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Keyframe-based Direct Thermal-Inertial Odometry

Shehryar Khattak, Christos Papachristos, and Kostas Alexis

Abstract— This paper proposes an approach for fusing direct
radiometric data from a thermal camera with inertial mea-
surements to extend the robotic capabilities of aerial robots for
navigation in GPS–denied and visually degraded environments
in the conditions of darkness and in the presence of airborne
obscurants such as dust, fog and smoke. An optimization based
approach is developed that jointly minimizes the re–projection
error of 3D landmarks and inertial measurement errors. The
developed solution is extensively verified against both ground–
truth in an indoor laboratory setting, as well as inside an
underground mine under severely visually degraded conditions.

I. INTRODUCTION

Aerial robots have recently seen an increased utilization

in a wide variety of tasks typically reserved for humans

as their flexibility makes them suitable for a diverse set of

applications, while also mitigating risk to human life and

lowering costs [1–10]. An important aspect of their appli-

cation is towards performing critical tasks in GPS–denied,

poorly–illuminated and sensor–degraded environments, such

as underground mines and tunnels. To navigate GPS–denied

environments aerial robots rely on their on–board sensing to

estimate their pose. Traditionally RGB cameras have been

the sensor of choice due to their low weight, cost and power

requirements. However, in poorly–illuminated conditions and

in the presence of airborne obscurants, such as dust, fog

and smoke, the image quality of RGB cameras degrades

significantly making them unreliable for pose estimation. In

contrast thermal cameras, e.g. Long Wave Infrared (LWIR)

sensors, are not affected by scene illumination changes or

by the presence of certain obscurants [11], making them a

viable sensing alternative.

However, previous approaches that utilized thermal cam-

eras for robot pose estimation present a set of limitations.

First, most previously proposed solutions have operated on

re–scaled thermal images rather than utilizing full radio-

metric information provided by thermal cameras [12–16].

The motivation behind this choice relates to the fact that

thermal cameras typically capture LWIR data in more than

8–bit resolution (e.g., 14–bit) but feature matching methods

for visual images require the data to be re–scaled to 8–

bit resolution. However, re–scaling of LWIR data results in
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Fig. 1. An instance of the underground mine experiment. [a] shows the
thermal camera equipped aerial robot navigating through the mine shaft. [b]
shows an image from a visible light camera on–board the aerial robot with
shutter–synced LED illumination. Not only the visible light camera cannot
observe the environment at a distance but it is also obstructed by the airborne
dust. [c] shows the thermal image of the same scene providing visibility at
a longer range while not being affected by presence of obscurants.

loss of information observed in the form of lower contrast,

resulting in poor feature matching performance, as shown

in [17]. As a workaround, these approaches use histogram

equalization techniques, usually implemented as Automatic

Gain Control (AGC), to improve contrast of LWIR images

and by extension improving feature matching performance.

However, as AGC adapts the image according to the range

of LWIR spectrum currently present in the scene, the image

contrast can change significantly if hot or cold objects enter

the Field–of–View (FoV) of the thermal camera. This is

especially problematic for a moving camera, such as one

on–board an aerial robot, as the observed view of the

environment is dynamic. Another approach is to disable

AGC completely and set an acceptable range of thermal

information to be re–scaled into 8-bit resolution [18]. How-

ever, this requires manually setting a range for operation in

a particular environment under certain thermal conditions

and is also not suitable for long term navigation, because

as thermal cameras operate, they accumulate sensor noise.

Hence, if only a small range of thermal information is

scaled to 8–bit information then the effect of noise can also

be amplified, resulting in image artifacts. Thermal cameras

reduce this noise accumulation by performing a periodic

Flat Field Correction (FFC), during which camera operation

is suspended for up to 500 milliseconds and a uniform

temperature (flat field) is presented to the camera sensor for

the estimation of noise correction parameters. Application

of FFC operation in itself presents two challenges. First, if
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only a small range of thermal information is re–scaled, the

difference in image intensity values will be very different

after a correction is applied. Such a large change in intensity

is problematic for both direct and feature–based methods to

establish robust correspondences between images. Secondly,

the interruption of image data can make odometry estimates

prone to drift, especially in filter–based solutions such as [19]

where state estimates are progressively propagated. However,

this is less of a problem for optimization–based odometry

approaches that operate over a temporal window and state

estimate is only propagated when new data is available and

optimized against a temporal history.

Motivated by the discussion above, in this work we

present a key–frame based odometry estimation approach

that uses direct 14–bit radiometric data from a monocular

LWIR thermal camera to establish correspondences between

successive images. Working directly on 14–bit radiometric

data allows our approach to overcome many of the problems

associated with image re–scaling, to operate without relying

on feature detection and description methods designed for

visual systems, and to remain generalizable to a variety

of environments under different thermal conditions. Simi-

larly, our approach is able to remain robust against data

interruption due to its optimization based estimation nature.

Furthermore, we integrate measurements from an Inertial

Measurement Unit (IMU) to formulate a joint cost function

for our thermal–inertial odometry estimation approach. The

motivation behind integrating inertial measurements is three-

fold. First, IMU measurements provide a transformation prior

for the image alignment process. Second, they provide direct

observation of two rotation states reducing the number of

unobserved pose degrees of freedom from 6 to 4. Third, they

provide a better estimation of scale in the case of monocular

vision. To verify our proposed solution, a set of experi-

ments are conducted including, a) comparison of odometry

estimation of an aerial robot, in complete darkness, against

ground truth provided by a VICON system, as well as, b)

odometry estimation of an aerial robot traversing through

an underground mine in dark and dust-filled conditions. An

instance of this experiment is shown in Figure 1, and a video

of the conducted experiments and the derived results can be

found at https://youtu.be/-hnL5kLqT4Q.

The remainder of the paper is structured as follows:

Section: II details the proposed approach, followed by the

experimental evaluation results presented in Section: III.

Finally, conclusions are drawn in Section: IV.

II. PROPOSED APPROACH

Our proposed approach of fusing direct 14–bit radiometric

data with inertial measurements for odometry estimation

can be divided into a front–end component and a back–end

component. This bifurcation allows us to run our odometry

estimation framework in a multi–threaded manner on a mod-

ern CPU. The key responsibility of the front–end component

is to perform an alignment between an incoming image to

previous images in the camera coordinate frame (C) based

on the minimization of radiometric error and to initialize

3D landmarks in the world coordinate frame (W). Given a

set of 3D landmarks, the key responsibility of the back–end

component is to estimate odometry by jointly minimizing

the re–projection errors in landmark positions and the intra–

frame inertial measurement errors over a sliding window.

An overview of the approach is shown in Figure 2. Each

component is detailed below:

A. Front–End Design

In our framework, the front–end component replaces all

of the tasks usually associated with feature detection, match-

ing and pruning in feature–based approaches. Our front–

end component can be divided into four sub–components,

namely: i) Image Alignment, ii) Point Initialization, iii) Point

Refinement, and iv) Landmark Initialization and Pruning.

Each of these sub–components are discussed below.

1) Image Alignment: To align and establish correspon-

dences between two images we minimize the radiometric

error between them, making our approach belong to the

category of direct approaches. Historically, direct visual

odometry methods based on the minimization of photometric

error such as [20–22], require optimization to be performed

on a large number of points and thus becoming computation-

ally expensive. Inspired by [23], we instead track a sparse

set of points for performing image alignment. Given a set

of points in a reference image, we project them into the

incoming image as:

p
′ = K

(

RK
−1

(

p, d
−1

)

+ t
)

(1)

where p and p′ are the original and new projected point

locations in pixels respectively, K is the intrinsic camera

matrix, R and t are the rotation matrix and translation vector

between frames respectively and d is the estimated depth

of the point. As R and t are unknown, we estimate them

by minimizing the radiometric error between points. If the

depth of a point is known from its previous association to a

3D landmark, it is used, otherwise t is estimated only up to

scale. In order to make our radiometric error minimization

process more robust, we calculate the error over a small

neighborhood around each point:

eradio =
∑

iǫP

∑

pǫNi

‖T
(

p
′
)

− T (p) ‖2 (2)

where eradio is the squared sum of radiometric errors for a

set of tracked points (P ) calculated over the neighborhood

(Ni) of each point with T representing the thermal value of

each point in 14–bit resolution. A weighted Gauss–Newton

optimization is then performed to estimate the transformation

parameters between the two images. However, performing

an optimization for a large number of points can be com-

putationally expensive. Instead we perform our alignment

operation over the levels of an image scale–space pyramid

in a top–down manner, where the coarsest levels of the two

images are aligned first and their transformation estimate

becomes an alignment prior for the next levels. This allows

the solution to converge at the lowest level of the image

pyramid in very few iterations. Furthermore, we start the
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Fig. 2. An overview of the proposed approach. The front–end component is responsible for aligning the incoming image to the last two received images
and to the last two key–frames. If alignment of the current image with a past images or key–frames is successful, location of points in the current image are
refined to determine their localization quality. Points with good localization quality are then triangulated to either add observations to previously observed
landmarks or initialize new landmarks. Using the initialized landmarks the back–end is responsible for jointly optimizing the landmark re–projection and
intra–frame inertial measurement errors in a sliding window approach to estimate the robot pose.

alignment process at the coarsest level with a transformation

prior provided by the IMU, as shown in Figure 3. Once the

transformation parameters between the frames are estimated,

points in the reference image are projected into the new

image and are considered matched points. These matched

points are then used for image alignment for the next image.

During the alignment process we align the incoming image to

the last two incoming images and the latest two key–frames.

The last two incoming images form a small sliding temporal

window whereas the latest two key–frames are outside of

this window and further in the past.

Fig. 3. Image alignment starts at the coarsest level of the image scale–space
pyramid with an IMU prior. More iterations are allowed for the solution to
converge at the higher levels of the pyramid. If alignment is successful the
the transformation estimate becomes a prior for the alignment of the next
level.

2) Point Initialization: To choose points for tracking we

first calculate image gradients over the whole image. We

then divide the image into 32×32 pixel blocks and calculate

the median gradient (gmed) in each block. A constant offset

(goff ) is added to the gmed of each block and all gradient

values in the block below this gmed + goff value are

suppressed. To ensure a good distribution of points is chosen

across the scene, we start by picking the points with largest

non-suppressed gradient in each block and insert them into

a 2D point selection grid equal in size to the image. This

2D point selection grid allows us to quickly check if the

next candidate point has sufficient distance from the previ-

ously selected points without explicitly calculating a distance

metric. This approach ensures that the points selected have

sufficient gradient values and are well distributed across the

image. We select points in this manner over the image scale–

space such that the selected number of points at a given

level are half in number to those in the level below it. New

points are initialized in an image only when the number of

tracked points falls below a certain threshold. In such a case

the successfully tracked points are first inserted into the 2D

grid before inserting new points. Each time new points are

initialized we set that image as a key–frame.

3) Point Refinement: Once a reference and a new image

are aligned and pixel locations of points in the new image

are determined, these pixel locations are then further refined

to understand how well a point can be localized in its

neighborhood. We calculate the localization quality of a point

by calculating its radiometric residual along the vector of its



motion in a search window centered around the point as

shown in Figure 2. We then compute the ratio of the lowest

residual to the second lowest residual in the search window

and reject the point if this ratio is lower than a threshold.

This step ensures that points that are sufficiently constrained

in their location are allowed to progress, while eliminating

points that due to alignment errors separate from corner or

edge locations on to a uniform planar surface and become

unconstrained in their location.

4) Landmark Initialization and Pruning: Once point cor-

respondences between images have been established, we

attempt to initialize them as 3D landmarks. We use the

OpenGV [24] library to triangulate points and check if rays

emanating from points are not parallel, indicating points that

are far away. If a point can be successfully triangulated, it is

assigned a landmark ID. New landmarks are only initialized

when image alignment is successful between current frame

and the latest frame in the temporal window. However,

for each successful alignment of the current frame with

the oldest frame in the temporal window and the key–

frames, new observations are added to the already initialized

landmarks. If enough landmarks are observable between two

frames, we check for the quality of landmarks by using their

depth estimates to back–project their pixel locations from

one frame to the other and compare the back–projected pixel

location to the one obtained after the image alignment and

point refinement process. Landmarks with inconsistent depth

have larger error in their pixel locations and can be pruned

out. The remaining landmarks, if having a minimum number

of observations, are added to the optimization back–end for

odometry estimation.

B. Back-End Design

Given a set of 3D landmarks and inertial measurements

between image frames we estimate the pose of the robot by

solving a non–linear optimization problem that minimizes

the re–projection errors of the observed landmarks, while

respecting inertial constraints. Our back–end design takes in-

spiration from [25] and the re–projection error of a landmark

can be written as:

ereproj = pC −K (TCITIW lW) (3)

where pC is the point coordinates in C , lW is the correspond-

ing 3D landmark location in W , TCI is the transformation

from IMU in the IMU frame I to C and TIW is the

transformation of the IMU in W . Furthermore, to write the

inertial measurement error model we first define our IMU

state equations similarly to the ones described in [19, 25]:

x = [r q v ba bω]
′

(4)

where r and q are the position and orientation of the IMU

in W respectively, v is the velocity of the IMU in I , ba

and bω are the estimated bias of the accelerometer and

gyroscope expressed in I . The differential equations for the

state elements are defined as:

ṙ = RWIv

q̇ = −q(ω̂)

v̇ = −ω̂×v + â+RIWg

ḃa = wa

ḃω = wω

(5)

where RWI is the rotation matrix I −→ W , × represents

skew-symmetric matrix of a vector, g is the gravity vector

in W , w⋆ are white Gaussian noise processes, while â and ω̂

represent the bias corrected proper acceleration and angular

velocity and are given as:

â = ã− ba + wa

ω̂ = ω̃ − bω + wω

(6)

where ã and ω̃ are the uncompensated IMU measurements.

Therefore, the error term for inertial measurements between

two frames can be written as:

eimu = x̂
k+1 − x

k
(7)

where xk represents the IMU state at the acquisition time

of frame k and x̂k+1 represents the predicted state of the

IMU at the acquisition time of frame k+1. A forward Euler

integration scheme is used to calculated the predicted IMU

state. Given the re–projection and inertial measurement error

equations, the cost function for the joint thermal–inertial

problem can be written as:

J =

K
∑

k=1

∑

lǫL(k)

e
′k,l,

reprojW
k,l
reproje

k,l

reproj +

K
∑

k=1

e
′k
imuW

k
imue

k
imu (8)

where k represents the frame being processed in the sliding

window K containing temporal frames and key-frames, L(k)
represents the set of landmarks observable in frame k,

ereproj represents the stacked vector of re–projection errors

of every landmark l visible in frame k, W
k,l
reproj represents

the co–variance matrix for landmark measurements in frame

k, and W k
imu represents the co–variance matrix for IMU

measurements. This cost function is then minimized using

the Google Ceres [26] optimization framework and produces

an estimate of the robot pose.

III. EXPERIMENTAL EVALUATION

To evaluate the performance of our thermal–inertial odom-

etry estimation approach, a set of experiments were per-

formed both indoors and in an underground mine us-

ing an aerial robot in challenging conditions of poor–

illumination and in the presence of airborne obscu-

rants. A video detailing the experiments can be found

at https://youtu.be/-hnL5kLqT4Q

A. System Overview

For the purpose of experimental studies a DJI Matrice

100 quad–rotor was used. An Intel NUC Core–i7 computer

(NUC7i7BNH) was carried on–board the robot. A FLIR Tau

2 thermal camera was mounted on the robot to provide

thermal images of 640 × 512 resolution at 30 frames per

https://youtu.be/-hnL5kLqT4Q


second. The intrinsic calibration parameters of the thermal

camera were calculated using our custom designed thermal

checker board pattern [18]. To provide inertial measurements

a VN–100 MEMS IMU from VectorNav was employed. The

camera–to–IMU extrinsics were identified based on the work

in [27].

B. Indoor Ground Truth Comparison

To evaluate the performance of our odometry solution, an

experimental flight was performed in an indoor environment.

To simulate the typical thermal profile of an indoor setting a

computer, a room heater and some wires are introduced into

the scene. A prescribed rectangular trajectory of length =
4.0m and width = 2.5m was executed 5 times in com-

plete darkness. The estimated trajectory is compared against

ground–truth provided by a VICON motion capture system.

Figure 4 and Figure 5 present the derived translation and

orientation results for each axis with the proposed method.

The root mean squared error over the full flight including

landing and take–off are presented in Table: I. It can be

noted that the overall RMSE error is small.
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Fig. 4. Plots show translation along each axis as the aerial robot followed
the predefined trajectory. Translation estimates are compared to ground truth
provided by a VICON system.

TABLE I

RMSE IN POSE ESTIMATION WITH RESPECT TO VICON

RMSE in Pose Estimation

Axis Translation(m) Rotation(deg)
X 0.2741 1.1822
Y 0.0910 0.6380
Z 0.0481 0.4701

C. Comparison to other methods

To provide a thorough evaluation of our method, we

compare the performance of our approach against three state–

of–the–art visual and visual–inertial odometry estimation

methods namely, OKVIS [25], DSO [23] and ROVIO [19],

on thermal imagery instead of other approaches that use

thermal data for odometry estimation as mentioned in Sec-

tion I. This choice was made primarily for two reasons

1) None of the approaches that utilize thermal data for
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Fig. 5. Plots show rotation along each axis as the aerial robot followed
the predefined trajectory. Rotation estimates are compared to ground truth
provided by a VICON system.

odometry estimation work purely on thermal imagery like

our approach and instead require both visual and thermal

data 2) These approaches do not make use of full radiometric

information but instead work on re–scaled images making

them comparable to visual odometry approaches. Therefore it

is more reasonable to compare our proposed method directly

against state–of–art methods.

Fig. 6. An instance from the indoor flight experiment. The significance
of noise accumulation can be seen in terms of change in contrast in the
re–scaled thermal images. From left to right the image contrast changes
significantly in a short period of time. After FFC is applied the contrast
changes instantly from the right most image to the left most image.

For odometry estimation comparison with state–of–the–art

methods, we re–scale thermal images from the indoor flight

data–set. As the thermal camera faces the same environ-

ment constantly, instead of using AGC we use pre–defined

thresholds to re–scale the images to provide better contrast.

However, to be fair to these approaches, the image quality

is much lower as compared to the quality of visual data.

The quality is even further degraded due to accumulation

of noise as shown in Figure 6, where a sharp change in

contrast can be noted. Due to low image quality, all of

the evaluated approaches perform poorly on such image

data causing their pose estimates to diverge significantly.

By trial–and–error we try to find the best parameters for

each approach, however even with significant fine tuning

the odometry estimates of these approaches diverge signif-

icantly as shown in Figure 7. To provide context to the

results shown in Figure 7, we discuss the strengths and

weaknesses of each of these state–of–the–art methods when

operating on low contrast data. OKVIS, is a key–frame
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Fig. 7. Plots present trajectory errors with respect to ground–truth provided
by a VICON system for our proposed approach, OKVIS and ROVIO. DSO
trajectory was excluded from the plots due to multiple failures. The × marks
the point in time where OKVIS odometry estimation failed. It can be noted
our proposed approach has significantly smaller error in X and Y axis as
compared to other approaches.

based optimization approach that relies on the detection and

matching of BRISK [28] features. These features perform

poorly on such low contrast data and provide very few

matches. Lowering of feature detection threshold forces the

detection of more features, however, matching performance

of remains low resulting in unreliable odometry estimation.

However, it should be noted that being an optimization–based

approach, OKVIS was able to work through data interruption

during the application of FFC operations. ROVIO is a semi–

direct filter–based method which relies on IMU data for

its state propagation. ROVIO relies on image data to apply

correction to its propagated state estimate. Delays in image

data, as in case of thermal images, causes the state estimate to

drift. As a filter–based method, ROVIO is not able to correct

for drift errors. However, operating as semi–direct approach,

ROVIO is able to find and track features even in low contrast

images. DSO is a sparse direct odometry approach that

relies on minimizing photometric error between images using

a windowed optimization. Being a direct method DSO is

sensitive to sudden intensity changes and constantly lost

tracking during testing when operating on thermal images

and hence was removed from plot in Figure 7. Continuous

tracking loss forced a number re–initializations, which in turn

lead to poor estimation of scale. DSO solely relies on image

data for scale estimation unlike visual–inertial methods such

as the method presented, OKVIS, and ROVIO that take

advantage of inertial measurements for better estimation of

scale. However, as DSO works on direct image data it was

able to find many point correspondences even in low contrast

images. This comparison study verifies the choices made

during the development of our approach.

D. Underground Mine Experiment

To demonstrate the real world application and perfor-

mance of our proposed method, we conducted tests in an

underground mine in the conditions of darkness and in the

presence of airborne dust. To provide ground–truth markers

were placed along the mine shaft with the final marker

position being 50.0m away from the take–off position. For

verification a hand–held test was carried out by moving

the robot along a serpentine path towards the final marker

location. A flight test was then carried out with the robot

facing towards the end of the mine shaft throughout its flight.

Figure 8 shows both of these paths as well as the marker

locations. The error estimation in the direction of the mine

shaft length is presented in Table: II. It can be seen that

even in complete darkness and in the presence of airborne

dust our approach was able to estimate robot pose with very

low error.
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Fig. 8. Plot shows the robot odometry during the navigation of underground
mine while following a serpentine path and a forward facing flight path as
well as the locations of the placed markers.

TABLE II

TRAJECTORY ERROR DURING THE UNDERGROUND MINE EXPERIMENTS

Serpentine Path Flight Path

Error(m) 0.5350 0.6001

IV. CONCLUSIONS

In this paper we presented an approach to estimate robot

odometry using direct radiometric data from a thermal cam-

era. Our approach fuses direct thermal data with inertial

measurements in a windowed optimization manner to over-

come problems associated with long term thermal camera

operation. We demonstrate the accuracy of our approach by

comparing our odometry estimates for an aerial robot against

the ground truth as well as state–of–the–art visual and visual–

inertial odometry methods. We show the application of our

method by using it for the estimation of odometry of an aerial

robot deployed in an underground mine in the conditions of

darkness and in the presence of airborne dust. In the future,

we would focus on extending our method to perform re–

localization when tracking is lost in order to enable long

term operation of aerial robots in dark, dirty and dangerous

environments.
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[21] J. Engel, T. Schöps, and D. Cremers, “Lsd-slam: Large-scale di-

rect monocular slam,” in European Conference on Computer Vision.
Springer, 2014, pp. 834–849.

[22] M. Pizzoli, C. Forster, and D. Scaramuzza, “Remode: Probabilistic,
monocular dense reconstruction in real time,” in Robotics and Au-

tomation (ICRA), 2014 IEEE International Conference on. IEEE,
2014, pp. 2609–2616.

[23] J. Engel, V. Koltun, and D. Cremers, “Direct sparse odometry,” IEEE

transactions on pattern analysis and machine intelligence, vol. 40,
no. 3, pp. 611–625, 2018.

[24] L. Kneip and P. Furgale, “Opengv: A unified and generalized approach
to real-time calibrated geometric vision,” in Robotics and Automation

(ICRA), 2014 IEEE International Conference on. IEEE, 2014, pp.
1–8.

[25] S. Leutenegger, S. Lynen, M. Bosse, R. Siegwart, and P. Furgale,
“Keyframe-based visual–inertial odometry using nonlinear optimiza-
tion,” The International Journal of Robotics Research, vol. 34, no. 3,
pp. 314–334, 2015.

[26] S. Agarwal, K. Mierle, and Others, “Ceres solver,”
http://ceres-solver.org.

[27] P. Furgale, J. Maye, J. Rehder, T. Schneider, and L. Oth, “Kalibr,”
https://github.com/ethz-asl/kalibr, 2014.

[28] S. Leutenegger, M. Chli, and R. Y. Siegwart, “Brisk: Binary robust
invariant scalable keypoints,” in Computer Vision (ICCV), 2011 IEEE

International Conference on. IEEE, 2011, pp. 2548–2555.

https://github.com/unr-arl/rhem_planner
http://ceres-solver.org
https://github.com/ethz-asl/kalibr

	I INTRODUCTION
	II PROPOSED APPROACH
	II-A Front–End Design
	II-A.1 Image Alignment
	II-A.2 Point Initialization
	II-A.3 Point Refinement
	II-A.4 Landmark Initialization and Pruning

	II-B Back-End Design

	III EXPERIMENTAL EVALUATION
	III-A System Overview
	III-B Indoor Ground Truth Comparison
	III-C Comparison to other methods
	III-D Underground Mine Experiment

	IV CONCLUSIONS
	References

