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Abstract— We present a new framework for motion planning
that wraps around existing kinodynamic planners and guaran-
tees recursive feasibility when operating in a priori unknown,
static environments. Our approach makes strong guarantees
about overall safety and collision avoidance by utilizing a robust
controller derived from reachability analysis. We ensure that
motion plans never exit the safe backward reachable set of the
initial state, while safely exploring the space. This preserves
the safety of the initial state, and guarantees that that we will
eventually find the goal if it is possible to do so while exploring
safely. We implement our framework in the Robot Operating
System (ROS) software environment and demonstrate it in a
real-time simulation.

I. INTRODUCTION

Motion planning is a foundational problem in mobile
robotics, and the community has devoted significant effort
to building theoretical and practical tools for a wide variety
of applications. Traditionally, the output of a motion planner
is a desired plan or trajectory for a dynamical system model.
This trajectory is then tracked by one or more layers of
low-level controllers. Since the real, physical vehicle may
follow higher-order, more complex dynamics than those
used during planning, the trajectory it actually follows will
not coincide with that which was planned. This presents
a problem for planners which aim to provide collision-
avoidance guarantees.

Recently, the FaSTrack framework [1] provides a mecha-
nism for quantifying the maximum tracking error between
a high-order dynamical model of the physical system and a
lower-order model used for planning. This analysis can be
done offline, using a reachability computation, and supplied
to a real-time motion planner for online collision-checking.
Other, similarly motivated work, e.g. [2], also seeks to
quantify this maximum tracking error.

Still, a key challenge remains: in a priori unknown envi-
ronments where obstacles are sensed online, it can be difficult
to guarantee recursive feasibility. Informally, a planning al-
gorithm is recursively feasible if it explores the environment
safely and without losing its ability to reach the goal. The
dangers of unsafe exploration are illustrated in Fig. 1 (left),
in which a non-recursively feasible planner enters a dead end
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Fig. 1: Depiction of our framework in operation, using a Dubins car
model with a fixed minimum turning radius and constant speed. Left:
Schematic diagram of an environment in which a non-recursively feasible
planning algorithm could enter a narrow dead end and fail to recover.
Right: Snapshots of our framework over time. We build a search graph
in known free space, identifying robustly viable trajectories that can safely
return to the initial state or directly reach the goal. The physical system
iteratively explores the environment along these recursively feasible plans
and is eventually guaranteed to identify a viable trajectory to the goal, if
one exists (bottom right).

which the system cannot exit. Most motion planners bypass
these issues, for example by assuming full prior knowledge
of the environment or by assuming that it is safe to stop and
possible to do so instantaneously. While such techniques are
effective in many scenarios, there are important applications
and systems for which safe exploration really does matter,
e.g. a fixed-wing aircraft operating with limited visibility.
More generally, it is important to consider recursive feasibil-
ity for systems such as unicycles, bicycles, and cars that have
inertia and function at relatively high speeds. These issues
are especially pronounced for non-holonomic systems.

We propose building a graph of forward-reachable states
(for a given dynamical system planning model) within known
free space, while simultaneously identifying those states
from which the initial state is reachable. This graph implicitly
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represents a discrete under-approximation of the backward-
reachable set of the initial state. We guarantee the safety of
the physical system, modeled with higher-order dynamics,
using a robust control scheme [1]. Our framework, illustrated
in Fig. 1, ensures:
• Safety: all trajectories initiated by the physical system

will be robustly collision-free.
• Liveness: if the goal is safely reachable from the initial

state, it will always be safely reachable.
• Safe Probabilistic Completeness: if a goal was orig-

inally reachable by a plan that preserves the ability
to return home, our framework guarantees that it will
eventually be found with probability 1.

II. RELATED WORK

Though we defer a formal definition until Section III-B,
ultimately, a motion planner is recursively feasible if it can
explore unknown space while always remaining safe. There
is an extensive body of literature in motion planning and safe
exploration, which we cannot hope to fully summarize here.
Rather, we identify two main categories of related work and
discuss several of the most closely related approaches.

A. Safe motion planning

Recent methods such as [1–4] provide a variety of mech-
anisms for robust motion planning. Here, robustness is char-
acterized in terms of an envelope around planned trajectories
which the physical system is guaranteed to remain within.
Our work relies upon this idea, building upon [1].

However, robust planning does not automatically guaran-
tee recursive feasibility. Richards and How [5] and Rosolia
and Borrelli [6] directly address this problem within a model
predictive control framework. The major differences between
these works and our own are that [5] assumes linear time-
invariant system dynamics, while [6] addresses an iterative
task. Moreover, both assume a priori knowledge of all obsta-
cles. Schouwenaars et. al. [7] also plan in a receding horizon,
but as in our work, recursive safety (though not liveness) is
guaranteed by ensuring that all planned trajectories terminate
in a safe loiter pattern.

Our work may also be viewed as an extension of
graph-based kinodynamic planners, e.g. the probabilistic
roadmap [8], by enforcing that all edges in the graph are part
of safely executable trajectories. Importantly, our framework
guarantees recursive feasibility in an a priori unknown
environment, with potentially high-order system dynamics,
and in the presence of environmental disturbances.

B. Safe exploration

There is a rich body of work in robotic exploration meth-
ods, which tackle the problem of finding viable trajectories
to a specified goal in an initially unknown environment. The
majority of proposed methods, such as frontier-exploration
[9–11] and D* [12, 13], have traditionally operated in con-
figuration space, assuming a kinematic model of the robot’s
motion. Our method, in contrast, focuses on robotic systems
for which a dynamic model is necessary, such as autonomous

cars and aircraft. Bekris and Kavraki [14] present a sampling-
based strategy which reasons about inevitable collision sets
[15], but is restricted to work with drift-less dynamics. More
recent work by Janson et. al. [16] also addresses the dynamic
exploration problem, but assumes that the vehicle is able to
come to a stop in finite time.

Exploration has also been studied within the context
of Markov Decision Processes (MDPs) and Reinforcement
Learning (RL). Moldovan and Abbeel [17] propose an ap-
proach for generating a sequence of actions which preserve
ergodicity with high probability. Other similar approaches,
e.g. [18], also design risk-aware control policies that satisfy
approximate constraints. Berkenkamp et. al. [19] and Chow
et. al. [20] define safety in terms of Lyapunov stability.
Though generally desirable, stability is insufficient to guar-
antee collision avoidance; in this work, we use a stronger
set-based definition of safety. Our formulation of safe ex-
ploration is closely related with that of [15, 21, 22], which
characterize safety with reachable sets.

III. PROBLEM FORMULATION

A. Preliminaries

We consider an autonomous navigation task in a bounded
a priori unknown static environment X ⊂ Rnx . The au-
tonomous system has dynamic state s ∈ S ⊂ Rns , which
includes, but is in general not limited to its location x
in the environment X . We presume that for each point
x ∈ X , the environment representation can assign a label
{OCCUPIED,FREE,UNKNOWN}. The system’s knowl-
edge of the environment will be updated online according to
measurements from a well-characterized sensor, with field of
view F : S → 2X . In this work, we will restrict our attention
to deterministic sensing models, i.e. if x ∈ X is within the
sensor’s field of view F(s), it will be correctly identified
as either {OCCUPIED,FREE}. Probabilistic extensions are
possible, though beyond the scope of this paper.

We assume known system dynamics, of the form:

ṡ = f(s, u, d) ,

where u ∈ U ⊂ Rnu is the system’s control input and d ∈
D ⊂ Rnd is a bounded disturbance.

In general, the dynamical model f of the physical system
will be nonlinear and high-order, making it challenging to
compute trajectories in real time. Instead, we can use an
approximate, lower-order dynamical model for real-time tra-
jectory computation, along with a framework which produces
a known tracking controller for the full-order model allowing
it to follow the trajectories of the low-order model with a
guarantee on accuracy. Let the simplified state of the system
for planning purposes be p ∈ P ⊂ Rnp , governed by
approximate planning dynamics:

ṗ = g(p, c) ,

with c ∈ C ⊂ Rnc the control input of the simplified system,
which we will refer to as the planning system.

We use the FaSTrack framework [1] to provide a robust
controlled invariant set in the relative state space R ⊂ Rnr



between the planning reference and the full system. This
relative state depends on the dynamical models used. A
concrete example will be presented in Section V, and we
direct the reader to [1, 4] for further discussion. The output
of this robust analysis is two-fold: the autonomous system is
given an optimal tracking control law k∗ : R → U that
will keep the relative state inside of this invariant set at
runtime regardless of the low-order trajectory proposed by
the planning algorithm. In turn, the planning algorithm can
use the projection of the invariant set onto the planning state
space P as a guaranteed tracking error bound E ⊂ P for the
purposes of collision-checking at planning time. A feature
of the FaSTrack framework is that the robust safety analysis
depends only upon the relative dynamics, and not on the
particular algorithm used for planning low-order trajecto-
ries. We inherit this modularity in our recursively feasible
planning framework, which can be used with an arbitrary
low-level motion planner. In Section V, we demonstrate our
framework with a standard third-party algorithm from the
Open Motion Planning Library (OMPL) [23].

B. Recursive Feasibility: Safety and Liveness

We now define several important concepts more formally,
as they pertain directly to the theoretical safety guarantees of
our proposed framework. Let ξ

(
·; t0, p, c(·)

)
: R→ P denote

the trajectory followed by the planning system starting at
state p at time t0 under some control signal c(·) over time.

Given a planned state p, we refer to its footprint φ(p) as
the set of points x ∈ X that are occupied by the system in
this state. We additionally define the robust footprint φE(p)
as the set of points x ∈ X that are occupied by some p′ ∈
{p + E} (with + here denoting Minkowski addition). This
represents the set of locations that may be occupied by the
physical system while attempting to track the planned state p.
We will require that the system is at all times guaranteed to
only occupy locations known to be FREE. For convenience,
we will denote by XFREE(t) the set of points x ∈ X that are
labelled as FREE at time t.

We then have the following definitions.
Definition 1: (Safety) A planned trajectory ξ

(
·; t0, p, c(·)

)
is known at time t0 to be safe, i.e. collision-free, if it satisfies
the following criterion:

∀t ≥ t0, φE
(
ξ
(
t; t0, p, c(·)

))
⊆ XFREE(t0) .

Observe that Definition 1 is not a statement about stability,
as in e.g. [19]. Dynamic stability is in fact neither a necessary
nor a sufficient condition for safety understood as guaranteed
collision (and failure) avoidance.

Definition 2: (Safe Reachable Set) The safe forward
reachable set ΩF of a set of states L ⊆ P at time t0 is
the set of states p′ ∈ P that are known at t0 to be safely
reachable from L under some control signal c(·).

ΩF (L; t0) :=
{
p′ | ∃p ∈ L,∃t ≥ t0,∃c(·),∀τ ∈ [t0, t] :

φE

(
ξ
(
τ ; t0, p, c(·)

))
⊆ XFREE(t0), p′ = ξ

(
t; t0, p, c(·)

)}
.

Analogously, the safe backward reachable set ΩB of L at t0
is the set of states p′ ∈ P from which L is known at time
t0 to be safely reachable under some control signal (this can
also be thought of as the set of states p′ ∈ P that can be
safely reached from L in backward time, hence the name
backward reachable set):

ΩB(L; t0) :=
{
p′ | ∃p ∈ L,∃t ≥ t0,∃c(·),∀τ ∈ [t0, t] :

φE

(
ξ
(
τ ; t0, p

′, c(·)
))
⊆ XFREE(t0), p = ξ

(
t; t0, p

′, c(·)
)}
.

We will often consider reachable sets of individual states; for
conciseness, we will write ΩB(p; t0) rather than ΩB({p}, t0).

We now proceed to define viability in terms of these sets.
Definition 3: (Viability) A state p is viable at time t0 with

respect to a goal state pgoal and a home state phome if at
t0 it is known to be possible to reach either pgoal or phome
from p while remaining safe, i.e. p ∈ ΩB

(
{pgoal, phome}; t0

)
.

A trajectory ξ is viable at t0 if all states along ξ are viable at
t0. Note that a trajectory can be safe (Def. 1) but not viable.

Definition 4: (Safely Explorable Set) The safely ex-
plorable set PSE(p) ⊂ P of a state p is the collection of
states that can eventually be visited by the system through a
trajectory starting at state p with no prior knowledge of X
whose states are, at each time t ≥ 0, viable according to the
known free space XFREE(t).

Based on the idea of the safely explorable set we can now
introduce the important notion of liveness for the purposes
of our work.

Definition 5: (Liveness) A state p is live with respect to
a goal state pgoal if it is possible to reach pgoal from p while
remaining in the safely explorable set for all time, i.e if
pgoal ∈ PSE(p). A trajectory ξ is live if all states in ξ are
live.

Finally, we will refer to a planning algorithm as recursively
feasible if, given that the initial state p0 is live, all future
states p are both live and viable. We will show that our
proposed framework is recursively feasible. Moreover, we
will also show that it is safely probabilistically complete,
in the sense that, if p0 is live with respect to pgoal, then we
will eventually reach pgoal through continued guaranteed safe
exploration, with probability 1.

IV. GENERAL FRAMEWORK

A. Overview

Our framework is comprised of two concurrent, asyn-
chronous operations: building a graph of states which dis-
cretely under-approximate the forward and backward reach-
able sets of the initial “home” state, and traversing this graph
to find recursively feasible trajectories. Namely, we define
the graph GF := {V,E} of vertices V and edges E. Vertices
are individual states in P , and directed edges are trajectories
ξ between pairs of vertices. GF will be a discrete under-
approximation of the current safe forward reachable set of
the initial state phome. We also define the graph GB ⊆ GF to
contain only those vertices which are in the safe backward
reachable set of phome and pgoal, and the corresponding edges.



(a) Outbound expansion. (b) Inbound consolidation.

Fig. 2: In outbound expansion (a), a new state is sampled from P and added
to GF if safely reachable from GF . In inbound consolidation (b) a state in
GF is added to GB if it can safely reach a (viable) state in GB .

We use the notation p ∈ GF to mean that state p is a vertex
in GF , and likewise for GB .

We use following two facts extensively. They follow
directly from the definitions above and our assumptions on
deterministic sensing and a static environment.

Remark 1: (Permanence of Safety) A trajectory ξ that is
safe at time t0 will continue to be safe for all t ≥ t0.

Remark 2: (Permanence of Reachability) A state p that is
in the safe forward or backward reachable set of another state
p0 at time t0 will continue to belong to this set for all t ≥ t0,
i.e. ΩF (p0; t0) ⊆ ΩF (p0; t) and ΩB(p0; t0) ⊆ ΩB(p0; t).

B. Building the graph

We incrementally build the graph by alternating between
outbound expansion and inbound consolidation steps. In the
outbound expansion step, new candidate states are sampled,
and if possible, connected to GF . This marks them as
part of the forward reachable set of phome. In the inbound
consolidation step, we attempt to find a safe trajectory from
forward-reachable states in GF back to a state in GB , which is
known to be viable. Successful inbound consolidation marks
a state as either able to reach pgoal or safely return to phome.

1) Outbound expansion: This process incrementally ex-
pands a discrete under-approximation GF of the forward
reachable set of the home state, ΩF (phome; t). Note that, by
Remark 2, ΩF (phome; t) can only grow as the environment
X is gradually explored over time and therefore any state
p added to GF at a given time t is guaranteed to belong to
ΩF (phome; t

′) for all t′ ≥ t.
We add states to GF via a Monte Carlo sampling strategy

inspired by existing graph-based kinodynamic planners [24],
illustrated in Fig. 2a. We present a relatively simple strategy
here, although more sophisticated options for sampling new
states are possible, e.g. [25, 26].

Let pnew be sampled uniformly at random from P at time t
such that φE(pnew) ⊆ XFREE(t). We wish to establish whether
or not pnew is in the safe forward reachable set of home at t,
i.e. pnew ∈ ΩF (phome; t). This is accomplished by invoking a
third-party motion planner, which will attempt to find a safe
trajectory to pnew from any of the points already known to be
in ΩF (phome; t). In Section V, we use a standard kinodynamic
planner from the OMPL [23] for this purpose.

We observe that repeatedly executing this procedure will,
in the limit, result in a dense discrete under-approximation of
ΩF (phome; t). Formally, assuming that the low-level planner
will find a valid trajectory to a sampled state p if one exists,
then for any ε > 0, we have that the probability that a new

sampled state p′ ∈ ΩF (phome, t) will lie within a distance of
ε from the nearest state p ∈ GF goes to 1 in the limit of
infinite samples. We formalize this observation below:

Lemma 1: (Dense Sampling) For all ε > 0, assuming we
sample candidate states p uniformly and independently from
P and P is compact, then letting pk be the k-th sampled
state from P we have that ∀t:

lim
k→∞

P
(

min
p∈GF

‖pk − p‖ < ε | pk ∈ ΩF (phome; t)
)

= 1 .

Proof: This follows directly from the properties of
uniform sampling from compact sets.
This will be useful in proving the safe probabilistic com-
pleteness of our framework.

2) Inbound consolidation: This process incrementally
adds states in GF to a discrete approximation GB of the safe
backward reachable set of {phome, pgoal}. By Definition 3,
any state added to this set is viable, which means that a
trajectory will always exist from it to either pgoal or phome.
This is a crucial element of our overall guarantee of recursive
feasibility. We recall that GB ⊆ GF .

Suppose that p ∈ GF \ GB . We will attempt to add p to
GB by finding a safe trajectory from p to any of the states
currently in GB by invoking the low-level motion planner. If
we succeed in finding such a trajectory, then by construction
there exists a trajectory all the way to phome, so we add p
to GB . If p is added to GB , we also add all of its ancestors
in GF to GB , since there now exists a trajectory from each
ancestor through p to either phome or pgoal. This procedure is
illustrated in Fig. 2b.

C. Exploring the graph

When requested, we must be able to supply a safe tra-
jectory beginning at the current state reference p(t) tracked
by the system. Recall from Section III-A that under the
robust tracking framework [1], the physical system’s state
s(t) is guaranteed to remain within an error bound E of p(t)
measured on the planning state space P . This property allows
us to make guarantees in terms of planning model states p
rather than full physical system states s.

Trajectories ξ output by our framework must guarantee
future safety for all time; that is, as the system follows ξ we
must always be able to find a safe trajectory starting from any
future state. In addition, we require that phome remains safely
reachable throughout the trajectory; this ensures that liveness
is preserved (if it was possible from phome to safely explore
X and reach pgoal then this possibility will not be lost by
embarking on ξ). Note that liveness is an important property
separate from safety: a merely safe planner may eventually
trap the system in a periodic safe orbit that it cannot safely
exit.

By construction, any cycle in GB is safe for all future
times (Remark 1). Readily, this suggests that we could
guarantee perpetual recursive feasibility by always returning
the same cycle. However, this naive strategy would never
reach the goal. Moreover, it would not incrementally explore
the environment. In order to force the system to explore
unknown regions of X , we modify this naive strategy by



routing the system through a randomly selected unvisited
state pnew ∈ GB , and then back to phome. The trajectory
always ends in a periodic safe orbit between pnew and phome.
Note that this random selection does not need to be done
naively (e.g. by uniform sampling of unvisited states in GB),
and efficient exploration strategies are certainly possible. In
our examples we will use an ε-greedy sampling heuristic
by which, with probability 1 − ε, we select the unvisited
p ∈ GB closest to pgoal, and otherwise, with probability ε,
we uniformly sample an unvisited state in GB .

Of course, if pgoal is ever added to GB , we may simply
return a trajectory from the current state p(t) to pgoal. This
will always be possible because, by construction, every state
in GB is safely reachable from every other state in GB (if
necessary, looping through phome).

D. Algorithm summary

To summarize, our framework maintains graph repre-
sentations of the forward reachable set of phome and the
backward reachable set of {phome, pgoal}. Over time, these
graphs become increasingly dense (Lemma 1). Additionally,
all output trajectories terminate at pgoal or in a cycle that
includes phome. This implies our main theoretical result:

Theorem 1: (Recursive Feasibility) Assuming that we are
able to generate an initial viable trajectory (e.g. a loop
through phome), all subsequently generated trajectories will
be viable and preserve the liveness of phome. Thus, our
framework guarantees recursive feasibility.
Proof: By assumption, the initial trajectory ξ0 output at
t0 is safe (Definition 1). We now proceed by induction:
assume that the i-th reference trajectory ξi is viable for
the knowledge of free space at the time ti at which it
was generated, i.e. ∀t ≥ ti, ξi(t) ∈ ΩB({phome, pgoal}; ti).
Assuming pgoal has not been reached yet at the time of
the next planning request, ti+1, a new trajectory will be
generated from initial state ξi(ti+1). The new trajectory ξi+1

will be created by concatenating safe trajectories between
states in GB ⊆ ΩB({phome, pgoal}; ti) and therefore will be
a viable trajectory. Such a trajectory can always be found,
because it is always possible to choose ξi+1 ≡ ξi, which, by
the inductive hypothesis was a viable trajectory at time ti
and, by Remark 2, continues to be viable at ti+1. Therefore
all planned trajectories ξi will retain the ability to either
safely reach pgoal or safely return to phome. In the former
case, ξi is immediately live (and since ∀t ≥ 0, ξi(t) ∈
ΩF (phome; ti), phome must have been live too); in the latter,
ξi will inherit the liveness of phome, by observing that ∀t ≥
0, ξi(t) ∈ ΩB(phome; ti).

Corollary 1: (Dynamical System Exploration) Given that
the safety of trajectories is evaluated using the robust foot-
print φE(·), and the relative state between the dynamical
system and the planning reference is guaranteed to be
contained in E , Theorem 1 implies that the dynamical system
can continually execute safe trajectories in the environment.

Moreover, we ensure that each output trajectory visits an
unexplored state in GB , which implies that GB approaches
the safely explorable set PSE(phome) from Definition 4.

Together with Theorem 1, this implies the following com-
pleteness result:

Theorem 2: (Safe Probabilistic Completeness) In the limit
of infinite runtime, our framework eventually finds the goal
with probability 1 if it is within the safely explorable set.
Proof: By Theorem 1, all trajectories output will be viable;
hence, the autonomous system will remain safe for all time
(Corollary 1). Further, since each generated trajectory visits
a previously unvisited state in GB with nonzero probability,
by Lemma 1 it will eventually observe new regions in the
safely explorable set PSE(phome) if any exist. Moreover, those
regions will eventually be sampled, added to GB , and visited
by subsequent trajectories. Because we have assumed all sets
of interest to be bounded, this implies that we will eventually
add pgoal to GB as long as pgoal ∈ PSE(phome).

E. Remarks

We conclude this section with several brief remarks re-
garding implementation.

In Sec. IV-B, we specify that states should be connected
to existing states in GF and GB . In practice, we find that
connecting to one of the k-nearest neighbors (measured in
the Euclidean norm over P) in the appropriate graph suffices.

In Sec. IV-C, we describe traversing GB to find safe
trajectories between vertices. For efficiency, we recommend
maintaining the following at each vertex: cost-from-home,
cost-to-home, and cost-to-goal, where cost may be any
consistent metric on trajectories (e.g. duration). If these
quantities are maintained, then care must be taken to update
them appropriately for descendants and ancestors of states
that are added to GF and GB in Sec. IV-B.

Finally, we observe that outbound expansion, inbound
consolidation, and graph exploration may all be performed
in parallel and asynchronously.

V. EXAMPLE

We demonstrate our framework in a real-time simulation,
implemented within the Robot Operating System (ROS)
software environment [27].

A. Setup

Let the high-order system dynamics be given by the
following 6D model:

ṡ =


ẋ
v̇x
ẏ
v̇y
ż
v̇z

 =


vx

g cosu1
vy

−g sinu2
vz

u3 − g

 (1)

where g is acceleration due to gravity, the states are po-
sition and velocity in (x, y, z), and the controls are u1 =
pitch, u2 = roll, and u3 = thrust acceleration. These
dynamics are a reasonably accurate model for a lightweight
quadrotor operating near a hover and at zero yaw.



(a) Relative states. (b) Computed value function.

Fig. 3: (a) Relative states for 6D near-hover quadrotor tracking 3D Dubins
car. (b) Minimum value over vT and vN , for each relative (x, y) position
in the planner’s Frenet frame. Any non-empty sublevel set can be used as
a tracking error bound E .

We consider the following lower-order 3D dynamical
model for planning:

ṗ =

ẋẏ
θ̇

 =

v cos θ
v sin θ
c

 (2)

where v is a constant tangential speed in the Frenet frame,
states are absolute heading θ, and (x, y) position in fixed
frame, and control c is the turning rate. We interpret these
dynamics as a Dubins car operating at a fixed z height zp.

We take controls to be bounded in all dimensions indepen-
dently by known constants: u ∈ [u1, u1]× [u2, u2]× [u3, u3]
and c ∈ [c, c]. In order to compute the FaSTrack tracking
error bound E , we must solve a Hamilton Jacobi (HJ)
reachability problem for the relative dynamics defined by
(1) and (2). In this case, the relative dynamics are given by:

ṙ =


ḋ

ψ̇
v̇T
v̇N

 =


vT cosψ + vN sinψ

−c− vT sinψ + vN cosψ
u1 cos θ − u2 sin θ + cvT
−u1 sin θ − u2 cos θ − cvT

 (3)

with the relative states d (distance), ψ (bearing), vT (tangen-
tial velocity), and vN (normal velocity) illustrated in Fig. 3a.

Fig. 3b is a 3D rendering of the FaSTrack value func-
tion [1] computed using level set methods [28]. The value
function records the maximum relative distance between the
high- and low-order dynamical models (i.e. d). In order to
guarantee that, at run-time, the distance between the two
systems does not exceed this value, the value function is
computed by solving a differential game in which c(·) seeks
to maximize the relative distance and u(·) seeks to minimize
it. Observe in Fig. 3b that level sets of the value function
with sufficiently high value are well-approximated by discs
centered on the origin in (x, y). Thus, we approximate the
TEB E by such a disc for rapid collision-checking during
each call to the low-level motion planner. Since the high-
order dynamics (1) do allow for variation in z, we also
incorporate a z extent for E which may be obtained by
solving a similar differential game in the (z, vz) subsystem
of (1), as in [4].

We use the KPIECE1 kinodynamic planner [29] within
the Open Motion Planning Library (OMPL) [23] to plan all
trajectories for the low-level dynamics while building the
graphs GF and GB . For simplicity, we model static obstacles
as spheres in R3 and use an omnidirectional sensing model
in which all obstacles within a fixed range of the vehicle are
sensed exactly. We emphasize that these choices of environ-
ment and sensing models are deliberately simplified in order
to more clearly showcase our framework. The framework
itself is fully compatible with arbitrary representations of
static obstacles and deterministic sensing models. Extensions
to dynamic obstacles and probabilistic sensing are promising
directions for future research.

B. Simulation Results

We demonstrate our framework in a simple simulated
environment, shown in Fig. 1, designed to illustrate the im-
portance of maintaining recursive feasibility. This simulation
is intended as a proof of concept; our central contribution is
theoretical and applies to a range of planning problems.1

Observe in Fig. 1 that our method avoids collision where
a non-recursively-feasible approach would likely fail. Here,
the goal is directly in front of the home position and the way
there appears to be in XFREE(t). However, just beyond our
sensor’s field of view F , there is a narrow dead end. Many
standard planning techniques would either optimistically
assume the unknown regions of the environment are free
space, or plan in a receding horizon within known free space
XFREE(t). In both cases, the planner would tend to guide the
system into the narrow dead end, leading to a crash (recall
that the planner’s speed v is fixed).

By contrast, our approach eventually takes a more
circuitous—but recursively feasible—route to the goal. The
evolution of planned viable trajectories is shown on the right
in Fig. 1. Initially, we plan tight loops near phome, but over
time we visit more of the safely explorable space PSE(phome),
and eventually we find pgoal.

VI. DISCUSSION & CONCLUSION

In this paper, we have introduced a novel framework for
recursively feasible motion planning for dynamical systems.
Our approach is based on the ideas of forward and backward
reachability, and uses FaSTrack [1] to make a strong guar-
antee of safety over all time. Moreover, we also guarantee
that if the initial “home” state is live, i.e. the goal is safely
explorable from the home state, then each state along all
motion plans will also be live, and eventually we will find a
trajectory to the goal.

To our knowledge, this is the first motion planning algo-
rithm to make this guarantee of recursive feasibility. As such,
we have presented it as generally as possible and without
optimization. While we make no claims of optimality, we
do believe that many of the advances in optimal sample-
based planning could be readily applied to our work. We are
also sanguine about implementing our work in hardware for
different, more complicated dynamical systems.

1Video summary available at: https://youtu.be/GKQwFxdJWSA

https://youtu.be/GKQwFxdJWSA
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