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Abstract— Despite the recent active research on processing
point clouds with deep networks, few attention has been on
the sensitivity of the networks to rotations. In this paper, we
propose a deep learning architecture that achieves discrete
SO(2)/SO(3) rotation equivariance for point cloud recognition.
Specifically, the rotation of an input point cloud with elements of
a rotation group is similar to shuffling the feature vectors gen-
erated by our approach. The equivariance is easily reduced to
invariance by eliminating the permutation with operations such
as maximum or average. Our method can be directly applied to
any existing point cloud based networks, resulting in significant
improvements in their performance for rotated inputs. We show
state-of-the-art results in the classification tasks with various
datasets under both SO(2) and SO(3) rotations. In addition,
we further analyze the necessary conditions of applying our
approach to PointNet [1] based networks.

I. INTRODUCTION

Feature extraction is a fundamental problem in computer
vision and it is the key to applications such as place recog-
nition, Simultaneous Localization and Mapping (SLAM),
object classification, etc. Techniques for feature extraction
has evolved from handcrafted designs, e.g. SIFT [2], ORB
[3], to deep learning based methods, e.g. Convolutional
Neural Networks (CNNs) [4]. All extraction methods share
a common goal - to achieve equivariance to transformations
of the input data that includes translation, scale, rotation. An
informal definition of transformation equivariance is that the
extracted features are predictable when a transformation is
applied to the input data. Furthermore, invariance is a special
case of equivariance where features are identical under trans-
formation. Transformation equivariant / invariant features are
necessary for robotics applications because sensors on robots
such as UAVs or self-driving cars are constantly in motion.
Objects and scenes are usually captured by the sensors at
unknown poses but they should be classified in the correct
categories or recognized as seen previously.

In the recent years, CNNs are shown to be more ef-
fective than hand-crafted methods in many tasks. CNNs
are translational equivariant because the convolution kernel
remains the same over the feature map. More specifically,
shifting the input image and then applying the convolutional
kernel is the same as applying convolutional kernels and
then shifting the feature map. In addition, pooling enables
invariance to local deformations [5]. However, it is non-
trivial to extend equivariance to more general transformations
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such as rotation. On the other hand, rotation is one of the
most common transformations in robotics tasks such as loop
closure detection and object detection. In this paper, we focus
on solving the equivariance for SO(2)/SO(3) rotations.

Data augmentation [6] is the most popular technique to
mitigate the effects from rotations. Despite the simplicity,
it often leads to larger amount of model parameters and is
prone to under- or over-fitting [7]. Another drawback of data
augmentation is its black-box nature, where it is completely
unknown on how the network handles various transforma-
tion. Systematic and explainable method by constraining the
filter [8], [9], extending the convolutional domain to general
groups [10], [11], [12], [13], and making use of log-polar
transforms [14], [15], etc, have been proposed recently.

Unfortunately, most studies on rotation equivariance focus
on 2D convolution because the generalizations to 3D are
difficult. Among the methods that work with 3D data,
voxelization [11], [14], [13] relies on 3D voxel grid which
is computationally heavy and not scalable. Multi-view ren-
dering [16] is usually invariant to discrete 2D rotations but
it suffers from information loss [17] and few research has
been done to study the effect of rotations in SO(3). On
the contrary, point cloud is a compact representation of 3D
objects and widely used by sensors like RGBD camera,
LiDAR. PointNet [1] is the pioneer of consuming point
clouds using deep networks, and many variants are later
proposed base on it. Despite the use of data augmentation to
handle rotated point clouds, few research has been done on
rotation equivariance of point clouds.

We fill the gap by proposing an architecture to realize
discrete SO(2)/SO(3) equivariance for point cloud recog-
nition. We define a k-element rotation group R = {ri, i =
[0, · · · , k−1]}. For each input point cloud, we rotate it with
each element in R and feed it into the network to get a feature
vector fi. It can be proved that rotating the point clouds with
R equals to permuting the resulted k feature vectors.

Our major contributions are as follows:
• A general method that can be applied to existing net-

works to achieve discrete SO(2)/SO(3) equivariance.
• We significantly improve the performance of processing

rotated point clouds and achieve state-of-the-art perfor-
mance on classifying ModelNet40/10, rotated MNIST.

• We analyze the necessary conditions of enhancing
PointNet based networks with our method.

II. RELATED WORK

Rotation invariance is one of the desired properties when
designing handcrafted features. SIFT [2] feature descriptor
encodes orientation information by building a histogram to
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find the dominant gradient direction. ORB [3] descriptor
estimates an orientation of the local patch and rotates it to a
canonical pose. For 3D point clouds, Normal Aligned Radial
Feature (NARF) [18] and Rotation-Invariant Feature Trans-
form (RIFT) [19] are rotation invariant. NARF is invariant
against rotation around the surface normal by calculating the
dominant intensity change direction. RIFT builds a histogram
according to neighbors’ distances and gradient angles. Un-
like deep learning based features, handcrafted features are
not adaptive to tasks and hence have poor performance in
recognition tasks like classification.

As mentioned, classical CNNs or MLPs are not equivariant
to rotation. Steerability is first introduced by Teo et al.
[20] and recently used to put constraints on the network
weights and architectures [21], [22], [23], [24]. Similarly,
Worrall et al. [9] present Harmonic Networks that achieve
equivariance to patch-wise 360o-rotation by replacing CNN
filters with circular harmonics. However, it is non-trivial to
extend these 2D filter constraints to 3D inputs like voxel
grids and point clouds. Recently the capsule network [25],
[26] is proposed to learn approximations to transformation
equivariance, while few research has been done to explore
its potential on point clouds.

Spatial Transformer Network (STN) [27] attempts to learn
the parameters of the transformation given the structure.
Though not theoretically equivariant, STNs perform well in
image and 3D applications. Laptev et al. [7] realize scale
and rotation invariance by pooling feature vectors over the
input orbit, while it is done only with images and unclear
how well it generalizes to point clouds. MVCNN [16] shares
similar idea but inherently it is based on image convolution
and lack of study on SO(3) rotation. Cohen and Welling
[10] extend the domain of 2D CNNs from translation to
general groups. The idea of group equivariance is further
extended to 3D voxel grids by CubeNet [11]. Cohen et al.
[12] combine this idea with generalized Fourier transforms to
achieve rotation equivariance on SO(3). Polar Transformer
Network (PTN) [14] applies STN to predict an origin or axis
and then projects images or voxels to the polar coordinate
representation. Another drawback of PTN is the difficulty
to achieves full SO(3) rotation equivariance. Thomas et al.
propose the tensor field network [8], which to the best of our
knowledge is the first to achieve SO(3) rotation, translation
and permutation of 3D points. The filters are constrained to
be the product of spherical harmonic radial functions.

Following Cohen & Welling [10], we apply the idea of
group equivariance to existing point cloud-based networks.
Discrete rotation equivariance is achieved by training net-
works within a pre-defined rotation group. With intensive
experiments, we show the effectiveness of our proposed
architecture and the necessary conditions of applying it to
point clouds.

III. ROTATION EQUIVARIANCE ARCHITECTURE

In this section, we present the definition and application
of rotation group in Section III-A and III-B. Based on

(a) (b) (c)

Fig. 1. Cube group of 24 rotations. (a) 90◦, 180◦and 270◦rotation around
the opposite faces. (b) ±120◦ rotation around the 4 diagonal axes. (c)
180◦rotation about the 6 pairs of opposite edges.

the definition and application, we design and prove an
equivatiant learning architecture in Section III-C.

A. Definition of Group

Given a set G, and an operation ◦ that combines any two
elements of G, e.g., a, b, the combination is denoted as a ◦ b
or simply ab. Four properties are required to make (G, ◦) a
valid group.

1) Closure: ∀a, b ∈ G, ab ∈ G
2) Associativity: ∀a, b, c ∈ G, (ab)c = a(bc)

3) Identity element: ∃e ∈ G, ae = ea = a

4) Inverse element: ∀a ∈ G,∃b ∈ G, s.t., ab = ba = e
We can easily construct a 2D rotation group R = {ri =

2πi
k , i = 0, 1, · · · , k− 1}. However, a group may not satisfy

commutativity, i.e., ab is not necessarily ba. SO(2) rotation
groups satisfy commutativity while SO(3) groups do not,
which makes it more difficult to achieve SO(3) equivariance
[8], [28].

B. SO(3) rotation Group

Besides the commutativity problem, it is not as obvious as
the 2D case to construct a SO(3) group. Here we introduce
the cube group and 2 other simplified rotation groups, i.e.,
Tetrahedral 12-group and Klein’s 4-group.

1) Cube Group: A cube has 24 rotation symmetry el-
ements, called the cube group S4. The cube group is the
combination of any ±90◦,±180◦ rotations around the three
axes. Another intuitive interpretation of the cube group is
shown in Fig. 1. It consists of: (a) 90◦, 180◦and 270◦rotation
around the opposite faces. (b) ±120◦ rotation around the 4
diagonal axes. (c) 180◦rotation about the 6 pairs of opposite
edges. (d) Identity.

Our proposed approach requires feature pooling from
vectors generated by each element in the rotation group.
Smaller rotation groups require less computational power. In
fact, our results show that considering a small rotation group
already brings significant improvement, while enlarging the
group brings marginal improvement.

2) Tetrahedral 12-group: As a subset of the cube group,
the 12-group is the combination of any ±90◦ rotations
around the three axes of a cube.

3) Klein’s 4-group: The Klein’s 4-group is the smallest
non-cyclic rotation group, which is the combination of any
180◦ rotations around the three face-to-face axes of a cube.
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Fig. 2. The architecture of our rotation equivariant method. The green part (left & right) shows the basic structure. Each input point cloud is rotated
with every element ri in a rotation group R, and fed into a shared network. The blue (middle) part integrates this structure in a hierarchical network like
SO-Net [29]. The rotation of input equals to the permutation of the features.

C. Equivariant Design

As mentioned above, an equivariant network should give
predictable output when some transformation is applied to
the input. Formally, given a network or a layer Φ and an input
data x, transformation (in our case rotation) group R = {ri}
and operator T , the equivariance requires,

Φ(Trix) = T ′riΦ(x) (1)

where T ′ri is not necessarily the same as Tri . For instance,
equivariance becomes invariance if T ′ri is identity TI . In our
method, T ′ri is a permutation.

We propose a network architecture that is equivariant to
a discrete rotation group R = {ri, i = 0, · · · , k − 1}, which
is shown in Fig. 2. The green part of Fig. 2 is the basic
structure of our method. For every input data x, we rotate
it with every element in the group R, and feed it into a
shared network to obtain k feature vectors. Rotating x with
any element in R equals to permuting the k vectors, because
of the closure property of the group. R can be a simple 2D
rotation group or a SO(3) group discussed in Section III-B.
Theoretical proof of the equivariance is presented below.

In applications like classification, the permutation is easily
converted to invariance with operations like max-pooling,
average-pooling, etc.

1) Proof of Equivariance: In the context of point cloud,
we denote a point cloud as x ∈ RN×3, which stores the
3D coordinates of N points. A point cloud is orderless, in
another word, the rows of x can be permuted arbitrarily.
Therefore a point cloud cannot be simply represented as a
function f : Z2/Z3 → RC , which is widely used in images
[10] or voxel grids [11]. Here we denote a rotation group
as R = {ri ∈ R3×3, i = 0, 1, · · · , k − 1} and a rotation
transform is defined as,

Trix = (rxT )T = xrT (2)

therefore, operator T is linear with respect to R,

TriTrjx = xrTj r
T
i = x(rirj)

T = Trirjx (3)

Our network structure Φ is denoted as Eq. 4, where φ
represents the shared network or layer. It is visualized at the
green part of Fig. 2.

Φ(x) = [φ(Tr0x), φ(Tr1x), · · · , φ(Trk−1
x)]T (4)

Each element in group R is unique, namely ∀i 6= j, Tri 6=
Trj . Obviously, combining two different elements with a
common rotation Tr results in two different rotations.

TriTr = Trir 6= TrjTr = Trjr (5)

Therefore, each element in Eq. 6 is unique. Note that we
enumerate all group elements in Eq. 4 and a group is close.
Therefore given r ∈ R, Eq. 4 and 6 share the same content
except that the row ordering is different.

Φ(Trx) = [φ(Tr0Trx), φ(Tr1Trx), · · · , φ(Trk−1
Trx)]T

(6)
In summary, our design is rotation equivariant with respect

to R, because rotating input x equals to permuting the output
of our network.

∀r ∈ R,∃P, s.t.Φ(Trx) = PΦ(x) (7)

2) Integration with Hierarchical Networks: Theoretically,
our approach can be applied to any network by rotating the
input and then obtaining a set of permuted features. However,
we find that at least the vanilla PointNet [1] is not suitable
for such equivariant design. Instead, a hierarchical design is
necessary for PointNet based networks. Details are given in
Section IV-D.

PointNet [1] is the pioneer of processing orderless
points directly, but there is only one single global fea-
ture aggregation. Subsequent research like PointNet++ [30],
SpiderCNN[31], SO-Net[29] point out that encoding mul-
tiple layers of local information increase the performance,
similar to the ConvNet-like hierarchical feature aggregation.
These methods achieve state-of-the-art performance and still
maintain invariant to point permutation. In this paper we call
this category of approaches as the hierarchical networks.



Here we take the example of SO-Net to demonstrate that
our equivariant design can be integrated into each hierarchy
of a network, to obtain both local and global equivariant
features. The same method can be easily adapted to other
hierarchical PointNet based networks. SO-Net takes a N ×3
point cloud and produces a feature map of size M × C ′,
which maintains the spatial distribution of points, encodes
local information and is invariant to the order of points. The
M × C ′ feature map can be further processed into another
feature map of the same or different size.

As shown in the middle part of Fig. 2, we obtain k M×C ′
feature maps on each level of SO-Net. A rotation invariant
feature is built by pooling from these k feature maps, and
later concatenated back to the k feature maps. The resulted
k M × 2C ′ feature maps are still rotation equivariant. These
local feature maps are useful for applications that require
local and global feature integration like per-point semantic
segmentation.

IV. EXPERIMENTS

In this section, we evaluate the effectiveness of our ap-
proach with classification on 3D point cloud datasets, namely
ModelNet40/10 [32], and a 2D dataset rotated MNIST [45].
For ModelNet40/10, we out-perform state-of-the-art methods
under SO(2) and SO(3) rotations. For rotated MNIST, we
demonstrate competitive accuracy even though we are the
only approach that takes orderless pixel coordinates (2D
point cloud) as input, while all others consume images as
input and apply convolutions.

Our experiments consist of two parts and three types
of point cloud networks. The first part is done with a
recently proposed hierarchical network, namely SO-Net [29],
to demonstrate our best performance. The second part is done
with a vanilla version and a simple variant of PointNet [1],
to explore the properties of our proposed architecture.

A. Implementation
All networks used in this paper are implemented with

PyTorch on a Nvidia GTX1080ti GPU. We follow the default
network structures and training configurations of SO-Net and
PointNet.

1) z Rotation: We apply random 2D rotation augmen-
tation during training. For ModelNet40/10, the rotation is
around the up-axis (z-axis), to simulate that the gravity di-
rection is given while the horizontal orientation is unknown.
When testing the ModelNet40/10, each point cloud is rotated
12 times to evenly cover 2π around the z-axis. The final
classification result is obtained from the average score of the
12 outputs.

The rotated MNIST is itself randomly rotated, hence it is
not necessary to do the averaging during testing.

2) SO(3) Rotation: Similarly with Section IV-A.1, we
use random SO(3) rotation augmentation during training.
When testing the ModelNet with SO(3) rotation, we ran-
domly rotate each point cloud 12 times and employ the same
averaging technique.

Since rotated MNIST is actually an image dataset, we do
not perform SO(3) rotation on it.

Fig. 3. Examples of handwriting digits from rotated MNIST.

Fig. 4. Examples of point clouds sampled from ModelNet dataset.

B. Datasets

We use rotated MNIST to make comparison with exist-
ing rotation equivariant methods, because most research on
equivariance is done on images. Rotated MNIST [45] is
a variant of the original MNIST [46] dataset, with 10,000
/ 2,000 / 50,000 handwriting digit images for training,
validation and testing, respectively. Each image is rotated
randomly. The random rotation and the small size of training
set make it much more difficult than the original MNIST.
Examples from rotated MNIST are shown in Fig. 3.

We take the non-zero pixel coordinates to build a 2D point
cloud of size N × 2. In addition, the intensity on each non-
zero pixel is used as extra information and concatenated
with the point coordinate to form an N × 3 matrix. Linear
upsampling is performed to get a 512× 3 point cloud from
each image.

ModelNet40 contains 13,834 objects from 40 categories
like desk, chair, etc. It is split into training and testing sets
of size 9,843 and 3,991, respectively. Similarly, ModelNet10
contains 3,377 objects from 10 categories, and split into
2,468 training samples and 909 testing samples. Originally
ModelNet is provided as mesh models, so we perform
uniform sampling on each mesh to obtain 1024 points and the
corresponding surface normal vectors. Here each point cloud
is represented as a 1024×6 matrix. We employ the prepared
dataset from SO-Net [29]. Examples from ModelNet are
shown in Fig. 4.

In terms of data augmentation, we follow the standard
practice including random jittering with Gaussian noise,
random scaling, etc.

C. Hierarchical Networks

In this section, we demonstrate the effectiveness of by in-
tegrating our approach with SO-Net [29], called Rot-SO-Net.
Experiments are performed in two configurations, namely z
rotations and SO(3) rotations, as stated in Section IV-A.

1) z Rotations: We define five z rotation groups with 1,
4, 6, 9, 12 elements, respectively, by uniformly dividing 2π.



TABLE I
CLASSIFICATION RESULTS ON MODELNET40/10 UNDER Z ROTATIONS.

Method Representation ModelNet40 # of params Method Representation ModelNet10 # of params
Ins. Cls. ×106 Ins. Cls ×106

PointNet[1] 1024 points 89.2 86.2 3.5 3D ShapeNets[32] 303 voxel 83.5 - 12
PointNet++[30] 5000 points 91.9 - 1.1 VRN[33] 323 voxel 91.3 - 18
DeepSets[34] 5000 points 90.0 - - VoxNet[35] 303 voxel 92.0 - 0.92
SpiderCNN[31] 1024 points 92.4 - - Fusion-Net[36] 303 voxel 93.1 - 120
OctNet[37] 1283 octree 86.5 83.8 - ORION[38] 283 voxel 93.8 - 0.91
O-CNN[39] 643 octree 90.6 - - CubeNet[11] 323 voxel 94.6 - 4.5
PointCNN[40] 1024 points 91.7 - 0.45 OctNet[37] 1283 octree 90.9 90.1 -
PTN[14] voxel 89.9 86.5 - ECC[41] 1000 points 90.8 90.0 -
SO-Net[29] 5000 points 92.1 89.6 2.5 SO-Net[29] 5000 points 93.9 93.9 2.5
Rot-SO-Net - 1 rot 1024 points 91.7 89.4 2.5 Rot-SO-Net - 1 rot 1024 points 92.5 92.1 2.5
Rot-SO-Net - 4 rot 1024 points 92.1 89.7 2.5 Rot-SO-Net - 4 rot 1024 points 93.7 93.6 2.5
Rot-SO-Net - 6 rot 1024 points 92.3 90.2 2.5 Rot-SO-Net - 6 rot 1024 points 94.3 94.3 2.5
Rot-SO-Net - 9 rot 1024 points 92.4 90.2 2.5 Rot-SO-Net - 9 rot 1024 points 94.3 94.3 2.5
Rot-SO-Net - 12 rot 1024 points 92.5 90.4 2.5 Rot-SO-Net - 12 rot 1024 points 94.5 94.5 2.5

TABLE II
CLASSIFICATION RESULTS ON MN40 UNDER SO(3)/Z ROTATIONS.

Method Input size param # SO(3) z
PointNet[1] 2048× 3 3.5M 83.6 89.2
VoxNet[35] 303 0.9M 73.0 83.0
SubVolSup[42] 303 17M 82.7 88.5
SubVolSup MO[42] 20× 303 17M 85.0 89.5
MVCNN 12x[16] 12× 2242 99M 77.6 89.5
MVCNN 80x[16] 80× 2242 99M 86.0 90.2
Spherical CNNs[13] 2× 642 0.5M 86.9 88.9
Rot-SO-Net - 1 rot 1024× 3 2.5M 84.4 91.7
Rot-SO-Net - 4 rot 1024× 3 2.5M 87.7 92.1
Rot-SO-Net - 12 rot 1024× 3 2.5M 88.8 92.5

TABLE III
CLASSIFICATION RESULT ON ROTATED MNIST DATASET.

Method Error (%) # of param ×106

TI-Pooling[7] 1.2 ≈ 1
Polar Transformer Net[14] 0.89 0.25
Group Equivariant CNN[10] 2.28 0.022
Harmonic Networks[9] 1.69 0.033
RotEqNet[43] 1.01 0.1
CNN[10] 5.03 0.022
ORN[44] 2.25 ≈ 1
Rot-SO-Net - 1 rot 5.57 1.45
Rot-SO-Net - 4 rot 2.94 1.45
Rot-SO-Net - 6 rot 2.72 1.45
Rot-SO-Net - 9 rot 2.47 1.45
Rot-SO-Net - 12 rot 2.22 1.45

For example, a 4-element z rotation group contains rotations
of {0◦, 90◦, 180◦, 270◦}. In particular, the 1-element group
is simply identity {0◦}, which satisfies the four requirements
defined in Section III-A.

Comparison with existing algorithms is presented in Ta-
ble I with ModelNet40/10 dataset, where “# rot” represents
the number of elements in a rotation group. In Model-
Net40/10, the gravity direction is given, i.e., the roll and
pitch angles are zero. ModelNet10 is orientation-aligned,
in another word, all objects are in a canonical horizon-
tal orientation. Although ModelNet40 is theoretically not
orientation-aligned, most objects in the dataset are actually
aligned. Therefore applying random rotation augmentation,
either z or SO(3) rotation, discards the known orientation
and decreases the classification performance. Unfortunately,

there isn’t a consensus on whether rotation augmentation,
usually z rotation augmentation, should be applied during
training. In order to make a fair comparison, we only present
methods that employ z rotation augmentation during training,
as shown in Table I.

We achieve state-of-the-art performance in both Model-
Net40 and ModelNet10. In particular, our 92.5% accuracy is
slightly better than SpiderCNN [31], the current leader, on
ModelNet40. Although we are 0.1% behind CubeNet [11]
on ModelNet10, we have the advantage of smaller model
size and much better scalability since we directly work
on point clouds while CubeNet works on voxel grids. Our
computation and memory cost is O(N) with respect to the
number of points, but voxel grid based networks are O(N3)
with respect to the size of the grid.

Results on rotated MNIST is shown in Table III. The appli-
cation of our equivariant approach significantly improves the
performance on rotated MNIST, from an error rate of 5.57%
to 2.22%, which is lower than recently proposed methods
like ORN [44] and Group Equivariant CNN [10]. Note that
all methods except ours make use of ConvNets and work on
images, while we directly work with point clouds and still
achieve competitive results.

2) SO(3) Rotations: Similarly, we define three SO(3)
rotation groups of size 1, 4, 12 according to Section III-
B. Classification results on ModelNet40 are presented in
Table II. Samples are rotated randomly in SO(3) during both
training and testing.

The SO(3) rotation significantly increases the difficulty
of recognizing point clouds. All methods suffer a significant
drop with SO(3) rotation. Our equivariant design reduces
the SO(3) effect and outperforms state-of-the-art methods
by 1.9%. Even with a small rotation group of size 4, we still
have an advantage of 0.8% over Spherical CNNs [13].

D. PointNet and its Variant

Given the effectiveness of our equivariant design shown
above, we further explore whether our method is universally
applicable to all point cloud based networks. In particular,
we apply our approach to PointNet (PN) [1] and one of
its variant called PointNet with feature encoding (PointNet-



TABLE IV
RESULTS ON MN40/10 FOR PN/PN-FE UNDER Z ROTATIONS.

Rot #
PointNet PointNet-FE

MN40 MN10 MN40 MN10
Ins. Cls. Ins. Cls. Ins. Cls. Ins. Cls.

1 86.6 82.5 90.7 89.9 87.1 83.4 91.4 90.9
4 84.7 80.7 88.7 87.3 87.3 83.5 92.6 92.3
6 84.2 80.3 89.0 87.9 87.6 83.9 93.1 92.6
9 83.5 80.0 88.2 86.7 87.8 84.0 92.8 92.5
12 83.0 79.3 88.8 87.5 87.7 84.0 93.0 92.3

FE/PN-FE), which is proposed in VoxelNet [47]. Note that
the PointNet used in this subsection is based on our own
implementation without T-Net [1] of the original paper.

Instead of making use of local feature aggregation,
PointNet-FE consists of two small PointNets to utilize the
global feature information. The per-point features from the
first PointNet are concatenated with the first global feature
vector, and then fed into the second PointNet to acquire the
second (final) global feature vector.

As shown in Table IV, Table V and Fig. 5, our method
leads to significant accuracy improvement with PointNet-
FE, espeically in 3D cases, similar to results shown in
Section IV-C. Specifically, the accuracy on ModelNet40
and ModelNet10 significantly increases by 10.8% and 2.7%
under SO(3) rotation, if the rot-12 rotation equivariant
design is applied. On the contrary, the integration of PointNet
and our method results in deteriorated performance. There
is a performance drop of 19.9% and 29.7% under SO(3)
rotation, after the application of rot-12 design.

Such contradictory results are clearly presented in Fig. 5.
Both SO-Net and PointNet-FE benefit from our equivariant
design while PointNet shows negative results. Further ex-
periments, though not illustrated in this paper, verify that
increasing the depth or width does not make PointNet work
under our architecture. On the other hand, smaller SO-Net
or PointNet-FE still work well.

Both SO-Net and PointNet-FE share a common structure
that there is more than one hierarchy, which serves to
aggregate local and global information. On the other hand,
the global-pooling design of vanilla PointNet does not allow
information exchange between points. That is, each point
or per-point feature is processed independently by a MLP.
An intuitive guess is that, PointNet maps input points into
a learned high dimensional space (what MLP is good at),
without actively considering the neighboring or global-local
relationship. With our design, the input points distribute more
uniformly in the original 3D/2D space because each point
cloud is rotated multiple times and fed into PointNet together.
That is likely to make it more difficult to learn the mapping.
Take an example that rotating two points around their center,
the trajectory will form a sphere. It is impossible to tell that
sphere is actually built by two points, if we do not make use
of the relationship between the two points.

E. Discussions

As shown in Fig. 5, our equivariant design enhances
networks that have more than one hierarchy. For SO-Net with

TABLE V
RESULTS ON MN40/10 FOR PN/PN-FE UNDER SO(3) ROTATIONS.

Rot #
PointNet PointNet-FE

ModelNet40 ModelNet10 ModelNet40 ModelNet10
Ins. Cls. Ins. Cls. Ins. Cls. Ins. Cls.

1 69.9 64.2 82.1 80.9 73.3 69.2 85.3 84.4
4 62.2 56.2 75.3 73.2 81.0 75.9 87.7 86.9
12 50.0 44.5 52.4 49.7 84.1 79.0 88.0 87.2
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Fig. 5. Classification accuracy versus number of elements in the rotation
group for (a) ModelNet40 under z rotations. (b) ModelNet10 under z
rotations. (c) ModelNet40 under SO(3) rotations. (d) ModelNet10 under
SO(3) rotations.

ModelNet40, we bring the improvement of 0.8% and 4.4%,
respectively under z and SO(3) rotation. For PointNet-FE
with ModelNet40, we achieve 0.8% and 10.8% improvement
respectively. The improvement on SO(3) rotation is much
more significant, probably because data augmentation works
relatively well for the 2D case. Another observation is that
generally increasing the size of the rotation group brings
better performance, but the marginal return is diminishing,
and the computational cost is roughly linear with the size
of the group. A group of size 4 usually produces consid-
erable improvement while the additional computational cost
remains acceptable.

V. CONCLUSION

In this paper, we propose a deep learning architecture
that achieves discrete SO(2)/SO(3) rotation equivariance
for point cloud based networks. For rotations within a pre-
defined rotation group, rotating the input point cloud equals
to permutating the feature maps. Besides providing theo-
retical proof, we demonstrate state-of-the-art performance
in classification tasks. Further analysis shows that multi-
hierarchy structure is necessary for PointNet based methods
to enjoy the benefits brought by our design. One of the future
directions is to utilize the polar coordinate to turn rotation
equivariance to translation equivariance.
Acknowledgment. This work was partially supported by the
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