
This is a repository copy of RCM-SLAM: Visual localisation and mapping under remote 
centre of motion constraints.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/158060/

Version: Accepted Version

Proceedings Paper:
Vasconcelos, F, Mazomenos, E orcid.org/0000-0003-0357-5996, Kelly, J et al. (1 more 
author) (2019) RCM-SLAM: Visual localisation and mapping under remote centre of 
motion constraints. In: 2019 International Conference on Robotics and Automation (ICRA).
2019 International Conference on Robotics and Automation (ICRA), 20-24 May 2019, 
Montreal, Canada. IEEE , pp. 9278-9284. ISBN 978-1-5386-6027-0 

https://doi.org/10.1109/icra.2019.8793931

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including reprinting/republishing 
this material for advertising or promotional purposes, creating new collective works, for 
resale or redistribution to servers or lists, or reuse of any copyrighted component of this 
work in other works.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


RCM-SLAM: Visual localisation and mapping under remote centre of

motion constraints

Francisco Vasconcelos, Evangelos Mazomenos, John Kelly, and Danail Stoyanov

Abstract— In robotic surgery the motion of instruments
and the laparoscopic camera is constrained by their insertion
ports, i. e. a remote centre of motion (RCM). We propose a
Simultaneous Localisation and Mapping (SLAM) approach that
estimates laparoscopic camera motion under RCM constraints.
To achieve this we derive a minimal solver for the absolute
camera pose given two 2D-3D point correspondences (RCM-
PnP) and also a bundle adjustment optimiser that refines
camera poses within an RCM-constrained parameterisation.
These two methods are used together with previous work on
relative pose estimation under RCM [1] to assemble a SLAM
pipeline suitable for robotic surgery. Our simulations show that
RCM-PnP outperforms conventional PnP for a wide noise range
in the RCM position. Results with video footage from a robotic
prostatectomy show that RCM constraints significantly improve
camera pose estimation.

I. INTRODUCTION

Some surgical procedures, specially in the treatment of

prostate, kidney, and bladder cancer, are increasingly being

performed with the assistance of a robot [2], [3], [4].

During a robotic intervention, the surgeon sits at a console

with a stereoscopic display and operates on the anatomy

through tele-manipulation of articulated tools and a laparo-

scopic camera. Although surgical robots have the potential

of performing automated tasks, this capability has not yet

translated to clinical practice. One of the main challenges

is to accurately represent the vision system, surgical tools,

and target anatomy in the same coordinate frame. Therefore,

estimating the motion of the laparoscopic camera during

surgery is a fundamental step towards developing robotic

task automation and providing assisted navigation to the sur-

geon. Additionally, camera motion estimation is also a pre-

requisite for the development of augmented reality assisted

intervention techniques that overlay pre-operative (MRI, CT)

or intra-operative (Ultrasound) data on laparoscopic images

[5]. Although camera motion can be estimated through

forward kinematics of the robot joints, this has proven to be

insufficient for surgical applications. The main reason is that

the non-rigid anatomic site cannot be accurately represented

in a camera with a single rigid transformation. Furthermore

the large distance between the end-effector and the tip of the
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Remote centre of motion

Fig. 1: In robotic surgery, the camera motion is constrained

by a remote centre of motion (RCM). This reduces the range

of feasible motions to 4 degrees of freedom.

laparoscopic camera significantly amplifies hand-eye transla-

tion errors when mapping robot coordinates to the relatively

narrow workspace of the camera [6]. Alternatively, camera

motion can be estimated from visual input, a widely studied

topic within the domain of Simultaneous Localisation and

Mapping (SLAM) [7] and Structure-from-Motion (SfM) [8].

However, most of the developed SLAM and SfM methods

are aimed at human made environments (streets, indoors, etc)

and work unreliably when applied to laparoscopic surgical

video. The presence of a dynamic scene that includes non-

rigid tissues, scene occlusions by surgical tools and blood,

and fast camera motions in a close range environment all

contribute to make SLAM in surgery a very challenging task

[9].

In this paper we exploit remote centre of motion (RCM)

constraints [10] for improving camera motion estimation in

laparoscopy. In minimaly invasive surgery, both the instru-

ments and the laparoscope are inserted inside the patient

through small incisions that put strong boundaries on their

motion range. RCM contraints have been used in the context

of surgical robotics for localisation [11], control [12], and

segmentation tasks [13]. Formulating a RCM constrained

motion space simplifies the geometric relations between

camera views and reduces the number of motion parameters

to estimate. This approach has proven successful while

estimating the relative pose between two camera viewpoints
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Fig. 2: (a) General RCM model; (b) Aligned axis assumption.

using 2D point correspondences [1]. However, the two-

view constraints degenerate when there is no translation and

therefore are not suitable for estimating incremental motions

between consecutive frames of a video, where the translation

is expected to be very small. In this scenario, SLAM methods

typically establish correspondences between 2D image points

and 3D reconstructed points in the scene (i. e. points that

have been detected in at least three camera views). To achieve

continuous motion estimation under RCM constraints, we go

through the steps of a visual SLAM pipeline based on bundle

adjustment [14] and adapt each of them to our proposed

RCM formulation. Our contributions can be summarised as

follows:

• A minimal solver for absolute camera pose using 2D-

3D correspondences with RCM constraints (RCM-PnP).

While with unconstrained motion this requires 3 cor-

respondences (P3P [15]), in the RCM case only 2

correspondences are required. This not only eliminates

a PnP degenerate case (3 points lying on a line), but

also reduces combinatorics when eliminating outlier

correspondences with RANSAC [16].

• A bundle adjustment optimisation framework that re-

fines camera poses and 3D reconstructed points on the

RCM constrained space (RCM-BA).

• A RCM-SLAM pipeline that uses RCM relative pose

[1] for batch initialisation, RCM-PnP for incrementally

adding new views and RCM-BA for motion refinement.

This is tested on video footage from a prostatectomy

performed with a Da Vinci R© Si surgical robot, showing

that RCM constraints significantly boost SLAM perfor-

mance for monocular trajectory estimation.

II. RCM FORMULATION

Consider a camera C constrained by a RCM O (Fig. 2a).

Without loss of generality we consider that O is located at

origin of the world reference frame W. In the most general

case the camera coordinate frame C can be located at any

arbitrary position relative to the laparoscope axis A. This is

specially the case with a stereo laparoscope (translation offset

between camera and axis) and with angled tip laparoscopes

(rotation offset between camera and axis). Assuming that A

moves rigidly with C and that the z-axis of A is aligned with

the RCM at the origin, the transformation between C and A

has only 4 degrees of freedom. This is the case because A

has two parameters that can be arbitrarily fixed: the distance

to the RCM, and any rotation along the z−axis.

In [1] it was argued that if we consider C and A to

be coincident (aligned axis assumption, Fig 2b), the ap-

proximation is still sufficiently accurate for relative motion

estimation while using the stereo laparoscope of the Da

Vinci R© Si surgical robot. The main reason is that the

distance between C and A is relatively small (around 2.5 mm)

when compared to the distance between A and W (70-100

mm). Simulation results also showed resilience of the model

to rotation misalignments, however, no test was performed

with real data from an angled tip laparoscope.

We will show that the aligned axis assumption is also a

good approximation for estimating absolute pose using cor-

respondences between 2D image points and 3D reconstructed

points (Perspective-n-Point).

III. PERSPECTIVE-N-POSE UNDER RCM (RCM-PNP)

The Perspective-n-Pose (PnP) problem consists in deter-

mining a camera pose T with rotation R and translation t us-

ing three or more correspondences between 2D image points

xi and 3D points Xi (Fig. 2b). For formulation convenience,

we consider T to be the transformation mapping coordinates

from W to C. Each 2D-3D correspondence establishes the

following constraint

RXi + t = λixi (1)

where λi is the depth of Xi to the camera. Given that the

z−axis of C is aligned with the RCM at the origin O, the

translation t has the form
(

0 0 −z
)

T
. Note that in the

surgical context z has to be a positive value for the RCM to

be behind the camera.

From equation 1 we can obtain

[xi]×RXi +[xi]×
(

0 0 −z
)

T
= 0 (2)

where [xi]× is a 3 × 3 skew symmetric matrix such that

[xi]×v = xi ×v,∀v ∈ IR3. This can be written as


Xi
T⊗ [xi]× [xi]×





x2,i

−x1,i

0









(

vec(R)
z

)

= 0 (3)

where ⊗ denotes the Kronecker product. From these three

linear equations, only up to two are linearly independent

by construction. Therefore, each correspondence between a

2D point xi and a 3D point Xi puts two constraints on a

linear system with 10 unknowns. With two correspondences

(4 constraints) we can determine by SVD decomposition a

6D linear solution subspace with the form

R= a1R1 +a2R2 +a3R3 +a4R4 +a5R5 +a6R6 (4)

z = a1z1 +a2z2 +a3z3 +a4z3 +a5z5 +a6z6 (5)

where a j ( j = 1, ...,6) are the new problem unknowns.

Assuming R6, z6 correspond to the highest singular value of



TABLE I: Conventional and RCM constrained algorithms

that can be used in a SLAM pipeline (Algorithm 1).

Conventional RCM-constrained

RELATIVEPOSE() 5-point [18] 4-point [1]
ABSOLUTEPOSE() PnP [15], [19] RCM-PnP (this paper)

REFINE() Bundle adjustment [14] RCM-BA (this paper)

the SVD decomposition and given that a zero matrix is not a

valid rotation, we can safely assume that a6 6= 0. We divide

equations 4, 5 by s6 to express the scaled rotation a−1
6 R and

the scalar a−1
6 z in terms of 5 unknowns. Determining a scaled

rotation from 5 unknown linear parameters is a quadratic

system of equations with 8 discrete solutions, and a closed

form solver for this problem has already been proposed [17].

After determining a−1
6 R, a6 is made such that RT

R= I and z

is computed from equation 5. Solutions with complex values,

det(R) =−1 or z < 0 can be discarded.

Note that this method requires knowing the coordinates

of 3D points Xi in the reference frame of the RCM. In the

context of a SLAM pipeline this can be achieved once two or

more views have been estimated, by intersecting their optical

axes.

IV. RCM-SLAM PIPELINE

In this section we describe a basic visual SLAM pipeline

based on bundle adjustment and highlight the steps that can

be replaced by equivalent RCM constrained methods.

As we have seen in the previous section, absolute pose can

only be used once 3D points in the scene are reconstructed.

While with a stereo camera this information is available right

from the first frame, the monocular case requires an initiali-

sation process across the first few frames to create a starting

3D point map. This can be done via relative pose estimation

between two views with sufficient displacement [18]. After

the initialisation is done, each new frame can be added to the

trajectory using correspondences with the 3D points already

in the map. The basic structure of a visual SLAM pipeline

is described in Algorithm 1. There are three functions in

this process that can be replaced by RCM-constrained equiv-

alents. RELATIVEPOSE(M1,M2) with RCM-constraints was

proposed in [1], ABSOLUTEPOSE(M,X) was addressed in the

previous section, and REFINE(T1, ...,Ti,M1, ...,Mi,X) will

be addressed in the next section. The equivalence between

conventional and RCM constrained methods is summarised

in Table I.

V. BUNDLE ADJUSTMENT UNDER RCM (RCM-BA)

Whenever a new camera pose and new 3D points are

added to a SLAM map, these parameters can be refined by

minimising camera re-projection errors of the form

ei, j = ||(K j

1

λi

(R jXi + t j)−hi, j||2 (6)

where K j is the intrinsic matrix of camera j, and hi, j =K jxi, j

is the ith 2D image point in pixel coordinates detected by

camera j. In the context of this paper we do not consider

non-linear lens distortion, however, this can be easily added

Algorithm 1 SLAM pipeline

procedure MAIN(I1, ..., IN ,S)

T1 = I

{T2, ...,TS,X}= INITIALISE(I1, ..., IS)
for i = (S+1),N do

Mi = MATCH2D-3D(Ii,X)
Ti = ABSOLUTEPOSE(Mi,X)
X = TRIANGULATE(T1, ...,Ti,M1, ...,Mi)
{T1, ...,Ti,X}= REFINE(T1, ...,Ti,M1, ...,Mi,X)

end for

end procedure

function INITIALISE(I1, ..., IS)

MS = MATCH2D-2D(I1, IS)
TS = RELATIVEPOSE(MS)
X= TRIANGULATE(TS,MS)
for i = 2,(N −1) do

Mi = MATCH2D-3D(I1, Ii)
Ti = ABSOLUTEPOSE(Mi,X)

end for

end function

to the re-projection error model. In its most basic imple-

mentation, the bundle adjustment optimisation problem can

be formulated as

min
ti,qi,X j(i 6=1)

N

∑
i=1

M

∑
j=1

σi, jei, j (7)

where qi is a quaternion representation of the rotation Ri and

σi, j is a boolean function that takes 1 when X j is visible in

camera i and 0 otherwise. In order to fix the world reference

frame, the first view is not refined (there are other approaches

to deal arbitrary scale gauge that are not considered here

[14]).

We now assume that our SLAM map is represented in

the reference frame W, with the RCM position at the origin

and also that the first camera rotation is aligned with W.

If we do not refine the translation of the first camera

t1 =
(

0 0 z1

)

T
then the distance between the RCM and

the first camera will be constant, which is to say, the RCM

position is fixed relative to the camera trajectory. On the other

hand, if we do refine z1, this is equivalent to refining the

RCM position relative to the camera trajectory. This implicit

representation of the RCM avoids gauge ambiguities that

would be caused by using an additional translation vector

to refine the RCM location. Our RCM-BA optimisation

formulation is therefore the following:

min
z1,zi,qi,X j(i 6=1)

N

∑
i=1

M

∑
j=1

σi, jei, j (8)

When compared to conventional bundle adjustment, our for-

mulation refines over 4(N−1)+1+3M degrees of freedom

instead of 6(N −1)+3M.

VI. EXPERIMENTS

We tested our RCM-PnP minimal solver in simulation to

investigate how much noise in the RCM position it is able



to endure, as well as the complete SLAM pipeline in video

footage of a robotic prostatectomy performed with the Da

Vinci R© Si system. The simulation conditions are made as

close as possible to the camera parameters of the real scope.

A. RCM-PnP with Simulated Data

We developed a simulation environment with a 1024×768

resolution camera and intrinsics

K=





900 0.01 500

0 890 360

0 0 1



 (9)

With modern chip on tip cameras the intrinsic parameters

remain fixed, and thus we work under this assumption in

simulation. The camera detects 3D points using a pinhole

model. We do not consider radial lens distortion in simu-

lation, since in the experiment with real data we undistort

the images after camera calibration. The camera distance to

the RCM location is randomly generated between 40 and

80 mm. As the distance to the RCM decreases the aligned

axis assumption becomes less valid. Since with real data this

distance is at least 70 mm, our simulations are on average

biased towards unfavourable conditions. The camera rotation

is randomly generated within a 22.5◦ cone facing towards

the 3D points in the scene, which are randomly generated

within a 30×30×30 mm cube centred 200 mm away from

the RCM. Both image point detections and the RCM position

are injected with Gaussian noise.

In a first experiment we compare RCM-PnP against P3P

[15] using 3 points (the minimum for PnP), for different

levels of image and RCM noise (Fig. 3a, 3c, 3b,3d). With

high image noise RCM-PnP is better than PnP, since it uses

the additional RCM information that does not depend on

image points. On the other hand, when the RCM noise is

too high, PnP outperforms our approach. The break even

point is around 2.5 mm RCM noise for 1 pixel image noise,

and 6.5 mm for 2.5 pixel image noise.

In a second experiment we generate 100 points, inject

60% of outlier correspondences and compare the same

algorithms inside a RANSAC [16] robust estimator (Fig.

3e, 3f). RANSAC generates random solutions by sampling

the smallest possible amount of points. While PnP requires

sampling at least 3 points, RCM-PnP only needs 2 points.

This makes our approach to generaly find a suitable solution

in fewer RANSAC iterations. In this case, which is closer to

real input data, our estimated rotation outperforms PnP for all

tested RCM noise levels (up to 8 mm), while for translation

it compensates to use our method up to 4 mm RCM noise.

With real data we use a stereo camera with 5 mm baseline

and we expect the laparoscope axis to be roughly in between

the two cameras. Therefore, we are expecting the aligned

axis assumption to add an offset error to the RCM of around

2.5 mm. Even if we account for further RCM estimation

errors, this is likely within the noise range where RCM-PnP

outperforms PnP.
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Fig. 3: Simulation results. PnP results (black) do not depend

on RCM noise and thus are represented by a single distribu-

tion in each plot with bold line as median and dashed lines

as quartiles. RCM-PnP results (blue) depend on RCM noise.

The outlier-free experiments (a), (b), (d), (e) represent 1000

estimation trials with PnP and RCM-PnP, while the outlier

contaminated experiments (c), (f) represent 100 estimation

trials of PnP and RCM-PnP used with RANSAC.

B. RCM-SLAM with Robotic Prostatectomy Data

We estimate camera motion on a in-vivo video sequence

from a robotic prostatectomy performed with the Da Vinci R©
Si system. Although its laparoscope is a stereo camera, we

are interested in validating our monocular SLAM pipeline

on a single channel, while using stereo data for compari-

son purposes. All monocular algorithms are tested on the

right channel of the stereo scope. Kinematic data was not

available, and camera calibration data was acquired after the

procedure. We use a sequence of 44 frames (sub-sampled

from a sequence of 88 frames) that performs a circular

trajectory with the camera and goes back to roughly the

initial point. The viewed scene is a prostate before being

removed and the operating tools are in position to start the

operation. We test the following algorithms on this sequence:

• Monocular: We follow the structure of Algorithm 1,

using the conventional routines for unconstrained mo-

tion.

• RCM-Monocular: We follow the structure of Algo-

rithm 1, using the routines for RCM constrained motion.



• Stereo: Stereo motion pipeline that follows Algorithm

1 for each channel using the methods for unconstrained

motion. Additionally, stereo consistency is enforced

during the bundle adjustment refinement step. This is

done by representing all left camera poses in terms

of right camera pose parameters, i. e. Ti,L = Ti,RT
−1
s ,

where Ts is the stereo transformation from right to left

camera.

• ORB-SLAM2: We use the monocular version of this

open source method [20]. This is a significantly more

sophisticated pipeline than Algorithm 1, that includes

key-frame management, different local/global bundle

adjustment threads, and a place recognition module for

re-localisation.

Except for ORB-SLAM2, all algorithms are our own

implementations. They all rely on SIFT descriptors [21] for

feature matching (MATCH2D-2D,MATCH2D-3D functions).

TRIANGULATION is performed using a classic SVD solution

[22]. Only the triangulated points with less than 1.5 pixel

re-projection error in all views are assigned to X and used

in the following MATCH2D-3D call. All motion estimation

algorithms (4-point, 5-point, RCM-PnP, PnP) are used inside

a RANSAC robust estimator with the appropriate number

of samples per iteration (respectively 4, 5, 2, 3). Given

the very large amount of matched points over the video

sequence, and for achieving a tractable computational effort

on a macbook pro machine, we further filter the 3D points

used during REFINE : (1) we only use 3D points that were

matched consecutively for 5 or more frames; we only use 3D

points that were matched against either the previous frame

or 5 frames ago. While (1) ensures that the most reliable

points are used, (2) selects matches from two distant frames

to minimise drift. All the implemented methods are both

tested in open loop and closed loop where the latest frame is

matched against the closest frame in the previous trajectory.

ORB-SLAM2 has its own loop closing implementation.

The reconstructed trajectories for all methods are dis-

played in Fig. 5. Additionally we also plot for each trajectory,

the projected laparoscope axis assuming the aligned axis

assumption, i. e. along the z−axis of the camera. Given

these projected axes we compute their distance to the closest

RCM intersection point and display its distribution on Fig.

4. The Stereo trajectory (black), due to having a fixed

baseline between the cameras is used as reference. It is worth

noticing that we purposefully project the RCM axes on the

right camera of the stereo system instead of stereo baseline

midpoint, where it would be more likely located. We do this

to show that the aligned axis assumption is still reasonably

valid and all axes are still close to intersect. The Monocular

implementation (blue) has the worst performance due to

drift in rotation, translation, and scale. Its trajectory in open

loop is also the one that least resembles a RCM constrained

trajectory. Its loop closure is not able to sufficiently correct

the initial large drift. We also note that due to the stochastic

nature of RANSAC, methods can have different results

on different runs. Monocular was the only one to have
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Fig. 4: Measuring how close each trajectory is to the aligned

axis assumption by the distance between camera axis in

each pose and the estimated RCM position. The distances

are divided by the RCM distance to origin (for comparison

of arbitrary scale reconstructions). With RCM-Monocular

RCM alignment is strictly enforced and thus this distance is

zero for all lines

significant differences, and to occasionally completely fail to

perform loop closure. The displayed result is among the best

obtained. RCM-Monocular (red) and ORB-SLAM2 (green)

have the most similar trajectories (with the former slightly

closer to Stereo). However, if we analyse the projected

RCM axes, ORB-SLAM2 has an infeasible trajectory that

does not comply with RCM constraints. It is worth noticing

that the RCM is still very well constrained along the x-

axis of the camera, but very badly along y-axis. The causes

of this anisotropic behaviour are unknown. The significant

contrast between Monocular and RCM-Monocular is only

due to enforcing RCM constraints, as this is the only imple-

mentation difference between them. Additionally, for both

Monocular and Stereo, the loop closure refinement makes

the trajectory closer to the RCM constraint.

VII. CONCLUSIONS

We propose a SLAM pipeline for robotic surgery that

estimates camera motion under RCM constraints. Following

[1] we use an approximation that assumes perfect alignment

between the camera and laparoscope axes, and that greatly

simplifies the geometric relations between point correspon-

dences across images. This enables building simple closed-

form solutions and formulating optimisation problems with

fewer variables. We further confirm that, in practice, the gains

obtained by solving easier problems out-weight the induced

approximation errors for a reasonable range of realistic

conditions. Despite these results we believe that using more

general RCM models (Fig. 2a) will be important to obtain

increasingly more accurate reconstructions. In this sense, the

aligned axis assumption is a very useful tool for formulating

closed form solutions that provide reasonably accurate initial

solutions that can be further refined in a subsequent step.
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Fig. 5: SLAM results for a prostatectomy camera trajectory. (a), (b) are two sample frames. In (e), (f) the axes units are

millimitres, while in all monocular trajectories (b), (d), (g), (h), (i), (j) the units are an arbitrary scale up to the SLAM

implementation choice. In (k), (l) the arbitrary scales of monocular trajectories are adjusted to the mm scale of stereo

trajectories for visualisation purposes.
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