I, are compact basic semi-
algebraic sets with nonempty interior. Furthermore, assume
that the moments of the Lebesgue measure on Xi’s are
available. For example, Xi can be an n-dimensional ball
or box. Assume that the origin is in the interior of X1.
This assumption excludes systems where the origin is at
the boundaries of multiple cells. By properly modifying the
optimization formulation, we can deal with other classes of
hybrid systems, but in this paper we only show how to work
with this kind of hybrid systems.

Assume U := {u ∈ Rm|hUj (u) ≥ 0, hUj (u) ∈ R[u], j =
1, . . . , nU} = [a1, b1]× . . .× [am, bm]. In the sequel, without
loss of generality, we assume U := [−1, 1]m, because the
dynamics equations can be scaled and shifted arbitrarily.

Assume Z := {x ∈ Rn|hZj (x) ≥ 0, hZj (x) ∈ R[x], j =
1, . . . , nZ} is a compact basic semi-algebraic set with
nonempty interior. In practice, we may choose Z to be a
small ball or box around the origin so that after the system
enters Z, we may turn on LQR or some other local control
methods to regulate the system to the origin. For this purpose,
assume that the origin is in the interior of Z, and that
Z ⊆ X1 ⊆ X .

Define the one-step transition sets Yij , for any (i, j) ∈ S,
to be the preimage of Xj under fi in Xi × U , i.e., Yij :=
{(x, u) ∈ Xi × U |fi(x, u) ∈ Xj} = f−1

i (Xj)
⋂
Xi × U =

{(x, u) ∈ Xi × U |h
Xj

k (fi(x, u)) ≥ 0, k = 1, . . . , nXj
}. The

last equality implies that Yij is a basic semi-algebraic set. So
we can write Yij = {(x, u) ∈ Rn+m|hYij

k (x, u) ≥ 0, h
Yij

k ∈
R[x, u], k = 1, . . . , nYij},∀(i, j) ∈ S. Since Xj is compact
and hence closed, and since fi is continuous, f−1

i (Xj) is
closed. Since Xi×U is compact, Yij , being a closed subset
of a compact set, is compact.

Let rXi
j := ddeg hXi

j /2e, i ∈ I, j = 0, . . . , nXi
. Let

QXi
r :=

{∑nXi
j=0 σj(x)hXi

j (x) : σj ∈ Σ
r−rXi

j

[x], j =

0, . . . , nXi

}
denote the r-truncated quadratic module gener-

ated by the defining polynomials of Xi, assuming hXi
0 (x) =

1. Analogously, we define QXiU
r , QZ

r , and Q
Yij
r . Note that

QXiU
r is generated by defining polynomials of Xi and U .
(Putinar’s condition) A compact basic semialgebraic set

defined by Ω := {x ∈ Rn|hΩ
j (x) ≥ 0, j = 1, . . . , nΩ}

satisfies Putinar’s condition if there exists h ∈ R[x] such
that h = σ0 +

∑nΩ

j=1 σjhj for some {σj}nΩ
j=0 ⊂ Σ[x] and the

level set {x ∈ Rn|h(x) ≥ 0} is compact.
Putinar’s condition can be satisfied by including N−||x||22

in the defining polynomials of Ω for some large N ∈ R. If Ω
satisfies Putinar’s condition, then Putinar’s Positivstellensatz
[56] says that any positive polynomial on Ω has an SOS
representation.

III. OPTIMIZATION FORMULATION

A. Discrete-time controlled Liouville equation

The Liouville equation describes the evolution of the state
distribution of the system over time. For continuous-time
systems, it takes the form of partial differential equations (see
e.g. [40]). For discrete-time systems, it is realized by the push
forward operator [45], [48]. In the following, we introduce
the discrete-time controlled Liouville equation in the non-
hybrid setting as proposed in [48], and in the next subsection
we shall see how it enables us to formulate optimization
problems for hybrid systems.

Given measurable spaces (S1,A1) and (S2,A2), a mea-
surable function f : S1 → S2, and a measure ν : A1 →
[0,+∞], the pushforward measure f∗ν : A2 → [0,+∞] is
defined to be f∗ν(A) := ν(f−1(A)), for all A ∈ A2.

Assume s = 1, i.e. X = X1 (just for the rest of this
subsection). Let X0, XT ⊆ X be the measurable sets of all
possible initial states and all possible final states of system
trajectories, respectively. Define π to be the projection π :
X × U → X, (x, u) 7→ x. It simply extracts the state from
a state-input pair. φ : X × U → X describes the system
dynamics as defined in the previous section. The discrete-
time controlled Liouville equation is

µ+ π∗ν = φ∗ν + µ0, (1)

where µ0 ∈M+(X0), µ ∈M+(XT ) and ν ∈M+(X×U).
The initial measure µ0 can be viewed as the distribution

of the mass of the initial states of the system trajectories
(not necessarily normalized to 1). The occupation measure ν
describes the volume occupied by the trajectories. The final
measure µ can be viewed as the distribution of the mass of
the final states of the system trajectories. The measures µ0, ν,
and µ will be decision variables in our optimization, which
enables us to search over trajectories with certain properties.

B. Primal-dual infinite-dimensional LP

Define the projections πi : Xi ×U → Xi, (x, u) 7→ x, i ∈
I. The infinite-dimensional LP on measures is formulated as
follows:

p := sup
µi

0,µ̂
i
0,µ,νi,µij

∑
i∈I

∫
X

1dµi0 subject to: (2)∑
j:(i,j)∈S

πi∗µij + πi∗νi = φi∗νi + µi0 +
∑

j:(j,i)∈S

φj∗µji,

for i 6= 1, i ∈ I,

µ+ πi∗νi = φi∗νi + µi0 +
∑

j:(j,i)∈S

φj∗µji, for i = 1,

µi0 + µ̂i0 = λXi
, µi0, µ̂

i
0 ∈M+(Xi),∀i ∈ I,

µ ∈M+(Z), νi ∈M+(Xi × U),∀i ∈ I,
µij ∈M+(Yij),∀(i, j) ∈ S.



Remember that we assume Z ⊆ X1. The first constraint
is a direct application of the Liouville equation. In this
constraint, we are considering any mode i whose state space
cell does not contain the origin, i.e., 1 6= i ∈ I. The
measure νi is the occupation measure describing the volume
occupied by system trajectories in Xi. The final measure∑
j:(i,j)∈S πi∗µij consists of the measures supported on the

one-step transition sets Yij for all j such that (i, j) ∈ S ,
meaning that if fi is applied again to those final states, the
system will leave Xi and enter other modes. The initial
measure µi0 +

∑
j:(j,i)∈S φj∗µji consists of two parts, µi0

describing the distribution of initial states originated from
Xi, and

∑
j:(j,i)∈S φj∗µji describing the distribution of

states coming from other modes. The second constraint
is the Liouville equation for mode 1. It differs from the
first constraint in the final measure, which is a measure µ
supported on the target set Z. This is crucial to our goal of
controlling the system to the target set, because adding the
term

∑
j:(i,j)∈S πi∗µij to the final measure in the second

constraint would cause chattering effects – for many initial
states, the system would bounce between two modes and
finally stop somewhere at the boundary of two modes. The
third constraint ensures that any initial measure originated
from mode i is dominated by the Lebesgue measure on Xi,
∀i. The objective is to maximize the sum of the mass of
initial measures originated from all modes. The combination
of the third constraint and the objective means maximizing
the volume of the set of initial states that can be controlled
to the target set. The whole optimization design is specific to
solving Problem 1. For other optimal control purposes, the
objective can be modified to be some other reward or cost
functions, and the constraints can be modified accordingly.

The dual LP on continuous functions is given by

inf
wi,vi,i∈I

∑
i∈I

∫
Xi

wi(x)dλXi
subject to: (3)

vi(x)− vi(φi(x, u)) ≥ 0,∀x ∈ Xi, i ∈ I,∀u ∈ U,
vi(x)− vj(φi(x, u)) ≥ 0,∀(x, u) ∈ Yij , i 6= 1, (i, j) ∈ S,

− vj(φi(x, u)) ≥ 0,∀(x, u) ∈ Yij , i = 1, (i, j) ∈ S,
wi(x)− vi(x)− 1 ≥ 0, wi(x) ≥ 0,∀x ∈ Xi, i ∈ I,
v1(x) ≥ 0,∀x ∈ Z, vi, wi ∈ C(Xi), i ∈ I.

IV. SEMIDEFINITE RELAXATIONS

Although we cannot directly solve the infinite-dimensional
LP’s, we can approximate them by finite-dimensional SDP’s
and extract the controller from the solution to the SDP’s.
Semidefinite approximation to the infinite-dimensional LP is
quite standard in the literature (see e.g. [39]). It is based
on the idea that a measure can be characterized by its
sequence of moments, just as a signal can be characterized
by its sequence of Fourier coefficients. In this section, we
first introduce some background knowledge about moments
of measures, which can also be found in [57]. Next we
formulate the relaxed SDP’s on moments of measures and
their duals on SOS polynomials. Finally, we briefly mention
how to extract controllers.

A. Preliminaries

Any polynomial p(x) ∈ R[x] can be expressed in the
monomial basis as p(x) =

∑
α pαx

α, where α ∈ Nn, and
p(x) can be identified with its vector of coefficients p :=
(pα) indexed by α. The (sequence of) moments y := (yα) for
a measure µ is defined to be yα :=

∫
xαdµ, α ∈ Nn. Given

a sequence of real numbers y = (yα), y is not necessarily a
sequence of moments for some measure µ. If it is, then µ is
called a representing measure for y. Given any y, we define
the linear functional `y : R[x] → R by `y(p(x)) := p>y =∑
α pαyα. Integration of a polynomial p against a measure µ

with the sequence of moments y can be expressed as a linear
functional `y:

∫
pdµ =

∫ ∑
α pαx

αdµ =
∑
α pα

∫
xαdµ =∑

α pαyα.
Given r ∈ N, define Nnr = {β ∈ Nn : |β| :=

∑
i βi ≤ r}.

Define the moment matrix Mr(y) of order r with entries
indexed by multi-indices α (rows) and β (columns) to be
[Mr(y)]α,β := `y(xαxβ) = yα+β ,∀α, β ∈ Nnr . The moment
matrix can be expressed as a bilinear form 〈·, ·〉y on R[x]r:
〈p, q〉y := `y(pq) = p>Mr(y)q,∀p, q ∈ R[x]r. If y has a
representing measure, then Mr(y) � 0, ∀r ∈ N. However,
the converse is generally not true.

Given a polynomial u(x) ∈ R[x] with coefficient vector
u = (uγ), define the localizing matrix w.r.t. y and u to be the
matrix indexed by multi-indices α (rows) and β (columns)
[Mr(uy)]α,β := `y(u(x)xαxβ) =

∑
γ uγyγ+α+β ,∀α, β ∈

Nnr . Similar to the moment matrix, we have 〈p,Mr(uy)q〉 =
`y(upq) = p>Mr(uy)q,∀p, q ∈ R[x]r. If y has a represent-
ing measure µ, then Mr(uy) � 0 whenever the support of
µ is contained in {x ∈ Rn : u(x) ≥ 0}. Conversely, if Ω
is a compact basic semi-algebraic set as defined in Section
II, if Putinar’s condition holds, and if Mr(h

Ω
j y) � 0, j =

0, . . . , nΩ,∀r, then y has a finite Borel representing measure
with support contained in Ω (Theorem 3.8(b) in [57]).

B. Primal-dual finite-dimensional SDP

For each r ≥ rmin := maxk1,k2,k3,k4{r
Xi

k1
(i ∈ I), rUk2

,

r
Yij

k3
((i, j) ∈ S), rZk4

}, let yi0 = (yi0,β), β ∈ Nn2r, be the finite
sequence of moments up to degree 2r of the measure µi0.
Similarly, y1, ŷ

i
0, y

Xi , zi, yij are finite sequences of moments
up to degree 2r associated with measures µ, µ̂i0, λXi

, νi,
and µij , respectively. Let di := degree φi. The infinite-
dimensional LP on measures (2) can be relaxed with the
following semidefinite program on moments of measures:

pr := sup
yi0,y1,ŷi0,zi,yij

∑
i∈I

yi0,0 subject to: (4)∑
j:(i,j)∈S

`yij (xβ) + `zi(x
β) = `zi(φi(x, u)β) + yi0,β

+
∑

j:(j,i)∈S

`yji(φj(x, u)β),∀β ∈ Nn2r, 1 6= i ∈ I,

y1,β + `zi(x
β) = `zi(φi(x, u)β) + yi0,β

+
∑

j:(j,i)∈S

`yji(φj(x, u)β),∀β ∈ Nn2r, i = 1,

yi0,β + ŷi0,β = yXi

β ,∀β ∈ Nn2r, i ∈ I,



M
r−rXi

k

(hXi

k yi0) � 0, k = 1, . . . , nXi
, i ∈ I,

M
r−rXi

k

(hXi

k ŷi0) � 0, k = 1, . . . , nXi
, i ∈ I,

M
rdi−r

Xi
k

(hXi

k zi) � 0, k = 1, . . . , nXi , i ∈ I,

Mrdi−rUk
(hUk zi) � 0, k = 1, . . . , nU , i ∈ I,

M
rdi−r

Yij
k

(h
Yij

k yij) � 0, k = 1, . . . , nYij
, (i, j) ∈ S,

Mr−rZk
(hZk y1) � 0, k = 1, . . . , nZ .

Proposition 1. Assume all assumptions in Section II are
satisfied. Assume the sets Xi for i ∈ I, Yij for (i, j) ∈ S,
and Z all satisfy Putinar’s condition. Suppose there exists
r0 ≥ rmin such that (i) for every r ≥ r0, r ∈ N, SDP (4)
is feasible and the optimal solution to SDP (4) exists, and
(ii) there exists a ball of constant radius (independent of r)
in the solution space such that it contains the feasible set of
the SDP (4) for all r ≥ r0, r ∈ N. Then limr→∞ pr = p.

The dual of (4) is the following SDP on polynomials of
degrees up to 2r:

inf
v,w

∑
i∈I

∑
β∈Nn

2r

(wi)βy
Xi

β subject to: (5)

vi − vi ◦ φi ∈ QXiU
rdi

, i ∈ I,

vi − vj ◦ φi ∈ Q
Yij

rdi
, i 6= 1, (i, j) ∈ S,

− vj ◦ φi ∈ Q
Yij

rdi
, i = 1, (i, j) ∈ S,

wi − vi − 1 ∈ QXi
r , wi ∈ QXi

r , i ∈ I,
v1 ∈ QZ

r , vi, wi ∈ R2r[x], i ∈ I.

The dual SDP (5) is a strengthening of the dual LP (3)
by requiring nonnegative polynomials in (3) to be SOS
polynomials up to certain degrees. In practice, we use off-
the-shelf numerical solvers to solve the dual SDP (5) and
simultaneously get information about the primal SDP (4).
Usually r has to be less than 10 due to limitations on current
SDP solvers, but such r already provides good controllers for
many practical problems. For fixed r or for r less than a fixed
constant, the computational complexity is polynomial in the
state and control input dimensions.

C. Controller extraction

We extract a polynomial controller for each mode. Com-
bining these controllers, we have a piecewise polynomial
controller on the entire state space. The procedure of ex-
tracting a controller for mode i from the moments of the
measure νi is the same as in Section IV.C. of [48].

However, the extracted controller may not always satisfy
the control input constraints. The easiest remedy is to limit
the control input to be the boundary values, ±1, if the
constraints are violated. For both examples in the next
section, we used this method, and we noticed that most of the
time, the control input constraints were not violated. Another
method is to solve an SOS optimization problem as in [42].

V. EXAMPLES

We illustrate our controller synthesis method on some
discrete-time hybrid polynomial systems. All computations

are done using MATLAB 2016b, the SDP solver MOSEK 8,
and the polynomial optimization toolbox Spotless [58].

A. Linear inverted pendulum with a wall

Consider the problem of balancing a linear inverted pen-
dulum to its upright position with the existence of a nearby
elastic wall, as depicted in Figure 1(A) (Example A in [22]).
The system can be modelled as a hybrid system with two
modes: pendulum not in contact with the wall (mode 1),
and pendulum in contact with the wall (mode 2). In this
example, we linearize the dynamics and work with the PWA
system as in [22]. (We could have approximated the system
with higher order polynomials, synthesized the controller,
and run on the real system as in Example E in [48], but we
are more interested in the comparison with the traditional
model predictive control (MPC) approach.)

Let m = 1, l = 1, d = 0.1, g = 10, and k = 1000. Let
the state be x = (θ, θ̇). Linearizing the dynamics around
the upright position θ = 0, and discretizing the model with
the explicit Euler scheme with the sampling time δt = 0.01,
the system becomes a piecewise-affine system x+ = Aix+
Biu + ai, x ∈ Xi, i ∈ I = {1, 2}, where the dynamics and
the state space are the same as given in Example A of [22].
The target set is Z = {x ∈ R2||x1| ≤ 0.03, |x2| ≤ 0.1},
which is inside the maximum LQR-control invariant set.

We search for a piecewise-affine controller, and the ex-
tracted controller is

u1(x) = 0.10336− 6.7202x1 − 1.6978x2, for x ∈ X1,

u2(x) = −0.62962 + 5.4774x1 − 0.60315x2, for x ∈ X2.

The first two plots in Figure 2 show trajectories of five
initial states (0.08, 0.2 + i0.1) for i = 0, 1, . . . , 4, under the
extracted controller and the uniformly sampled initial states
with controllable states in red and uncontrollable states in
blue. The mode switch sequences are not specified before-
hand, and it turns out that small differences in the initial
states can result in very different mode switch sequences as
shown in the trajectory plot.

We compare our method with the standard MPC approach.
With the MPC approach, we use a binary variable for
each time step to indicate whether the system mode at
that time step is mode 1 or mode 2. Therefore, the MPC
approach amounts to solving online a mixed integer quadratic
programming (MIQP) problem with the terminal set being
the maximum LQR-control invariant set and the terminal
function being the solution to the Riccati equation. Fixing
a mode sequence over the time horizon, the MIQP problem
becomes a QP problem, and the feasible set of the QP is a
polytope. The union of the feasible sets of the QP problems
over all possible mode sequences is the feasible set of the
MIPQ problem. In this case (with the terminal set and the
terminal cost as described above), the feasible set is the
same as the controllable set. The feasible set of the MIQP
problem with time horizon T = 10 is depicted in the right
plot (taken from Figure 5 of [22]) of Figure 2. We choose
the time horizon to be 10, because on an Intel i5, 2.3 GHz
machine using Gurobi 8.0.0, the worst computation time for
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Fig. 2. Linear inverted pendulum with a wall. Left: trajectories of five initial states under the occupation-measure-derived controller. Middle: controllable
states under the occupation-measure-derived controller plotted in red and uncontrollable states plotted in blue. Right: feasible sets of the MPC approach.

solving an MIQP with the time horizon of 10 already exceeds
the sampling time 0.01 s. Each polytope in the right plot
represents a feasible set of a QP problem with a certain
mode sequence. For example, the large blue region on the
left represents the feasible set of the QP problem with the
mode sequence being all 1’s for the 10 time steps.

Our approach has three advantages. First, we have a
simpler controller. Our controller is piecewise-affine with
only two pieces, while the MPC controller is much more
complicated. Second, we have a larger controllable set (notic-
ing our controllable set includes the white region pointed by
an arrow in the right plot of Figure 2). This is because the
MPC approach, restricted by the sampling time, has a limited
time horizon, while our approach computes solutions for all
finite time horizons. Third, the online computation time of
our approach is negligible, while the MPC approach needs
to solve an MIQP problem online, which is > 0.01s in the
worst case for a time horizon of 10. It is amazing that our
approach produces such a simple controller that controls such
a large region.

B. Variable height inverted pendulum (legged robot)

Consider balancing a legged robot modelled as a variable
height inverted pendulum [59], [60], as depicted in Figure
1(B). In this example, we assume there is one massless base
(foot), and the robot can place it on two fixed places. The
center of pressure b can range from anywhere in the base.
The center of mass (CoM) q is constrained in a box area,
independent of the distance to the center of base (CoB), the
middle point of base. The force exerted by the ground is F =
m(q−b)u, where u controls the magnitude of the force. The
dynamics of the system is given by mq̈ = −mg+m(q−b)u.
Both b and u are control inputs, and b is hybrid with two
possible steps to take on. The system is a hybrid polynomial
system with 2 modes, 4 states, and 2 control inputs. The
goal is to balance the CoM to the upright position, which
is 1 m above the CoB. Assume the length of the base is
0.2 m. We search for two 3rd order piecewise polynomial
controllers b and u. The computation time on an Intel i7 3.3
GHz, 32 GB RAM machine was about 10 minutes. Figure 3
shows the controllable points in the 2-dimensional qx − qy
plane sections of the 4-dimensional state space, where qx and
qy are the horizontal and vertical displacement of the CoM
from the desired position. Projections of three trajectories
onto the qx−qy plane are also plotted. In the first experiment
(left), the base can be placed on the intervals [−0.1, 0.1] and

-0.1 0 0.1 0.2
-0.1

-0.05

0

0.05

0.1

-0.1 0 0.1 0.2
-0.1

-0.05

0

0.05

0.1

Fig. 3. The qx − qy sections of the state space, where other states are 0.
Controllable points are plotted in green. The black box in each plot indicates
the target set Z. The vertical solid line is the boundary of two modes. The
vertical dashed line indicates a boundary of a base. qy is the deviation from
the desired height (1 m above the ground). Three curves in each plot are the
projections of the trajectories of three initial states x0 = [qx, qy , q̇x, q̇y ] =
[0.2, 0.08, 0, 0], [0.08, 0.05, 0, 0], and [0.04,−0.08, 0, 0] onto the plane.

[0.1, 0.3], i.e., for mode 1, b ∈ [−0.1, 0.1], and for mode
2, b ∈ [0.1, 0.3]. In the second experiment (right), the base
can be placed on the intervals [−0.1, 0.1] and [0.15, 0.35]. In
both experiments, qx = 0.1 is the boundary of two modes,
i.e., if qx < 0.1, then b ∈ [−0.1, 0.1], otherwise b is in the
other interval ([0.1, 0.3] or [0.15, 0.35]).

VI. CONCLUSION AND DISCUSSION

We have presented a controller synthesis method for
discrete-time hybrid polynomial systems via the notion of
occupation measures. We noticed that controllers of certain
degrees work better for certain systems. For example, for
PWA systems we found PWA controllers generally work
better than controllers of higher degrees, while for higher
degree systems, PWA controllers do not work well. There
are some limitations. First, the controller synthesis process
is heuristic, providing no stability guarantees for the closed-
loop system. Controllable regions have to be computed a
posteriori. Second, besides the degree of the controller,
there is not much more room for parameter tuning. One
possible way to tune parameters is to change the state
space constraints that are not hard imposed. For example,
increasing or decreasing the limit on the maximum velocity
of a rigid body would result in different controllers. Third,
if the truncated moments in the objective of the SDP (5) are
large, the SDP solver might run into numerical issues, due to
the immaturity of the current SDP solvers and the Spotless
software. A possible solution is to rescale the state space
constraints together with the system dynamics.
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