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Abstract— Autonomous robotic weeding systems in precision
farming have demonstrated their full potential to alleviate the
current dependency on herbicides or pesticides by introduc-
ing selective spraying or mechanical weed removal modules,
thus reducing the environmental pollution and improving the
sustainability. However, most previous works require fast weed
detection system to achieve real-time treatment. In this pa-
per, a novel computer vision based weeding control system
is presented, where a non-overlapping multi-camera system
is introduced to compensate the indeterminate classification
delays, thus allowing for more complicated and advanced
detection algorithms, e.g. deep learning based methods. The
suitable tracking and control strategies are developed to achieve
accurate and robust in-row weed treatment, and the perfor-
mance of the proposed system is evaluated in different terrain
conditions in the presence of various delays.

I. INTRODUCTION

Feeding a growing population and protecting the environ-

ment are two of the main challenges for the next few decades.

Precision agriculture, also known as smart farming, addresses

both challenges notably by targeting treatment only to plants

that need it. Indeed, today’s crop cultivation practices rely

heavily on the uniform application of herbicides for weed

control. In this scope, developing flexible robotic systems is

essential to widespread precision agriculture. Within the EU-

project Flourish [1], an autonomous weed control system has

been designed, which can manage weeds either chemically

with a precise spot-spraying of herbicide, or mechanically

with a stamper tool destroying the weeds.

To precisely target the weeds, the first step is actually to

separate the weeds from the value crops. Vision-based clas-

sification approaches have proven effective in this domain,

is even capable enough to detect the stem of the weeds [2].

Such methods, using Convolutional Neural Network (CNN),

introduce a new challenge which is the indeterminate delay

between the time the image is captured to perform the

classification and the time the results of the classification

are available to trigger the actuators.

Our proposed system, in Fig. 1, addresses this by in-

troducing a non-overlapping multi-camera tracking system

that could reliably retrace the 3D locations of weeds using

intra- and inter-camera template-based tracking. The adverse

effect of the delays induced by the CNN-based classifier can

be efficiently alleviated, and the predictive control layer is

designed to provide an accurate prediction of trigger timing

and locations for weed treatment tools. A mechanical stamp

tool, as well as a selective sprayer, are implemented in
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Fig. 1: Left: the Flourish BoniRob with our proposed weed

control hardware module mounted at the bottom. Upper-

Right: a CAD view of the module including the actuators and

sensors. Bottom-Right: the example pictures of the selective

sprayer and the mechanical stamping tool.

our weed control system to achieve fast and accurate weed

treatment.

This paper makes the following contributions: 1) A novel

self-sustained weed control system is designed, implemented,

and extensively evaluated in the field for in-row weed re-

moval; 2) a 3D multi-camera multi-object tracking algorithm

using direct or indirect template matching is developed

to provide fast and accurate weeds tracking across non-

overlapping cameras.

II. RELATED WORK

Robotic system for weed control has been in the field

of research for a few decades [3]. Several methods to re-

move weeds adapted to robotics have been developed, either

chemically or mechanically, for in-row weeding. Spraying of

herbicides is a common weed-control method in traditional

agriculture. Therefore, many robotics platforms performing

selective spraying have been developed [4]. Significant effort

has been made towards the in-row weeding [5] [6], however,

the mechanical weed removal in the close-to-crop area is still

challenging. One solution is to stamp the weeds with a metal

rod with a diameter of 1 cm, proven effective in [7].

In recent years, significant progress has been made to-

wards machine vision based real-time weed detection using

learning-based methods. In [8], a mixture of small com-

ponents of a fine-tuned deep conventional neural network

(DCNN) is utilized to achieve accurate weed-crop classifi-

cation, which could achieve a 90% precision with a 1.07-

1.83Hz processing time. In [9], an encoder-decoder cascaded

conventional neural network (CNN) is utilized to perform

the dense semantic weed-crop classification, which achieves



Fig. 2: Our proposed weed control system utilizes a multi-

camera system to track the detected weeds using template

matching techniques with uncertain detection delays, where

the tracking can be naturally divided into intra- and inter-

camera tracking layers. The tracked targets will be fed into a

predictive control module to estimate the timing and position

of treatment when approaching the weeding app.

a high classification precision but cannot guarantee a 2-5Hz

real-time performance. In [10], a fully convolutional network

(FCN) is formulated to encode the spatial information of

plants in a row over sequentially acquired image sequence

to perform the classification task, resulting in a stable 5Hz

runtime performance . Other learning-based methods have

been specialized on stem detection [11], [12], [2].

Concerning the tracking module, our proposed system

implements a fixed-viewpoint down-looking camera and an

entirely controlled lighting system, so that most of the

state-of-the-art non-overlapping camera tracking methods are

excessively complex for our application. For this reason,

only applicable works are surveyed in this paper. In [13]

[14] [15], Kalman filter based multi-camera tracking systems

are developed to track multi-object in 2D image space. In

[16], the particle filter based 3D model-based visual tracking

algorithm utilizing lie group components is developed, where

the both indirect and direct formulation are implemented to

improve its robustness.

III. SYSTEM DESIGN

In this section, the hardware description in Sec.III-A and

software designs: the classification module in Sec. III-B, the

multi-camera tracking module in Sec. III-C, and finally the

control module in Sec. III-D, are briefly described.

A. Hardware Description

1) Mechanical design: The weeding-unit, in Fig. 1, is the

self-sustained module responsible for detecting and treat-

ing the weeds. The weeds are treated either mechanically

by stampers or chemically by sprayers: 18 individually

controlled stamps with 10mm-diameter bolts provide the

mechanical weeiding, while 9 individually controlled nozzles

deliver the chemical weeding. The actuators are controlled

with a scalable Programmable Logic Controller (PLC using

absolute timestamps, and the clocks (PC, PLC) are synchro-

nized to fulfill the timing requirement for precision treatment.

2) Perception system and calibration: Three down-

looking 4-channels JAI AD-130 GE cameras are mounting

on our proposed system with the distance to the ground being

approximatively 80cm. The ground resolution is approxima-

tively 3 px/mm, and the field of view is 24 x 31 cm. To keep

the same light conditions under the cameras the whole unit is

covered by 3 mm acetal copolymer sheets, and artificial lights

are mounted under to control the lighting. The RGB+NIR

images are used for classification, and the RGB images only

are used for tracking. Both the intrinsic and Inter-camera

extrinsic parameters are estimated using OpenCV.

Three narrow-beam sonars (SRF235 Ultrasonic range

finder), are mounted next to each camera to avoid doing the

calibration every time the unit is pulled up and then down.

The accuracy of the range measurement of these sonars is

1cm.

B. Classification

The first step toward weed treatment is weed detection.

In this project, the weed detection, published in [17], is a

vision-based online classification of crops and weeds using

RGB+NIR data. The runtime on the UGV computer (Intel

i7 CPU, GeForce GTX-1080 GPU) goes up to 191ms from

a mean of 124ms±14ms.

C. Multi-Camera Tracking

The primary objective of our proposed multi-camera track-

ing algorithm is to keep updating the positions of all the

detected weeds across multiple cameras with the existence of

indeterminate classification delays to send the most possible

weeds to the treatment layer.

1) Multi-camera weed tracking using EKFs: The pro-

posed multi-camera multi-weed tracking algorithm is es-

sentially a collection of EKFs with a cascade structure,

which allows for the sequential update of object locations

in Cartesian space. Each EKF in this framework could be

seen as a single-camera model-based 3D visual tracking

algorithm using edges or keypoints, which is so-called intra-

camera tracking module. The inter-camera tracking module,

in contrast, tries to project out-of-view objects on other cam-

era planes, performing inter-camera template-based matching

and eventually passes retraced object from one EKF to

another.

Our system employs a pre-calibrated multi-camera sys-

tem, so that we can have the camera intrinsic matrices

K1,K2, . . . ,KN , lens distortion parameter L1,L2, . . . ,LN , and

camera extrinsic matrix T 1
2 ,T

2
3 , . . . ,T

N−1
N as the prior. The

acquired images are rectified, normalized, and converted into

gray-scale before feeding into our tracking layer.

Our proposed EKF algorithm for intra-camera tracking

is defined in terms of its states xxxk,i , control inputs uuuk,i,

measurements zzzk,i, where i represents the object index, k

indicates the discrete time. The state vector and control input

for the ith object can be described as

xxxk,i = [PPPk,i,sssk,i]
T uuuk,i = [ξξξ

k
k+1,∆sssk,i]

T (1)



where PPPk,i = [xk,i,yk,i,zk,i]
T represents the 3D coordinates

of the centroid of ith object in camera frame, ξξξ
k
k+1 ∈ se(3)

represents the 6DOF camera motion vector from k to k+1

camera frame in Lie Group, and sssk,i = [hk,i,wk,i]
T

∆sssk,i =
[∆hk,i,∆wk,i] represent the size and the predicted change of

search scope of ith object in template matching procedure,

respectively.

The measurement vector zzzk,i of each object can be written

as

zzzk,i = [pppk,i,dk,i]
T (2)

where pppk,i = [uk,i,vk,i]
T represents the measured 2D coordi-

nates of the centroid of the ith object in image space after

template matching, and dk,i represent the measured depth of

ith object from sonar system.

Following the process and measurement equation in EKF

framework, our proposed system can be formulated as fol-

lowing:

xxxk+1,i = f (xxxk,i,uuuk,i)+wwwk,i =

[

RRR(ξξξ
k
k+1)PPPk,i + ttt(ξξξ

k
k+1)

sssk,i +∆sssk,i

]

+wwwk,i

(3)

zzzk,i = h(xxxk,i)+ vvvk,i =

[

π(KKKPPPk,i)
dk,i

]

+ vvvk,i (4)

where RRR(ξξξ ) ∈ SO(3) ttt(ξξξ ) ∈ R
3 are the rotation matrix

and the translation vector, π(·) represents a projection func-

tion that pppk,i = π(PPPk,i) = [xk,i/zk,i,yk,i/zk,i]
T , and wwwk,i vvvk,i

are Gaussian process and measurement noise with normal

probability distribution, respectively.

For tracking applications, the established object motion

model serves as a coarse initialization for later template-

based matching, thus reducing search scope and processing

time to achieve fast implementation. For our application, we

utilize a simplified VO algorithm, assuming a flat ground sur-

face, to generate ξξξ
k
k+1, so that we can achieve high compu-

tational efficiency without compromising tracking accuracy.

After propagation, template-based matching is performed for

every object in the field of view with a search region defined

by a projected center pppk,i = π(KKKPPPk,i) and a window size sssk,i

in the EKF state vector. If successful, the corrected template

center pppk,i combined with average depth dk,i measured from

the sonar system, are used as new measurements, feeding

into EKF correction process; otherwise, the control input set

∆sssk,i > 0 to be positive to increase the search scope for the

next iteration.

If the object is already out of scope from the current

camera, the inter-camera tracking passes the disappeared

object to next EKF. The inter-camera tracking algorithm is, in

essence, a simple template-based matching algorithm. Firstly,

the out-of-view object is projected from current camera m to

next camera n, which can be described as

pppn = π(KKKnTTT m
n (R(ξξξ )PPPm + ttt(ξξξ ))) (5)

where ξξξ represents the estimated camera motion between

two image time-stamp from unsynchronized camera m and

n. If the predicted center of object pppn enters the visible area

of camera n, an inter-camera template matching is carried

out. If successfully matched, the state vector of this object is

removed from the EKFs in camera m and inserted into those

from camera n ; otherwise, we increase the search region of

this object in the EKF in camera m and try to match it at

the next iteration.

It should be noted that we implement both the indirect

(keypoints) and direct (edges) method – denomination from

[16] – in motion propagation and correction for the intra-

and inter-camera tracking modules. A detailed evaluation and

comparison of their performances are presented in Sec. IV-B.

2) Delayed initialization and pose propagation: To deal

with the unpredictable delays, a time-stamp indexed frame

buffer is preserved in the memory to ease the later image

searching and the pose propagation. Each frame in the

buffer, indexed by the image capture time, contains the

received gray-scale image, the estimated camera pose from

the VO, and the average pixel depth from the sonar system.

When a classification result arrives at the tracking layer, the

corresponding frame is extracted from the buffer given its

time-stamp. The 2D appearance-based templates of detected

plants are extracted, and the centroid of the object is back-

projected on Cartesian space to initialize the state vectors in

the first EKF. Then their positions are propagated through

the intra- and inter-camera tracking modules given inter-

frame poses in the buffer. When the object has transformed to

the latest camera frame and successfully matched to current

image template, the distances between the new object to all

known ones are calculated. If the shortest distance falls below

a certain threshold, these two objects will be considered to

be the same, and the state vectors are combined.

3) Biased naive Bayesian classifier: To protect the valu-

able plants among the weeds, an incremental naive Bayesian

classifier with biased probabilistic model is utilized to filter

out the false positives from weed detector. Consider con-

ditional probability model P(Ci|llli), with sequentially arrived

classified label llli = li,1, li,2, . . . , li,n from detector and Ci as the

output label from our proposed classifier, the naive Bayesian

filter formula can be written as P(Ci|llli) ∝ P(llli|Ci)P(Ci),
where P(Ci) is a class prior probability of an object belong-

ing to weed or plant, and P(Ci|llli) is conditional probability

that is pre-defined with a probability model defined as

follows:

P(llli, |Ci) llli = weed llli = plant

Ci = weed 0.8 0.2

Ci = plant 0.1 0.9

It should be noted that the probability model is biased

because destroying a valuable plant is always considered to

be a much more serious problem than just failing to remove

a weed from the user’s point of view.

We follow a standard incremental implementation of this

filter described in [18], and the classification results is final-

ized when all the classification results have been delivered

to our tracking algorithm. At this time, the objects classified

as plants are deleted from the corresponding EKF and are

not tracked anymore.



D. Control Design

Considering an extrinsic calibrated camera-tool system,

we already have the homogeneous transformation matrix

from last camera frame to the first row of the stamping tool

TTT cam
r1 . The ith object position PPPcam,i in camera frame and the

estimated velocity vvvcam from VO system can be transformed

to the coordinate system of the first-row stamping tool,

so that the triggering timing tpred and predicted horizontal

displacement x
prime
r1,i can be calculated by solving the first

two rows of the formulated linear system equation:

PPP′
r1,i = TTT (RRRcam

r1 vvvcamtpred +RRRcam
r1 vvvcamtdelay)TTT

cam
r1 PPPcam,i (6)

where RRRcam
r1 is the rotation matrix extracted from TTT cam

r1 , T (·) is

the transformation function using 6-DOF motion prediction

vector as input, tdelay is the measured processing delay, and

the PPP′
r1,i = [xprime

r1,i ,0,zprime
r1,i ,1]T is the predicted position of

object.

It should be noted that the accuracy achieved by our

proposed open-loop predictive control strategy can be easily

affected by the whole treatment process delay, introduced by

PLC latency and execution tool dynamics. With our high-

performance PLC, the accumulated processing delay can

be simplified as a constant delay parameter tdelay, which is

measured and validated by experiments in the laboratory.

IV. EXPERIMENTS

The experimental evaluation section is designed to illus-

trate the performance of our proposed weed control system

in various real field conditions with indeterminate delays.

A. Field Robot

The BoniRob is a multi-propose field robot designed by

BOSCH DeepField Robotics, which provides a slot to install

various tools for specific tasks. In recent years, a variety

of agriculture applications have been successfully developed

and validated using this robot, such as selective spraying,

mechanical weed control, and weed monitoring. In this work,

our proposed weed control system is mounted on BoniRob,

operating in various real field condition to evaluate our

proposed method.

B. Evaluation of Multi-Camera Tracking

The proposed multi-camera tracking performance is ex-

tensively evaluated regarding accuracy, robustness, and run-

time performance in the real field. We both compare the

indirect and direct methods in our proposed framework, as

well as evaluate the effect of terrain conditions, the density

of plants, and various delay introduced by classification. A

simple vegetation detection classifier provides the ground

truth centroid positions of the plants.

1) Different terrain condition: The experiments presented

here are designed to analyze the intra- and inter-camera

tracking accuracy and robustness quantitatively in various

field conditions, where a 0.2m/s vehicle speed and a simple

vegetation detection algorithm with a 0.138s average classi-

fication delay are chosen. In Fig. 3, a detailed comparison

between the direct and indirect tracking method in four

typical terrain conditions is presented.

From the comparison of the two methods in our pro-

posed tracking framework, we can generalize that (1) the

direct method shows marginally better tracking precision

in motion propagation phase than that of indirect method

in all terrain conditions, (2) the indirect method holds a

larger convergence radius, with a similar tracking accuracy,

compared with direct approach in the context of template-

based matching, (3) both methods works slightly better in

intra-camera tracking than that in inter-camera tracking even

though the lighting condition is fully controlled, and (4) the

overall tracking accuracy is mainly limited by the template

matching precision rather than that of motion propagation,

which can better explain why all VO algorithms showed

similar tracking precision in the end in Sec. ??. It should

be clarified that keeping motion propagation error small is

still critical for system robustness since it is tightly related

with the tracking error after a blind area between cameras,

which define the initial displacement of template matching.

Analyzing the effect of the terrain roughness and the

density of plants on our tracking framework, we can observe

that the motion propagation precision and convergence radius

of template matching is correlated with the number of good

features or edge pixels in image, where both the rough terrain

and the plants can provide such features and edges for motion

estimation and template matching. In contrast, the degree of

ground flatness plays a minor role in tracking with the down-

looking camera setup.

2) Different classification delay: In this paper, one of our

major claims is that our system could work with a much

higher range of classification delays without compromis-

ing overall tracking accuracy and efficiency compared with

previously proposed weed control systems. To support our

claim, the effect of classification delays on our proposed

tracking system are studied in term of the tracking accuracy

and runtime performance. In this evaluation, a simple veg-

etation detection algorithm with a fake classification delay

generator is utilized to examine our tracking performance.

The vehicle speed for this test is set to be 0.1m/s, thus

allowing to test classification with more significant delays. In

Fig. 4, we can find that the higher classification delay would

request higher computational effort, which is caused by the

template matching for every three propagation to ensure the

convergence, but wouldn’t compromise the overall tracking

precision.

3) Different vehicle speed: To examine the system capa-

bilities, the tracking accuracy, both before and after template

matching, are evaluated in different vehicle velocities in the

real field, with the simple vegetation detection algorithm. It

should be noted that the maximum allowed speed could only

reach up to 0.4m/s for safety reasons, where the results for

higher velocities are simulated by sampling recorded images

to study the limitation of our proposed system. In Fig. 4,

the motion propagation error increases exponentially after a

certain speed, which is attributed to the reduced overlap area

between sequential images. However, the tracking error after



Fig. 3: Left: Sample images acquired in four typical real field condition and their keypoints and edges extraction results are

presented. Middle: the image space tracking error with and without template matching correction, using direct and indirect

methods, are plotted versus the tracked frame number. Right: the intra- and inter-camera tracking error using direct and

indirect approaches are plotted versus initial displacement of the reference template to study the convergence radius of

template matching.

Fig. 4: Left: the MSE [pixel] and processing time [ms] versus

various simulated classification delays [s] in the delayed ini-

tialization phase are plotted, where the template matching is

performed after every three propagation to maintain the real-

time performance. Right: the overall tracking MSE before

and after template matching versus vehicle speeds are plotted

to study the effect of vehicle speed on our proposed tracking

system.

template matching is not highly affected due to the adaptive

searching area selection strategy described in Sec. III-C.1.

C. Evaluation of Predictive Control

The proposed predictive control module is evaluated on

both the mechanical weeding tool and the selective sprayer

in a real-world field with flat and rough terrain areas. The

simple vegetation detection algorithm utilized to generate

classification results.

For tests of the mechanical weed removal, real leaves with

an average radius of 10mm are chosen as targets, and we

manually count the successful stamping rate after execution

as the performance metric. The stamping evaluation is per-

formed in short paths to control the test condition in an

outdoor environment better. For short-path tests, we use 5-10

Fig. 5: Left: sample pictures of leaves after mechanical weed

removal. Right: sample pictures after selective spraying.

targets per meter and repeat such test for 10 times for each

test speed.

For experiments of selective spraying, we set up a webcam

to monitor targets after spraying, taking advantage of the wet

area is visible on the dry field surface. Due to this simple

monitoring approach, the evaluation of selective spraying can

be done with a full-row operation by counting the successful

execution rate manually afterward from the recorded video.

The example pictures of the test field and targets after suc-

cessful treatment are presented in Fig. 5, and the quantitative

experimental results are provided in Table I. The successful

treatment rates regarding different vehicle speeds and terrain

roughness are presented in the table, where the leaves with

an average 10mm radius are chosen as targets. We don’t

have the experimental evaluation of mechanical weeding with

higher speed than 0.2 m/s because the higher driving speed

of the vehicle may introduce a huge tangential force on the

stamper, which may lead to the malfunction of the stamping

tool. From the table, we can observe that the successful

treatment rate is almost invariant with speed in both flat and



TABLE I: Successful Treatment Rates

vel. [m/s] 0.05 0.1 0.2 0.3 0.4

stamping

flat 112/113 99/102 90/91 - -
rough 120/121 84/86 93/96 - -

spraying

flat 125/125 124/124 129/129 132/134 112/113
rough 121/121 111/112 118/119 131/133 129/129

TABLE II: The Weed Classification and Treatment Rate

module detection b. classifier tracker treatment

spraying in real field

0.1m/s 199/182 182/182 182/182 182/182
0.2m/s 193/182 181/182 181/182 181/182

stamping in simulated test

0.1m/s 92/58 57/58 57/58 57/58
0.2m/s 88/58 57/58 57/58 57/58

rough field ground.

D. Evaluation of In-Row Weed Control

The purpose of the in-row weed control evaluation is to

analyze the whole system performance, especially the clas-

sification, and final treatment rates. The overall performance

evaluation, named in-row weed control, is performed in the

real field and simulated environment. The reason why we

introduce the extra experiment in a simulated environment is

that (1) the extensive test on the real field with mechanical

tool is not very welcome by farmers due to the potential

failure to destroy of the plants, (2) after some trials we found

that the stamping holes after real field weeding are not really

visible on leaves and cannot easily be distinguished with

other holes on ground, and (3) this extra-test on flat terrain

at the same time tests our classification results and provides

us with a baseline performance, which can help us to better

understand the limitation of our proposed system.

The example pictures for in-row weeding test condition,

both in the real field and simulated environment, with

representative results, are shown in Fig. 6. The quantita-

tive evaluation of the classification rate from the detector,

Bayesian classifier, and tracker, as well as the successful

treatment rate, from each layer of the proposed system, is

recorded in Table II. The classification rate from the detector,

Bayesian classifier, and multi-camera tracker, as well as

the final treatment rates, regarding two typically set vehicle

speed, are presented in the table, where the real weeds serve

as targets in the real field, and the leaves serve as fake

targets in simulated tests. From the table, we can find that

our proposed Bayesian filter could effectively remove the

false positives from the detector, and the proposed weed

control system that integrates classifier, tracker and weeding

machine could perform reliable treatment for in-row weeds

with good precision. From the real field tests, we observe

that the stamping solution for weed removal is, in general,

less efficient than using the selective sprayer, which can be

attributed to their hard-to-locate stem positions and the hard-

to-compensate uncertainty induced by the vibration while

driving on the unstructured terrain.

Fig. 6: Left: an in-row mechanical weeding and spraying

test is conducted in the real-world field in Ancona, IT. The

weeds after spraying can be seen in the picture, and the

mechanical treatment results are not visible on the ground.

Right: the performance of in-row mechanical weeding is

presented in a simulated test environment in Bonn, GE. The

faked targets made of leaves attached to modeling clay is

utilized to visualize the execution results.

V. CONCLUSION

A novel computer vision based weeding control system

is designed, implemented and evaluated. A non-overlapping

multi-camera system is introduced to compensate the in-

determinate classification delays induced by modern CNN-

based detection algorithms, and a 3D multi-camera multi-

object 3D tracking algorithm using EKF is developed to

provide high-precision tracking results across cameras. In

our proposed framework, the direct or indirect template

matching methods are implemented and compared to justify

our system design. A biased naive Bayesian filter is designed

to remove the false positives from the detector. To adopt

an operation-while-driving strategy, both low- and high-level

control strategies are deliberately designed for high-precision

weed removal. The tracking and control performance of the

proposed system is extensively evaluated in different terrain

conditions regarding various classification delays and vehicle

speeds, and the final in-row weed removal performance is

also assessed to validate our claim that our system can

provide accurate and reliable in-row weed removal service

in the real field.
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