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Abstract— Navigating surgical tools in the dynamic and
tortuous anatomy of the lung’s airways requires accurate, real-
time localization of the tools with respect to the preoperative
scan of the anatomy. Such localization can inform human
operators or enable closed-loop control by autonomous agents,
which would require accuracy not yet reported in the literature.
In this paper, we introduce a deep learning architecture, called
OffsetNet, to accurately localize a bronchoscope in the lung in
real-time. After training on only 30 minutes of recorded camera
images in conserved regions of a lung phantom, OffsetNet
tracks the bronchoscope’s motion on a held-out recording
through these same regions at an update rate of 47 Hz and an
average position error of 1.4 mm. Because this model performs
poorly in less conserved regions, we augment the training
dataset with simulated images from these regions. To bridge
the gap between camera and simulated domains, we implement
domain randomization and a generative adversarial network
(GAN). After training on simulated images, OffsetNet tracks the
bronchoscope’s motion in less conserved regions at an average
position error of 2.4 mm, which meets conservative thresholds
required for successful tracking.

I. INTRODUCTION

Early diagnosis of lung cancer, the leading cause of cancer
death, significantly improves patient outcomes [1]. While
nodules in the lung’s periphery can be diagnosed through
thoroscopic surgery or needle biopsy, bronchoscopies are the
preferred approach given the lower complication rates (2.2%
vs 20.5%) [2], [3]. In bronchoscopy procedures, physicians
manually drive long, flexible bronchoscopes through the
patient’s airways to biopsy potentially cancerous nodules,
shown in Fig. 1. Physicians rely on sensor feedback from an
on-board camera and, in navigated bronchoscopy procedures,
an electromagnetic position sensor at the distal tip of the
device. The position sensor is registered to a preoperative
computed tomography (CT) of the patient’s chest to provide
a road map to the target site [4]. However, there is significant
variability in the diagnostic yield among institutions ranging
from 67-74% [2], [5]. Accurate localization and robotic
control of bronchoscopes can alleviate this variability and
improve patient outcomes.

Since the physician identifies target nodules in the CT
reference frame before the operation begins, the physician
must map the sensor feedback from the device (2D image) to
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Fig. 1: The objective of a bronchoscopy is to navigate the
bronchoscope to the site of a potential tumor given the
trajectory from the preoperative CT scan. To do this, the
operator must use the 2D images from the bronchoscope to
determine where it is along the 3D path to the target.

the CT frame (3D map). This process is called localization.
A localization module must inform the physician how the
bronchoscope’s current location relates to its desired loca-
tion. An autonomous agent could use this same information
to “drive” the bronchoscope without human intervention.

We set out to design an image-based system that can
localize in real-time and accurately enough to be used for
closed-loop control in a robotic system. We consider image-
based approaches instead of hybrid approaches that integrate
information from electromagnetic position sensors because
these sensors experience unknown biological motion of the
patient, have the potential for noise and distortion from metal
in the operating room, and increase the total cost of the
system [6].

Using traditional computer vision techniques to solve this
task accurately and in real-time has proven challenging.
Several groups have compared the images from the bron-
choscope to simulated images rendered from the estimated
location of the bronchoscope in CT frame; however, these
methods register images inefficiently at around 1-2 Hz with
high average registration errors of 3-5 mm [7], [8], [6].
Tracking features using methods like SIFT and ORBSLAM
have been used, but the airways have insufficient features
and tracked features often drop out [9], [10]. Anatomical
landmarks have been tracked, like bifurcations [11], lumen
centers [12], centerline paths [13], or similar image regions
[14], but these approaches make assumptions about the
airway geometries and struggle with image artifacts.
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Merritt et al. describes a real-time localization approach
with average errors as low as 1.4 mm in simulation [15].
Their method precomputes image gradients of simulated ref-
erence images along the anticipated procedure path and uses
an iterative Gauss-Newton gradient-descent to determine the
transformation between each camera image and the closest
of these reference images. While this technique reports
continuous tracking, it relies on high-quality rendering and
a dense collection of reference images.

Because of the difficulties traditional computer vision
techniques face in this task, we decided to explore a
deep learning approach. Using convolutional neural networks
(CNN) to estimate the position and orientation of objects has
been shown in many contexts, including for human posture
and objects in a hand [16], [17]. Visentini-Scarzanella et al.
used a CNN to estimate the depth map of 2D images in a
lung phantom, which could then be registered to the 3D map,
but tracking is not reported [10].

In this work, we contribute an image-based deep-learning
approach, called OffsetNet, that localizes a bronchoscope
in the CT frame accurately and in real-time. We evaluate
OffsetNet on a recorded trajectory in a lung phantom, demon-
strating continuous, real-time tracking. We also show that
training on simulated images can improve the performance
in regions of the lung without recorded training data.

TABLE I: Notation
Input Images into OffsetNet (Fig. 2)

Isty
x Generically, an image with style sty at 6-DOF location, x

Ixt Image from the bronchoscope’s current location, xt
Ix̂t−1 Image rendered at the previously estimated location, x̂t−1

Image Styles (Fig. 5)
Icam Image taken by a bronchoscope in the lung phantom
Isim Image rendered by OpenGL using the lung CT
Irnd Image rendered by OpenGL using the lung CT with varied

rendering parameters and varied noise, smoothing and occlu-
sions added [18]

Igan Image rendered by OpenGL using the lung CT, then passed
through the generator of a trained GAN (generative adversarial
network) [19]

Error between True and Estimated Locations
ep Position error (mm), defined as ep in [15]
ed Direction angle error between pointing vectors, pz, of the two

views (◦), defined as ed in [15]
er Roll angle error between the px axis after the ed was corrected

for between views (◦), defined as er in [15]
‖ · ‖E Location error, ep +0.175ed +0.175er , (mm,◦)

Lung Regions (Fig. 6)
seen,

S
Airways in the lung where Icam images were included in the
training set, representing conserved regions among patients

unseen,
U

Airways in the lung where Icam images were omitted from the
training set, representing less conserved regions

II. METHOD

In this approach, we compare Ixt , the image from the
bronchoscope’s current location xt , to Ix̂t−1 , the image ren-
dered at the bronchoscope’s estimated location from the
previous timestep x̂t−1, shown in Fig. 2, and estimate the
location offset between the images, ∆x̂. This offset updates
the estimated bronchoscope location for the current timestep
according to x̂t ← x̂t−1 + ∆x̂, which is used to render the
image at the bronchoscope’s estimated location in the next
time step. By iteratively updating the estimated location, the

Fig. 2: The input to OffsetNet is a (Icam
xt ,Isim

x̂t−1
) image pair,

shown here. A bronchoscope inside the lung generates Icam
xt ,

and a rendering of the estimated pose in the lung’s CT model
creates Isim

x̂t−1
. The task is to identify the offset between them,

and through repeated iterations, reduce the offset as much as
possible.

Trained
CNN

z-1

+

OpenGL

Bronchoscope

Fig. 3: This control loop describes the tracking task, where
a trained CNN (OffsetNet) receives a (Icam

xt ,Isim
x̂t−1

) image pair
at time t and outputs the estimated 6-DOF offset, ∆x̂. The
estimated location x̂t is updated, and the updated location is
used to render the next Isim

x̂t−1
.

algorithm can track the motion of the bronchoscope, shown
in Fig. 3.

Our system consists of two independent deep residual
convolutional networks (CNN) with identical architectures,
shown in Fig. 4. For each (Ixt ,Ix̂t−1) image pair, we feed
Ixt into the first network and Ix̂t−1 into the second network,
concatenate the embeddings, and pass the resulting vector
through a fully-connected layer, which produces an estimate
of the pose of the first image in the frame of the second
image. This length 6 vector, ∆x̂, consists of 3 components
describing the position offset ∆x̂p = [px, py, pz] (mm) and 3
components describing the rotation offset ∆x̂r = [α,β ,γ] (◦),
defined by the three Euler angles about axes xyz [20]. We
define positive pz into the page, and positive px to the right.

The residual parts of our network implement the 34-layer
architecture described in He et al. [21]. The CNN was
implemented in Tensorflow, version 1.9 [22].

The network is trained using Adam optimization to min-
imize a weighted L2 loss function `(∆x̂,∆x) between the
estimated offset, ∆x̂, and the ground-truth offset, ∆x. To relate
position and rotation errors, we chose a 1 mm:5.7◦ ratio,
which roughly relates to the fact that a 5.7◦ ed angle error
results in an error of 1 mm for a location 10 mm in front of
the camera:

`(∆x̂,∆x) = ||∆x̂p−∆xp||22 +0.175 · ||∆x̂r−∆xr||22
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Fig. 4: OffsetNet architecture overview show two Resnet-
34’s processing each image input, followed by a fully
connected later, and outputting a 6D vector representing a
translation (mm) and rotation (◦) [21].
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Fig. 5: Example images of the lung airways based on image
style after grayscaling, adding a circle mask, and per-image
normalizing to zero mean and unit standard deviation.

When deployed, our control loop compares Icam
xt , captured

by the bronchoscope’s camera from its current location,
and Isim

x̂t−1
, rendered at the bronchoscope’s previous estimated

location. To reflect this, we evaluate our models on test sets
consisting of (Icam

xt ,Isim
x̂t−1

) image pairs. We train our models

on training sets consisting of (I{cam,sim,rnd,gan}
xt ,Isim

x̂t−1
) image

pairs, where the style of the image from the bronchoscope’s
current location varies according to the experiment. Note that
all image pairs consist of (·,Isim

x̂t−1
).

All Icam images were created by manually driving a robotic
bronchoscope (Monarch Platform, Auris Health Inc.) for
30 minutes in a lung phantom (Koken Co.), covering 3-5
generations of both lungs. For the experiments presented,
OffsetNet was trained on data in the left lung to reduce
the data file sizes, shown in Fig 6. While driving, a 6-
DOF electromagnetic sensor (Northern Digital Inc.) tracked
the bronchoscope and provided an initial, coarse estimate
of the location in CT frame x̃t from which each Icam

xt was
captured. However, a single rigid registration of the sensor’s
output resulted in errors of up to several millimeters, so
local registrations were iteratively refined to improve the
label quality. Local registrations were performed by manually
translating and rotating nearby points (within a 2 cm cube)
until the pixel-wise error ‖Isim

x − Icam
x ‖2 reached a local

minimum. Powell’s method was used in conjunction with
manual optimization to refine x̃t to a ground-truth location
in CT frame xt [23].
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Fig. 6: Left, a sample of locations xt ∈ S and x̂t−1 used in the
training set. Notice the unseen region lacks any xt . Right, the
distributions of offsets between the (xt , x̂t−1) pairs is shown
for ep, ed and er.

All Isim images are rendered using PyOpenGL [24] and
a 3D lung STL from a segmented CT scan of the lung
phantom (Monarch Platform, Auris Health Inc.) [25]. The
rendering parameters are based on Higgins et al. with a field
of view of 60◦ [26]. Images are rendered at 60 Hz on a PC
with no accelerations. The lighting and color were optimized
to reduce the pixel-wise difference between images with
different styles at the same location, Isim

x and Icam
x , after

grayscaling and per-image normalization. The quality of the
segmentation critically affects the quality of Isim.

Training sets used in Section III-B also consist of Irnd and
Igan images.

Tobin et al. first introduced Irnd images, which were
rendered with randomized parameters to train their CNN
to be indifferent to these changes [18]. We randomized
each parameter with a normal distribution centered about
the default rendering parameters. For these experiments,
brightness, attenuation factor, specular intensity, and ambient
intensity were all varied by 1, 0.001, 0.1, and 0.1, respec-
tively. In addition, we used randomized Gaussian smoothing,
and on half of the images, we added independent per-pixel
noise and white noise occlusions of various sizes.

To make our rendered images more closely resemble Icam,
we trained a GAN, following the general design principles
described in Zhu et al. [19]. We adopted the architecture
for our generative network from Johnson et al. [27]. For the
discriminator networks, we used 14× 14 PatchGANs. We
encouraged a pixel-wise similarity between the transferred
Icam and the actual Icam images, as well as the transferred Isim

and the actual Isim images in our loss function. We trained on
1000 total Isim images and 1000 total Icam images. Similar
to Zhu et al., we replaced negative log-likelihood objective
by a least-squares loss function.

To generate datasets consisting of (Ixt ,Ix̂t−1) image pairs,
for each registered Ixt , we generate a Ix̂t−1 at a location x̂t−1
offset from the registered location xt according to normal
distributions of ep, ed , and er. The distributions used for the
training had 0 mean and standard deviations of 2 mm, 11◦,
11◦, respectively, shown in Fig. 6. Each Icam

xt was augmented
by rotating the images with a normal distribution of 0 mean
and 14◦ standard deviation.
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Fig. 7: Two OffsetNets are shown in a tracking task on the test sequence, Icam
x . Note that all models were trained on (·,Isim

x̂t−1
)

image pairs. Left, the path and estimated positions are shown on the lung CT. Middle, the tracking error in ep, ed , and er
are shown over the frame sequence, and the frames in the unseen region are highlighted in gray. Right, the airway visibility
analysis shows sensitivity and precision ratios for the seen and unseen (hatched) regions.

Training sets in Section III-A comprised of 200
(Icam

xt ,Isim
x̂t−1

) image pairs, where each location xt was offset
(only rolled) from an original recorded location xrec

t , and each
location x̂t−1 was offset from the resulting location xt . Train-
ing sets in Section III-B comprised of 750 (I{sim,rnd,gan}

xt ,Isim
x̂t−1

)
image pairs, at locations xt offset from recorded locations xrec

t
in the test sequence. Each location x̂t−1 was offset from the
resulting location xt .
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Fig. 8: OffsetNets tested on a dataset of (Icam
xt ,Isim

x̂t−1
) image

pairs along the full test sequence. 25 x̂t−1 locations were ran-
domly offset from each xt . Note that all models were trained
on (·,Isim

x̂t−1
) image pairs. Each axis is a linear combination of

translation and rotation error, defined in Table I. Diverging
estimates are defined by the ‖x̂t − xt‖E > ‖x̂t−1− xt‖E . One
out of every 30 points are plotted to improve visibility,
and results from the seen and unseen region are plotted
separately.

III. RESULTS

On a laptop PC with a 2.70 GHz CPU, the tracking loop
ran at an average of 47.7 Hz, while the bronchoscope receives
images at a rate of 25-30 Hz.
A. OffsetNet Tracks Test Sequence in Seen Region

We trained OffsetNet on (Icam
xt∈S,I

sim
x̂t−1

) image pairs from
conserved regions in the left lung phantom, denoted the
“seen” region S. To study the contribution of image style,
we also trained a model on (Isim

xt∈S,I
sim
x̂t−1

) image pairs rendered
in the same positions and orientations xt . Both models were
evaluated on a held-out test sequence that passed through the
conserved regions of the lung phantom on which the model
had been trained (seen region) and through a less conserved
region that had no training images (unseen region), shown
in Fig. 6.

In Fig. 8, the models were analyzed in a single-frame
registration task, where each Ixt of the test sequence was
tested against 25 uniformly offset Ix̂t−1 and the results are
shown separately for the seen and unseen regions of the
lung. The Ix̂t−1 were uniformly offset by 0-10 mm in ep,
0-43◦ in ed , 0-43◦ in er. This range covers beyond what
the models were trained on to show their limits. Fig. 8
visualizes this result by combining translation (mm) and
rotation (◦) offsets into a single distance measure, defined
in Table I, which mimics the training loss function. When
the updated location error is greater than the initial location
error, OffsetNet diverges from the location estimate. Because
OffsetNet’s performance is correlated with the initial location
error, diverging estimates increase the likelihood of failure.
The results are reported in Table II as models a−d for each
dimension (ep, ed , er).

Fig. 7 shows OffsetNet tracking the test sequence of Icam
x ,

where the output of each step updated the estimated x̂t to be



TABLE II: Results of single-frame registration task on a
dataset of (Icam

xt , Isim
x̂t−1

) image pairs along the test sequence.
Errors reported as mean ± standard deviation.

Trained On
Image Styles:

ep
[mm]

ed
[◦]

er
[◦]

Converging
Estimates

Trained in seen region, Tested in seen region
a (Icam

xt∈S,I
sim
x̂t−1

) 2.9±3.3 4.2±6.6 4.3±7.6 94%
b (Isim

xt∈S,I
sim
x̂t−1

) 3.7±3.3 5.6±6.2 4.4±7.5 91%
Trained in seen region, Tested in unseen region

c (Icam
xt∈S,I

sim
x̂t−1

) 14.5±9.3 20.5±13.0 23.4±15.4 9%
d (Isim

xt∈S,I
sim
x̂t−1

) 10.2±5.9 20.6±12.0 22.4±15.0 11%
Trained in seen and unseen region, Tested in unseen region

e (Isim
xt ,Isim

x̂t−1
) 3.8±2.3 9.2±7.6 6.2±8.9 80%

f (Irnd
xt ,Isim

x̂t−1
) 3.2±2.4 7.5±7.7 6.0±8.6 88%

g (Igan
xt ,Isim

x̂t−1
) 3.6±2.2 8.9±7.9 7.2±8.6 81%

used in the following step as shown in Fig. 3. The model
trained on (Icam

xt∈S,I
sim
x̂t−1

) image pairs tracks the bronchoscope
until the bronchoscope enters the unseen region, at which
point the estimate jitters around previously seen bifurcations.
The maximum error in the seen region was 6.7 mm, 6.3◦ in
ed and 5.6◦ in er. The model trained on (Isim

xt∈S,I
sim
x̂t−1

) image
pairs also failed to track in the unseen region, but surprisingly
recovered from large errors in the seen region. Its maximum
errors in the seen region were 29.0 mm, 16.9◦ in ed and 5.7◦

in er.
To analyze how the tracking performances would relate to

driving decisions, the visibility of airways at each location is
analyzed. We define a visible airway as one whose centerline
lies within 1 cm of the bronchoscope location and would
lie within the location’s field of view. Let at be the set of
airways visible at xt , and ât be the set of airways visible at
the estimated location, x̂t . Sensitivity is the true positive rate,
∑at∩ ât/∑at , while precision is the positive predictive value,
∑at ∩ ât/∑ ât . Low sensitivity indicates OffsetNet missed
visible airways, while low precision indicates OffsetNet
misclassified airways as visible.

Despite low tracking errors, OffsetNet trained on
(Icam

xt∈S,I
sim
x̂t−1

) image pairs misclassified 19% of airways as
visible, resulting mainly from the point of maximum error
when it pauses at a bifurcation before continuing to track.
If an autonomous agent were commanded to follow the
trajectory, it is possible it would steer towards one of these
mislabeled airways, which indicates this performance is
insufficient for autonomous driving.

B. Training with Simulated Images Enables Tracking in
Unseen Region

In the lung periphery, the airway geometry is less con-
served between patients, and the last section shows that
OffsetNet’s performance is extremely sensitive to unseen
airway geometry [28]. We explore if training on rendered
image pairs in the seen and unseen regions, (I{sim,rnd,gan}

xt ,
Isim

x̂t−1
), would enable patient-specific refinement to the model.

For this experiment, models are tested on Icam
x∈U , the subset

of the images from the test sequence that lies in the unseen
region U . Models were trained on image pairs where both
(xt , x̂t−1) were randomly offset around the recorded test
sequence, xrec

t , which generously targets the training around
the test path. To evaluate the contribution of image style,
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Fig. 9: OffsetNets tested on 25 uniformly offset (Icam
xt∈U , Isim

x̂t−1
)

image pairs per xt of the test sequence in the unseen region
of the lung, similar to Fig. 8. One out of every 50 points are
plotted to improve visibility.

models were trained on (I{sim,rnd,gan}
xt , Isim

x̂t−1
) image pairs,

shown in Fig. 5. The three simulation-based models e, f ,g
were compared to model c trained on (Icam

xt∈S, Isim
x̂t−1

) image
pairs.

They were tested on the single-frame registration task,
shown in Fig. 9 and Table II. Models e, f ,g trained on
simulated data outperform model c on all metrics. Model f
trained on (Irnd

xt , Isim
x̂t−1

) image pairs performs the best on each
metric by a small margin. The differences in performance
between models b and e can be attributed to differences in
training distribution and task difficulty.

The models were also tested on a tracking task in the
unseen region, Fig. 10. In the tracking task, the model with
no training in the region moves in the opposite direction,
while all the simulation-based models track until at least
the first bifurcation. Model f performs the best, successfully
tracking the bronchoscope into the second airway after a
maximum error of 13.0 mm, 18.6◦ in ed , an d 8.7◦in er.
Despite the high maximum error, the sensitivity and precision
metrics are higher than model a, shown in Fig. 7.

IV. DISCUSSION

The results of OffsetNet in a lung phantom demonstrate
potential for being used as a real-time lung localization
method. Based on only 30 minutes of training data, OffsetNet
can track a held-out driving sequence in a lung phantom in
real-time with accuracy comparable to or better than results
reported in the literature, to the authors’ knowledge. While
the performance on the lung phantom may not be accurate
enough to use in closed-loop control with an autonomous
operator, we found that OffsetNet is capable of closing
the loop in a simulated driving environment with sufficient
training data; however, these results are not shown here due
to space constraints.

Training on simulated data enabled tracking in a region of
the lung phantom, which is an impressive result given the
challenges in domain adaption for RGB cameras. This result
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is promising for handling airways unique to the patient in
less conserved regions, given an accurate CT segmentation.
While training on (Irnd

xt , Isim
x̂t−1

) image pairs performed better
than (Igan

xt , Isim
x̂t−1

) image pairs here, there is room to combine
both methods, and refining the GAN performance would
improve OffsetNet’s performance.

OffsetNet has the potential to incorporate more informa-
tion by introducing additional Ix̂t−1 images into the tracking
loop. For example, the predicted view from the centerline
given the insertion information can help prevent the model
from getting stuck. Multiple Ix̂t−1 images can also provide
some insight into how much confidence the model has in
its predictions by measuring the variance of the resulting
estimates. To maintain real-time rates, the code can be
optimized by moving from Python to C++.

The algorithm has several limitations, including geometry
sensitivity and tracking unpredictability. OffsetNet fails to
track in airways missing from its training set. Based on
the model’s performance in the seen and unseen regions, it
appears that OffsetNet fails to generalize to unseen airways,
which emphasizes the need for creating complete training
sets. OffsetNet’s tracking performance is hard to predict as
evidenced by the performance in Fig. 10 when model f can
recover from an error, while the other models do not. More
generally, stability is a risk for the tracking loop as it is only
a matter of time before the location estimates x̂ drift (Fig. 3).
In our tracking analysis, we strive to relate quantitative errors
to the quality of the localization module, but it is imperfect.
The definition of visible airways is somewhat arbitrary and
may affect the reported results. In this paper, we only trained
and tested OffsetNet on a limited dataset of a single lung
phantom, which is considerably easier than the task of live
human lungs. Finally, regardless of the algorithm, visual-
based localization may struggle in the periphery of the lung

when vision is lost because of airway collapse. Irrigation
and air insufflation can help mitigate this issue, but there are
times where the user needs to drive without vision.

In conclusion, this technique shows promise as an accu-
rate, real-time localization method in the lung’s airways. This
same technique may be applied to other organ systems as
well, given a suitable model of the geometry.

APPENDIX
OffsetNet is most similar to the inverse-compositional

registration technique (IC), and the table below compares
the reported values in a single-frame registration task to
OffsetNet [15]. Note that the distribution of images differs
from the single-frame registration tasks reported above.

TABLE III: Median errors for single-frame registration under
random initial pose perturbations. The errors and success rate
are defined in [15]. Results are shown for OffsetNet trained
on (Icam

xt∈S,I
sim
x̂t−1

) image pairs [a] and (Isim
xt∈S,I

sim
x̂t−1

) image pairs
[b], defined in Table II, evaluated in the seen region.

(a) Tested on (Isim
xt∈S,I

sim
x̂t−1

) image pairs
Method ep ed er Success rate
IC [15] 1.6 mm 3.1◦ 1.7◦ 84%

OffsetNet [a] 2.4 mm 3.4◦ 2.0◦ 90.2%
OffsetNet [b] 1.1 mm 1.2◦ 0.9◦ 99.4%

(b) Tested on (Icam
xt∈S,I

sim
x̂t−1

) image pairs
Method ep ed er Success rate
IC [15] 2.7 mm 5.4◦ 8.2◦ 70%

OffsetNet [a] 1.2 mm 1.2◦ 1.1◦ 99.3%
OffsetNet [b] 2.0 mm 3.1◦ 1.4◦ 91.0%
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