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Abstract—Project AutoVision aims to develop localization
and 3D scene perception capabilities for a self-driving vehicle.
Such capabilities will enable autonomous navigation in urban
and rural environments, in day and night, and with cameras as
the only exteroceptive sensors. The sensor suite employs many
cameras for both 360-degree coverage and accurate multi-view
stereo; the use of low-cost cameras keeps the cost of this sensor
suite to a minimum. In addition, the project seeks to extend
the operating envelope to include GNSS-less conditions which
are typical for environments with tall buildings, foliage, and
tunnels. Emphasis is placed on leveraging multi-view geometry
and deep learning to enable the vehicle to localize and perceive
in 3D space. This paper presents an overview of the project,
and describes the sensor suite and current progress in the areas
of calibration, localization, and perception.

I. INTRODUCTION

The three DARPA Grand Challenges in the last decade
set off a wave of disruption in the automotive industry. With
widespread belief that autonomous vehicles can revolutionize
logistics and mobility, automakers and technology companies
are racing with one another to put autonomous vehicles on
the road within the next few years. LIDAR sensors are the
primary sensing modality for a vast majority of autonomous
vehicles; they generate highly accurate 3D point cloud data
in both day and night, and enable localization and 3D scene
perception at all times of the day. In contrast, cameras require
sufficient ambient lighting, and do not directly provide 3D
point cloud data. However, cameras yield high-resolution
image data which better facilitates scene segmentation and
understanding. In addition, we can leverage multi-view ge-
ometry techniques to infer depth data from multiple cameras
albeit with lower accuracy than depth data from LiDAR
sensors. Cameras can be fitted with either wide-field-of-view
or fisheye lenses, giving them a significantly larger vertical
field of view and higher vertical resolution compared to
LiDAR sensors. In Project AutoVision, we choose to focus
on cameras as the sole sensing modality for autonomous
vehicles; we observe that much research remains to be done
in realising robust visual localization and perception for
autonomous vehicles.

Project AutoVision started in late 2016 with the goal
to develop localization and 3D scene perception algorithms
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for autonomous vehicles exclusively equipped with cameras.
Project AutoVision is similar to, but differs from Project
V-Charge [9, 131} [14] in the aspect that Project AutoVision
extends the operating envelope from parking lots and garages
to large-scale urban and rural environments with higher
driving speeds and widely varying illumination conditions.
Parallels can also be drawn between Project AutoVision and
AutoX, both of which only rely on cameras for localization
and perception. However, little is known about AutoX’s
localization and perception approaches due to commercial
interests.

We aim to localize in both mapped and unmapped areas
without relying on GNSS; we do not want to limit the
vehicle’s operation to mapped areas in GNSS-less condi-
tions. In addition, we work towards real-time 3D mapping
as a 3D geometric map can aid navigation of multi-level
structures and higher-level scene perception tasks such as
terrain analysis and 3D scene understanding. We follow the
traditional approach [33], 3] of applying multi-view geometry
to localization and 3D geometric mapping, and machine
learning to cross-modal matching, object detection, and scene
segmentation. On the other hand, with the advent of deep
neural networks, people [2] have used end-to-end learning for
vision-based autonomous vehicles but with limited success.

We make the following contributions:

1) Real-time visual-inertial odometry with a multi-camera
system [25} 26].

2) Real-time GNSS-less visual localization in unmapped
areas using geo-referenced satellite imagery and with-
out GNSS, assuming that the initial global position and
heading of the vehicle are known [19} [18].

3) Real-time GNSS-less visual localization with a multi-
camera system in mapped areas using a geo-referenced
sparse 3D map and without prior knowledge of the
vehicle’s global pose [[11]].

4) Real-time 3D dense mapping with a multi-fisheye-
camera system [J5]].

In this paper, we briefly describe these contributions which
have been integrated into a single working system. The
reader can refer to our published work for more details on the
algorithms and experimental results. In addition, the paper
gives details of the hardware setup, the software architecture,
and the automated methods used for calibrating the multi-
sensor suite; such details are not found in our published work
on individual localization and perception components.



Fig. 1.

The AutoVision vehicle platform.

II. SYSTEM

In this section, we give an overview of the sensors on the
AutoVision vehicle platform, and the software architecture
that enables various software modules to work together to
enable the vehicle to localize and perceive in 3D.

Our AutoVision vehicle platform is a Isuzu D-Max pick-
up truck which has been modified to include a drive-by-wire
system for autonomous driving. Fig. [I] shows the vehicle
platform while Fig. 2] shows a close-up view of the sensors
on the vehicle roof. Four color cameras and twelve NIR
cameras are fitted with 180°-field-of-view fisheye lenses
and installed in a surround-view configuration on top of
the vehicle. All cameras output 2-megapixel images at 30
Hz, and are set to automatic exposure mode so that they
can adapt to changing lighting conditions. We only use 12-
bit grayscale images from the NIR cameras as input to all
localization and perception modules; color cameras are only
used for visualization purposes. NIR cameras are more light-
sensitive than color cameras, and can detect light in both
the visible and NIR wavelengths. In addition, NIR cameras
provide sharp and clean images unlike Bayer-encoded color
images that suffer from demosaicing artefacts. We use NIR
cameras in conjunction with NIR illuminators which can
improve low-light imaging quality and whose illumination
is invisible to and does not distract drivers on the road.
Fig. ] shows examples of images captured at approximately
the same location in varying lighting conditions. Camera
enclosures provide cameras with IP67 protection from the
weather elements. Fig. 3] shows the camera layout on the
vehicle roof. The front side of the vehicle has the highest
number of NIR cameras; these 5 NIR cameras facilitate wide-
baseline stereo, and in turn, long-range perception which
is critical for autonomous vehicles moving forward at high
speeds. We exploit the dominantly longitudinal movement of
the vehicle by simulating a multi-baseline stereo system on
each side of the vehicle and which consists of 2 actual NIR
cameras and at least 1 virtual NIR camera.

A. Hardware

A dual-antenna GNSS/INS system with a tactical-grade
IMU is installed in the vehicle. Data from this GNSS/INS
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Fig. 3. The sensor layout on the AutoVision vehicle platform. Each green-
colored frustum and grey-colored cylinder represent a camera and LiDAR
sensor respectively. The origin of the three axes indicates the location of
the IMU. The red-colored z-axis points towards the front of the vehicle
while the green-colored y-axis points towards the left of the vehicle. The
extrinsic transformation between each sensor and the IMU was estimated
with automated calibration tools.

system is post-processed offline to yield centimeter-level
ground-truth position and attitude data which is used to eval-
uate localization accuracy. A 3D LiDAR sensor is mounted at
each of the four corners of the vehicle roof; fused point cloud
data from all 4 LiDAR sensors is used to evaluate perception
accuracy. All sensor data is hardware-timestamped to sub-
microsecond precision. Such accurate time synchronization
is made possible through the use of a time server. This time
server synchronizes to the GNSS/INS system via PPS signals
and NMEA data. In turn, LiDAR sensors and cameras time-
synchronize to the time server via PPS/NMEA and PTP
respectively. All sensors interface over a 10 GbE network
switch with multiple industrial-grade computers equipped
with GPUs. The 16-camera system yields 1.38 GB/s of image
data which we record simultaneously to 4 solid-state drives
(SSDs); we configure each computer to have two SSDs, and
thus, two computers are required for data recording.

B. Software

Our software stack is based on the ROS 2 software frame-
work, and runs on Windows 10. We use RTI Connext DDS
for inter-process communications. Fig. [5] shows our software
architecture; with the exception of the block representing
sparse 3D map reconstruction which runs offline, each block
represents a node which subscribes and publishes to topics.
GNSS and IMU measurements are only used by sparse 3D



(a) Day-time.
Fig. 4.

map reconstruction and visual-inertial odometry respectively.
All nodes subscribe to image data.

III. CALIBRATION

An accurate calibration is an essential prerequisite for
localization and perception to work well with a multi-camera
system. Our calibration pipeline is automated and involves
the following steps in order: intrinsic and extrinsic calibration
of a multi-camera system, extrinsic calibration between a
calibrated multi-camera system and a GNSS/INS system,
and extrinsic calibration between a LiDAR sensor and a
calibrated multi-camera system.

We do intrinsic and extrinsic calibration of the multi-
camera system with the help of a fiducial target which is a
grid of AprilTag markers [32] with known dimensions, and
is shown in Fig. [6] As each AprilTag marker has an unique
identifier, calibration will work even if multiple cameras
observe different parts of the target. This versatility comes
in handy when calibrating pairs of cameras at the vehicle’s
corners and with perpendicular optical axes; it is difficult for
such a pair of cameras to observe the entire target. For the
intrinsic calibration, we can choose from multiple camera
projection and distortion models. In this project, we use the
unified projection model [12,[1] and the plumb bob distortion
model [4]. We also perform a photometric calibration of each
camera using the method described in [7]. This photometric
calibration is useful for photometric-based matching between
images captured with different exposure times, for example,
in direct visual odometry and plane-sweeping stereo.

We obtain the extrinsic transformation between the cal-
ibrated multi-camera system and the GNSS/INS system by
following an approach similar to that of Heng et al. [[16} [17].
Here, the reference frame of the GNSS/INS system coincides
with that of the IMU. We run semi-direct stereo visual
odometry (VO) [15] for a stereo pair on each side of the
vehicle. Each instance of stereo VO yields a set of camera
poses and feature tracks. From hand-eye calibration using the
reference camera’s poses from stereo VO and the GNSS/INS
system’s poses, we obtain an initial estimate of the extrinsic
transformation. Subsequently, we refine the extrinsic trans-
formation by solving a non-linear least-squares problem in
which we minimize the sum of squared reprojection errors
associated with feature tracks while keeping the GNSS/INS
system’s poses and inter-camera transformations fixed.

(b) Night-time with NIR illumination.

(c) Night-time without NIR illumination.

Images captured from a front left camera on the AutoVision vehicle and in varying lighting conditions.

With the same fiducial target from intrinsic and extrinsic
calibration of the multi-camera system, we perform extrinsic
calibration between each LiDAR sensor and the calibrated
multi-camera system. Given a set of images captured simulta-
neously from the multi-camera system, we detect the fiducial
target in each image, and estimate its pose with respect to
the multi-camera system by minimizing the squared sum
of reprojection errors across all images in which the target
was detected. At the same time, we identify the set of
points corresponding to the fiducial target in the LiDAR
scan by using plane segmentation [10], and estimate the
target’s plane parameters with respect to the LiDAR sensor.
With repeated observations of the target in different orien-
tations, we independently estimate the rotation and trans-
lation components of the extrinsic transformation between
the LiDAR sensor and the multi-camera system by doing
singular value decomposition and solving a linear system of
equations respectively. Subsequently, we refine the extrinsic
transformation by minimizing the sum of squared point-plane
errors; the points form part of the LiDAR scan identified as
corresponding to the target, and the plane parameters are
inferred from the estimated pose of the target with respect
to the multi-camera system. Fig. [7| shows the projection of
LiDAR scan points into a camera image using the results
of extrinsic calibration between the LiDAR sensor and the
multi-camera system.

IV. LOCALIZATION

One goal of Project AutoVision is to enable an au-
tonomous vehicle to localize in both unmapped and
premapped environments. A vehicle relying on map-based
localization is restricted to movement within the map. We
want to allow the vehicle to navigate beyond the map into
unmapped areas by leveraging satellite imagery. However, a
premapped environment enables the vehicle to localize with
higher accuracy. Global pose estimates are susceptible to
pose jumps; smooth local pose estimates are required for
stable path tracking and to build consistent 3D maps. For
this purpose, we use direct visual-inertial odometry which
runs at the frame rate of the multi-camera system.

A. Direct Visual-Inertial Odometry

Our direct visual-inertial odometry (VIO) implementation
for a multi-camera system [25, |26] estimates the local pose of
the vehicle at 30 Hz. Our direct VIO implementation contains
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Fig. 5.

Fig. 7.

Projeciton of LiDAR scan points into a camera image.

two threads: (1) the tracking thread estimates the local pose
by minimizing photometric errors between the most recent
keyframe and the current frame, and (2) the mapping thread
initializes the depth of all sampled feature points using
plane-sweeping stereo, and uses a sliding window optimizer
to refine poses and structure jointly. Extensive experiments
described by Liu et al. [26] show our implementation to
work robustly for a 4-stereo-camera configuration with less
than 1% translational drift in day-time and night-time with
NIR illumination, and less than 2% translational drift in
night-time without NIR illumination. Fig. [§ plots the pose
estimates from our VIO implementation against ground truth
data for a 8.2km route in a route covering both urban and
rural environments.

Our AutoVision software architecture. GNSS is only used for sparse 3D map reconstruction.
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Fig. 8. The positions estimated by VIO vs ground truth positions. One

front stereo pair and one rear stereo pair were used for VIO.

B. 3-DoF Localization with Satellite Imagery

In areas that have not been premapped, we rely on satellite
imagery to estimate the 3-DoF global pose. Specifically, we
estimate the (z,y) position and heading of the vehicle with
respect to the UTM coordinate frame. Assuming that the
initial position and heading are known from user input, we
use the particle filter approach in which we use local pose
data from VIO for particle propagation and output from a
deep network [18] for particle weighting.

As shown in Fig. 0] the deep network called CVM-
Net is a Siamese network that takes satellite and ground-
level panoramic images as input. We obtain the panoramic
image by stitching the cylindrical projections of images
taken from four cameras: one camera on each side of the
vehicle. For each image, we extract local features via fully
convolutional networks. Two aligned NetVLADs aggregate
local features from both images into global descriptors that
are in a common space for similarity comparison. The weight
for each particle is inversely proportional to the Euclidean
distance between the global descriptors corresponding to the
ground-level panoramic image and the satellite image patch
nearest the particle’s position.

We run two experiments with a Skm route in both an
urban environment and a rural environment. Experimental
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Fig. 9. The architecture of our deep network, CVM-Net, for cross-view
matching [19, |18]].

Fig. 10.
urban environment.

A visualization of our satellite-imagery-based localisation in an

results show that our satellite-imagery-based localization
achieves an average position error of 9.92m and an average
heading error of 0.32° over a Skm route in the urban
environment, and an average position error of 9.29m and
an average heading error of 0.42° in the rural environment.
Fig. [10] visualizes our satellite-imagery-based localisation in
an urban environment. The top left image shows the ground-
view panoramic image. The bottom left image shows the
paths estimated by our localization and GNSS/INS system
in green and red respectively on the bottom left. In the right
image, particles are shown in blue on the right and interposed
against a likelihood map; the more red the pixel, the higher
the likelihood that the vehicle is located at that pixel.

C. Sparse 3D Map Reconstruction

Sparse 3D map reconstruction is required for map-based
6-DoF localization which is described in Section Prior
to localization, we build a sparse 3D map in which each 3D
point is associated with one or more local SIFT features [27].

To minimize the time required for large-scale reconstruc-
tion, our approach does not reconstruct the scene from
scratch, and instead, uses reasonably accurate initial pose
estimates from a GNSS/INS system to initialize all camera
poses. In addition, we require a minimum amount of camera
motion between images used for mapping. Next, we perform
feature matching between nearby images, and use the feature

B . ST e
(a) Bird’s eye view.

(b) Close-up view.

Fig. 11. The sparse 3D map of a mixed urban and rural environment and
generated by our reconstruction pipeline.

matches and initial poses to triangulate the scene. We then
repeatedly optimize the scene structure and camera poses
using bundle adjustment followed by the merging of feature
tracks. This approach is implemented on top of the COLMAP
structure-from-motion (SfM) framework [30]. During bundle
adjustment, we enforce that the extrinsic parameters of
the multi-camera system on the AutoVision vehicle remain
constant. Fig. [IT] shows a sparse 3D map of a mixed urban
and rural environment.

D. 6-DoF Localization with a Sparse 3D Map

Given a sparse 3D map computed using the approach
described in Section and without prior knowledge
of the AutoVision vehicle’s global pose, we localize the
AutoVision vehicle by extracting local SIFT features [27]
from the images captured by the cameras mounted on the
AutoVision vehicle and matching the descriptors of these 2D
features against the descriptors associated with the 3D points
in the map. From the 2D-3D matches, we apply a generalized
perspective-n-point pose solver [22 23] inside a RANSAC
loop [8]] to estimate the vehicle’s pose. With a sparse 3D
map of a large area which contains many 3D points, 2D-
3D matching is the main computational bottleneck in our
pipeline. In this case, we use a prioritized matching approach
based on Active Search [29] for improved matching effi-
ciency. Geppert et al. [[11] describe our localization approach
in greater detail.

For our experiments, we use the same routes used for the
satellite-imagery-based localization experiments described in
Section [[V-B] Our localization pipeline runs at around 2 Hz
on the AutoVision vehicle. Fig. [I2] shows the estimated and
ground truth positions for the urban and rural routes. For
the urban route, the mean and median errors of all reported
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object detector.

Fig. 13.  Output from the AutoVision perception modules [3].

poses are 3.31m and 1.84m for the position, and 2.6° and
1.9° for the heading, respectively. For the rural route, the
mean and median errors of all reported poses are 3.48m and
1.81m for the position, and 4.2° and 3.3° for the heading,
respectively.

V. PERCEPTION

Dense 3D mapping in real-time is a prerequisite for au-
tonomous navigation in complex environments. Our percep-
tion pipeline begins with plane-sweeping stereo generating
depth images. In turn, depth images are fused into a truncated
signed distance function (TSDF) volume. A 3D map is
reconstructed from this TSDF volume via ray-casting. To
avoid dynamic objects from corrupting the 3D map via
trails of artefacts, we detect potentially dynamic objects not
belonging to the static environment, and remove their asso-
ciated depth estimates from the depth images prior to depth
fusion. Fig. [T3] visualizes the outputs from plane-sweeping
stereo, object detection, and TSDF-based 3D mapping. More
details of our perception pipeline can be found in [5]].

A. Plane-Sweeping Stereo

Plane-sweeping stereo computes a depth image for mul-
tiple images with known camera poses by sweeping a set

of planes through 3D space. Each plane represents a depth
hypothesis and defines a homography mapping from every
other view to the reference view. We estimate the depth for
each pixel in a reference image by using each plane to warp
each non-reference image to the reference image, evaluating
the image dissimilarity at that pixel, and choosing the plane
that minimizes the image dissimilarity. We use the GPU
implementation of plane-sweeping stereo for fisheye cameras
[13] which computes depth images directly from fisheye
images without the need for undistortion, allowing us to
use the full field-of-view of the cameras. On the AutoVision
vehicle, plane-sweeping stereo runs at an average of 15 Hz
for the 5 cameras at the front of the vehicle and with images
downsampled to half-resolution.

B. TSDF-based 3D Mapping

A single depth image may not contain sufficient geometric
information for up-stream modules such as 3D semantic
segmentation and motion planning. Hence, we need to fuse
depth images estimated at different positions in time to
create a dense 3D map. We use a standard fusion technique:
the scene is represented via a set of voxels where each
voxel stores a TSDF value [6]. Here, each voxel stores the
signed distance to the closest object surface (negative inside
of objects, positive outside of objects, zero on surfaces),
truncated to a certain maximum / minimum value. Whenever
a new depth image along with its camera pose becomes
available, we update the 3D model. We use the map fusion
pipeline in the InfiniTAM library [20, 21]. We also use the
fast raycasting algorithm in [20) 21]] to reconstruct the 3D
map in the current camera view. The pipeline runs at around
20 Hz on the AutoVision vehicle.

C. Dynamic Object Detection

Dynamic objects leave behind trails of artefacts in the 3D
map. We leverage 2D object detection to solve this problem.
Given a reference image, we detect dynamic objects, i.e.
humans and vehicles. In turn, for the corresponding depth
image, we mask out pixels located within the 2D bounding
boxes of detected objects. This way, we avoid integrating
depth estimates associated with dynamic objects into the 3D
map. We use the YOLOvV3 object detection network [28]
trained on the Microsoft COCO dataset [24]. To improve
the inference performance with distorted grayscale images
from our NIR fisheye cameras, we fine-tune the network by
truncating the first and last layers, and retrain the network
using our labeled datasets.

VI. CONCLUSIONS

Project AutoVision has successfully demonstrated local-
ization and 3D scene perception for autonomous vehicles
with multi-camera systems, in both urban and rural envi-
ronments, and without GNSS. As Project AutoVision pro-
gresses, we will continue to enhance localization and per-
ception capabilities, and add more modules to our software
stack. These modules include but are not limited to, change
detection for 3D maps, obstacle detection, dynamic object
tracking and classification, and semantic 3D mapping.



(1]

(2]

(3]

(4]
(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

REFERENCES

J. Baretto and H. Araujo. Issues on the geometry of cen-
tral catadioptic image formation. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2001.

M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner,
B. Flepp, P. Goyal, L. D. Jackel, M. Monfort, U. Muller,
J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End to end
learning for self-driving cars. CoRR, abs/1604.07316,
2016.

A. Broggi, P. Cerri, S. Debattisti, M. C. Laghi,
P. Medici, D. Molinari, M. Panciroli, and A. Prioletti.
Proudpublic road urban driverless-car test. IEEE Trans-
actions on Intelligent Transportation Systems, 16(6):
3508-3519, 2015.

D. C. Brown. Decentering distortion of lenses. Photo-
metric Engineering, 32(3):444-462, 1966.

Z. Cui, L. Heng, Y. C. Yeo, A. Geiger, M. Pollefeys,
and T. Sattler. Real-time dense mapping for self-driving
vehicles using fisheye cameras. In IEEE International
Conference on Robotics and Automation (ICRA), 2019.
B. Curless and M. Levoy. A volumetric method for
building complex models from range images. In An-
nual Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH), 1996.

J. Engel, V. C. Usenko, and D. Cremers. A photo-
metrically calibrated benchmark for monocular visual
odometry. CoRR, abs/1607.02555, 2016.

M. A. Fischler and R. C. Bolles. Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24:381395, 1981.

P. Furgale, U. Schwesinger, M. Rufli, W. Derendarz,
H. Grimmett, P. Miihlfellner, S. Wonneberger, J. Timp-
ner, S. Rottmann, B. Li, B. Schmidt, T. N. Nguyen,
E. Cardarelli, S. Cattani, S. Briining, S. Horstmann,
M. Stellmacher, H. Mielenz, K. Koser, M. Beermann,
C. Hine, L. Heng, G. H. Lee, F. Fraundorfer, R. Iser,
R. Triebel, I. Posner, P. Newman, L. Wolf, M. Pollefeys,
S. Brosig, J. Effertz, C. Pradalier, and R. Siegwart.
Toward automated driving in cities using close-to-
market sensors: An overview of the v-charge project.
In IEEE Intelligent Vehicles Symposium (IV), 2013.

A. Geiger, F. Moosmann, U. Car, and B. Schuster.
Automatic camera and range sensor calibration using
a single shot. In IEEE International Conference on
Robotics and Automation (ICRA), 2012.

M. Geppert, P. Liu, Z. Cui, M. Pollefeys, and T. Sattler.
Efficient 2d-3d matching for multi-camera visual local-
ization. In IEEE International Conference on Robotics
and Automation (ICRA), 2019.

C. Geyer and K. Daniilidis. A unifying theory for
central panaromic systems and practical implications.
In European Conference on Computer Vision (ECCV),
2000.

C. Héne, L. Heng, G. H. Lee, A. Sizov, and M. Polle-

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

feys. Real-time direct dense matching on fisheye
images using plane-sweeping stereo. In International
Conference on 3D Vision (3DV), 2015.

C. Héne, L. Heng, G. H. Lee, F. Fraundorfer, P. Furgale,
T. Sattler, and M. Pollefeys. 3d visual perception for
self-driving cars using a multi-camera system: Cali-
bration, mapping, localization, and obstacle detection.
Image and Vision Computing (IVC), 68:14-27, 2017.
L. Heng and B. Choi. Semi-direct visual odometry
for a fisheye-stereo camera. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2016.

L. Heng, P. Furgale, and M. Pollefeys. Leveraging
image-based localization for infrastructure-based cali-
bration of a multi-camera rig. Journal of Field Robotics
(JFR), 32:775-802, 2015.

L. Heng, G. H. Lee, and M. Pollefeys. Self-calibration
and visual slam with a multi-camera system on a micro
aerial vehicle. Autonomous Robots (AURO), 39:259—
277, 2015.

S. Hu and G. H. Lee. Image-based geo-localization
using satellite imagery. International Journal of Com-
puter Vision (IJCV), 2019.

S. Hu, M. Feng, R. M. H. Nguyen, and G. H. Lee. Cvm-
net: Cross-view matching network for image-based
ground-to-aerial geo-localization. In IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2018.

O. Kihler, V. A. Prisacariu, C. Y. Ren, X. Sun, P. Torr,
and D. Murray. Very high frame rate volumetric
integration of depth images on mobile devices. IEEE
Transactions on Visualization and Computer Graphics
(TVCG), 21(11):1241-1250, 2015.

O. Kihler, V. Prisacariu, J. Valentin, and D. Murray.
Hierarchical voxel block hashing for efficient integra-
tion of depth images. IEEE Robotics and Automation
Letters (RA-L), 1(1):192-197, 2016.

L. Kneip, P. Furgale, and R. Siegwart. Using multi-
camera systems in robotics: Efficient solutions to the
npnp problem. In IEEE International Conference on
Robotics and Automation (ICRA), 2013.

G. H. Lee, B. Li, M. Pollefeys, and F. Fraundorfer.
Minimal solutions for the multi-camera pose estimation
problem. International Journal of Robotics Research
(IJRR), 34:837-848, 2015.

T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona,
D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft
coco: Common objects in context. In European Con-
ference on Computer Vision (ECCV), 2014.

P. Liu, L. Heng, T. Sattler, A. Geiger, and M. Pollefeys.
Direct visual odometry for a fisheye-stereo camera.
In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2017.

P. Liu, M. Geppert, L. Heng, T. Sattler, A. Geiger,
and M. Pollefeys. Towards robust visual odometry
with a multi-camera system. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),



2018.

[27] D. G. Lowe. Distinctive image features from scale-

invariant keypoints. International Journal of Computer
Vision (IJCV), 60(2):91110, 2004.

[28] J. Redmon and A. Farhadi. Yolov3: An incremental

improvement. CoRR, abs/1804.02767, 2018.

[29] T. Sattler, B. Leibe, and L. Kobbelt. Efficient & ef-

[30]

[31]

[32]

[33]

fective prioritized matching for large-scale image-based
localization. [EEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), 39:17441756, 2017.
J. Schonberger and J. Frahm. Structure-from-motion
revisited. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016.

U. Schwesinger, M. Biirki, J. Timpner, S. Rottmann,
L. Wolf, L. M. Paz, H. Grimmett, I. Posner, P. Newman,
C. Héne, L. Heng, G. H. Lee, T. Sattler, M. Polle-
feys, M. Allodi, F. Valenti, K. Mimura, B. Goebels-
mann, W. Derendarz, P. Miihlfellner, S. Wonneberger,
R. Waldmann, S. Grysczyk, C. Last, S. Briining,
S. Horstmann, M. Bartholomius, C. Brummer, M. Stell-
macher, F. Pucks, M. Nicklas, and R. Siegwart. Auto-
mated valet parking and charging for e-mobility. In
IEEE Intelligent Vehicles Symposium (IV), 2016.

J. Wang and E. Olson. AprilTag 2: Efficient and
robust fiducial detection. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS),
2016.

J. Ziegler, P. Bender, M. Schreiber, H. Lategahn,
T. Strauss, C. Stiller, T. Dang, U. Franke, N. Appenrodt,
C. G. Keller, E. Kaus, R. G. Herrtwich, C. Rabe,
D. Pfeiffer, F. Lindner, F. Stein, F. Erbs, M. Enzweiler,
C. Knoppel, J. Hipp, M. Haueis, M. Trepte, C. Brenk,
A. Tamke, M. Ghanaat, M. Braun, A. Joos, H. Fritz,
H. Mock, M. Hein, and E. Zeeb. Making bertha drive
- an autonomous journey on a historic route. IEEE
Intelligent Transportation Systems Magazine, 6(2):8—
20, 2014.



	I INTRODUCTION
	II System
	II-A Hardware
	II-B Software

	III Calibration
	IV Localization
	IV-A Direct Visual-Inertial Odometry
	IV-B 3-DoF Localization with Satellite Imagery
	IV-C Sparse 3D Map Reconstruction
	IV-D 6-DoF Localization with a Sparse 3D Map

	V Perception
	V-A Plane-Sweeping Stereo
	V-B TSDF-based 3D Mapping
	V-C Dynamic Object Detection

	VI CONCLUSIONS

