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Abstract— Many applications of stereo depth estimation in
robotics require the generation of accurate disparity maps in
real time under significant computational constraints. Current
state-of-the-art algorithms force a choice between either gen-
erating accurate mappings at a slow pace, or quickly generat-
ing inaccurate ones, and additionally these methods typically
require far too many parameters to be usable on power- or
memory-constrained devices. Motivated by these shortcomings,
we propose a novel approach for disparity prediction in the
anytime setting. In contrast to prior work, our end-to-end
learned approach can trade off computation and accuracy at
inference time. Depth estimation is performed in stages, during
which the model can be queried at any time to output its
current best estimate. Our final model can process 1242x375
resolution images within a range of 10-35 FPS on an NVIDIA
Jetson TX2 module with only marginal increases in error —
using two orders of magnitude fewer parameters than the
most competitive baseline. The source code is available at
https://github.com/mileyan/AnyNet.

I. INTRODUCTION

Depth estimation from stereo camera images is an impor-
tant task for 3D scene reconstruction and understanding, with
numerous applications ranging from robotics [30], [51], [39],
[42] to augmented reality [53], [1], [35]. High-resolution
stereo cameras provide a reliable solution for 3D perception
- unlike time-of-flight cameras, they work well both indoors
and outdoors, and compared to LiDAR they are substantially
more affordable and energy-efficient [29]. Given a rectified
stereo image pair, the focal length, and the stereo baseline
distance between the two cameras, depth estimation can be
cast into a stereo matching problem, the goal of which is to
find the disparity between corresponding pixels in the two
images. Although disparity estimation from stereo images is
a long-standing problem in computer vision [28], in recent
years the adoption of deep convolutional neural networks
(CNN) [52], [32], [20], [25], [36] has led to significant
progress in the field. Deep networks can solve the matching
problem via supervised learning in an end-to-end fashion,
and they have the ability to incorporate local context as well
as prior knowledge into the estimation process.

On the other hand, deep neural networks tend to be
computationally intensive and suffer from significant latency
when processing high-resolution stereo images. For example,
PSMNet [4], arguably the current state-of-the-art algorithm
for depth estimation, obtains a frame rate below 0.3FPS
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Fig. 1: Example timeline of AnyNet predictions. As time pro-
gresses the depth estimation becomes increasingly accurate.
The algorithm can be polled at any time to return the current
best estimate of the depth map. The initial estimates may be
sufficient to trigger an obstacle avoidance maneuver, whereas
the later images contain enough detail for more advanced
path planning procedures. (3-pixel error rate below time.)

on the Nvidia Jetson TX2 GPU computing module — far
too slow for timely obstacle avoidance by drones or other
autonomous robots.

In this paper, we argue for an anytime computational
approach to disparity estimation, and present a model that
trades off between speed and accuracy dynamically (see
Figure [T). For example, an autonomous drone flying at high
speed can poll our 3D depth estimation method at a high
frequency. If an object appears in its flight path, it will be
able to perceive it rapidly and react accordingly by lowering
its speed or performing an evasive maneuver. When flying at
low speed, latency is not as detrimental, and the same drone
could compute a higher resolution and more accurate 3D
depth map, enabling tasks such as high precision navigation
in crowded scenes or detailed mapping of an environment.

The computational complexity of depth estimation with
convolutional networks typically scales cubically with the
image resolution, and linearly with the maximum disparity
that is considered [20]. Keeping these characteristics in mind,
we refine the depth map successively, while always ensuring
that either the resolution or the maximum disparity range
is sufficiently low to ensure minimal computation time. We
start with low resolution (1/16) estimates of the depth map
at the full disparity range. The cubic complexity allows us to
compute this initial depth map in a few milliseconds (where
the bulk of the time is spent on the initial feature extraction
and down-sampling). Starting with this low resolution esti-
mate, we successively increase the resolution of the disparity
map by up-sampling and subsequently correcting the errors
that are now apparent at the higher resolution. Correction is
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performed by predicting the residual error of the up-sampled
disparity map from the input images with a CNN. Despite
the higher resolution used, these updates are still fast because
the residual disparity can be assumed to be bounded within
a few pixels, allowing us to restrict the maximum disparity,
and associated computation, to a mere 10 — 20% of the full
range.

These successive updates avoid full-range disparity com-
putation at all but the initial low resolution setting, and ensure
that all computation is re-used, setting our method apart from
most existing multi-scale network structures [40], [15], [19].
Furthermore, our algorithm can be polled at any time in
order to retrieve the current best estimated depth map. A
wide range of possible frame rates are attainable (10-35FPS
on a TX2 module), while still preserving accurate disparity
estimation in the high-latency setting. Our entire network can
be trained end-to-end using a joint loss over all scales, and
we refer to it as Anytime Stereo Network (AnyNet).

We evaluate AnyNet on multiple benchmark data sets
for depth estimation, with various encouraging findings:
Firstly, AnyNet obtains competitive accuracy with state of
the art approaches, while having orders of magnitude fewer
parameters than the baselines. This is especially impactful
for resource-constrained embedded devices. Secondly, we
find that deep convolutional networks are highly capable
at predicting residuals from coarse disparity maps. Finally,
including a final spatial propagation model (SPNet) [26]
significantly improves the disparity map quality, yielding
state-of-the-art results at a fraction of the computational cost
(and parameter storage requirements) of existing methods.

II. RELATED WORK

a) Disparity estimation: Traditional approaches to dis-
parity estimation are based on matching features between the
left and right images [2], [41]. These approaches are typically
comprised of the following four steps: (1) computing the
costs of matching image patches over a range of disparities,
(2) smoothing the resulting cost tensor via aggregation
methods, (3) estimating the disparity by finding a low-cost
match between the patches in the left image and those in
the right image, and (4) refining these disparity estimates by
introducing global smoothness priors on the disparity map
[41], [13], [11], [14]. Several recent papers have studied
the use of convolutional networks in step (1). In particular,
Zbontar & LeCun [52] use a Siamese convolutional network
to predict patch similarities for matching left and right
patches. Their method was further improved via the use of
more efficient matching networks [29] and deeper highway
networks trained to minimize a multilevel loss [43].

b) End-to-end disparity prediction: Inspired by these
initial successes of convolutional networks in disparity esti-
mation, as well as by their successes in semantic segmen-
tation [27], optical flow computation [7], [17], and depth
estimation from a single frame [5], several recent studies
have explored end-to-end disparity estimation models [32],
[20], [25], [36]. For example, in [32], the disparity prediction
problem is formulated as a supervised learning problem,

and a convolutional network called DispNet is proposed that
directly predicts disparities for an image pair. Improvements
made by DispNet include a cascaded refinement procedure
[36]. Other studies adopt the correlation layer introduced
in [7] to obtain the initial matching costs; a set of two
convolutional networks are trained to predict and further
refine the disparity map for the image pair [25]. Several prior
studies have also explored moving away from the supervised
learning paradigm by performing depth estimation in an un-
supervised fashion using stereo images [9] or video streams
[54].

Our work is partially inspired by the Geometry and Con-
text Network (GCNet) proposed in [20]. In order to predict
the disparity map between two images, GCNet combines a
2D Siamese convolutional network operating on the image
pair with a 3D convolutional network that operates on the
matching cost tensor. GCNet is trained in an end-to-end
fashion, and is presently one of the state-of-the-art methods
in terms of accuracy and computational efficiency. Our model
is related to GCNet in that it has the same two stages (a 2D
Siamese image convolutional network and a 3D cost tensor
convolutional network), but it differs in that it can perform
anytime prediction by rapidly producing an initial disparity
map prediction and then progressively predicting the residual
to correct this prediction. LiteFlowNet [16] also tries to
predict the residual for optical flow computation. However,
LiteFlowNet uses the residual to facilitate large-displacement
flow inference rather than computational speedup.

c) Anytime prediction: There exists a substantial body
of work on machine learned models with computational bud-
get constraints at inference time [46], [10], [18], [49], [50],
[47], [15]. Most of these approaches are based on ensembles
of decision-tree classifiers [46], [49], [10], [50] which allow
for tree-by-tree evaluation, facilitating the progressive pre-
diction updates that are the hallmark of anytime prediction.
Several recent studies have explored anytime prediction with
image classification CNNs that dynamically evaluate parts
of the network to progressively refine their predictions [24],
[15], [45], [48], [33], [6]. Our work differs from these earlier
anytime CNN models in that we focus on the structured
prediction problem of disparity-map estimation, rather than
on image classification tasks. Our models exploit particular
properties of the disparity-prediction problem: namely, that
progressive estimation of disparities can be achieved by
progressively increasing the resolution of the image data
within the internal representation of the CNN.

IIT. ANYNET

Fig. 2] shows a schematic layout of the AnyNet architec-
ture. An input image pair first passes through the U-Net
feature extractor, which computes feature maps at several
output resolutions (of scale 1/16, 1/8, 1/4). In the first
stage, only the lowest-scale features (1/16) are computed and
passed through a disparity network (Fig.[d) to produce a low-
resolution disparity map (Disparity Stage I). A disparity map
estimates the horizontal offset of each pixel in the right input
image w.r.t. the left input image, and can be used to compute



Stage 1

Disparity Stage 1 Time

—

( ) M Disparity
116 Network
U-Net Stage 2 = m Residual 2 Disparity Stage 2
Feature Sl : Q =
Extractor 8 Network
Stage 3 . . Residual 3 ’/ Disparity Stagev3
;ﬁm - [+ B8
Stage 4 Disparity Stage 4
Input .
Image pair
| — Up-sampling —» Data flow |
Fig. 2: Network structure of AnyNet.
e D°{,§I§Z$§l§2§ Fomwre  images in order to compute a disparity map. We use this
—_—> 2D luti o e . .
T Skip comnecion maPs  component to compute the initial disparity map (stage 1) as
p p parity map (stag
1/8 1 -
s rors Well as to compute the res@ual maps for subsequent correc
T l maps tions (stages 2 & 3). The disparity network first computes a
114 disparity cost volume. Here, the cost refers to the similarity
Bl bbb > - B F;“;",‘;e between a pixel in the left image and a corresponding pixel in
outh the right image. If the input feature maps are of dimensions
nput image

Fig. 3: U-Net Feature Extractor. See text for details.

a depth map. Because of the low input resolution, the entire
Stage 1 computation requires only a few milliseconds. If
more computation time is permitted, we enter Stage 2 by
continuing the computation in the U-Net to obtain larger-
scale (1/8) features. Instead of computing a full disparity
map at this higher resolution, in Stage 2 we simply correct
the already-computed disparity map from Stage 1. First, we
up-scale the disparity map to match the resolution of Stage
2. We then compute a residual map, which contains small
corrections that specify how much the disparity map should
be increased or decreased for each pixel. If time permits,
Stage 3 follows a similar process as Stage 2, and doubles the
resolution again from a scale of 1/8 to 1/4. Stage 4 refines
the disparity map from Stage 3 with an SPNet [26].
In the remainder of this section we describe the individual

components of our model in greater detail.

a) U-Net Feature Extractor: Fig [3] illustrates the U-
Net [38] Feature Extractor in detail, which is applied to both
the left and right image. The U-Net architecture computes
feature maps at various resolutions (1/16, 1/8, 1/4), which
are used as input at stages 1-3 and only computed when
needed. The original input images are down-sampled through
max-pooling or strided convolution and then processed with
convolutional filters. Lower resolution feature maps capture
the global context, whereas higher resolution feature maps
capture local details. At scale 1/8 and 1/4, the final convolu-
tional layer incorporates the previously computed lower-scale
features.

b) Disparity Network: The disparity network (Fig. [)
takes as input the feature maps from the left and right stereo

H x W, the cost volume has dimensions H x W x M, where
the (4, j, k) entry describes the degree to which pixel (i, j) of
the left image matches pixel (¢, j—k) in the right image. M
denotes the maximum disparity under consideration. We can
represent each pixel (¢,7) in the left image as a vector pfj,
where dimension « corresponds to the (4, 5) entry in the a!”
input feature map associated with the left image. Similarly
we can define pg. The entry (7, j, k) in the cost volume is
then defined as the L, distance between the two vectors piLj
and pf; . ie. Cijr = [P — P 1

This cost volume may still contain errors due to blurry
objects, occlusions, or ambiguous matchings in the input
images. As a second step in the disparity network (3D
Conv in Fig E[), we refine the cost volume with several 3D
convolution layers [20] to further improve the obtained cost
volume.

The disparity for pixel (i, 7) in the left image is k if the
pixel (¢, 7— k) in the right image is most similar. If the cost
volume is exact, we could therefore compute the disparity
of pixel (i,7) as ﬁij = argminy C; ; . However, the cost
estimates may be too noisy to search for the hard minimum.
Instead, we follow the suggestion by Kendall et al. [20] and
compute a weighted average (Disparity regression in Fig [4)

M
Dij:Zk’X

k=0

exp (—Cijr)
7 .
2 k=0 xp (=Cijir)
If one disparity k clearly has the lowest cost (i.e. it is the only
good match), it will be recovered by the weighted average.
If there is ambiguity, the output will be an average of the
viable candidates.
¢) Residual Prediction: A crucial aspect of our AnyNet
architecture is that we only compute the full disparity map at

)
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Fig. 4: Disparity network. See text for details.

a very low resolution in Stage 1. In Stages 2 & 3 we predict
residuals [16]. The most expensive part of the disparity
prediction is the construction and refinement of the cost
volume. The cost volume scales H x W x M, where M
is the maximum disparity. In high resolutions, the maximum
disparity between two pixels can be very large (typically
M = 192 pixels in the KITTI dataset [8]). By restricting
ourselves to residuals, i.e. corrections of existing disparities,
we can limit ourselves to M = 5 (corresponding to offsets
—2,—1,0,1,2) and obtain sizable speedups.

In order to compute residuals in stages 2 & 3, we first up-
scale the coarse disparity map and use it to warp the input
features at the higher scale (Fig. [2) by applying the disparity
estimations pixel-wise. In particular, if the left disparity of
pixel (7,j) is estimated to be k, we overwrite the value of
pixel (i,7) in each right feature map to the corresponding
value of pixel (4,7 + k) (using zero if out of bounds). If
the current disparity estimate is correct, the updated right
feature maps should match the left feature maps. Due to the
coarseness of the low resolution inputs, there is typically still
a mismatch of several pixels, which we correct by computing
residual disparity maps. Prediction of the residual disparity is
accomplished similarly to the full disparity map computation.
The only difference is that the cost volume is computed
as Ciji = ||Pij — Pi(j—k+2) 1, and the resulting residual
disparity map is added to the up-scaled disparity map from
the previous stage.

d) Spatial Propagation Network: To further improve
our results, we add a final fourth stage in which we use
a Spatial Propagation Network (SPNet) [26] to refine our
disparity predictions. The SPNet sharpens the disparity map
by applying a local filter whose weights are predicted by
applying a small CNN to the left input image. We show that
this refinement improves our results significantly at relatively
little extra cost.

IV. EXPERIMENTAL RESULTS

In this section, we empirically evaluate our method and
compare it with existing stereo algorithms. In addition, we
benchmark the efficiency of our approach on an Nvidia
Jetson TX2 computing module.

a) Implementation Details: We implement AnyNet in
PyTorch [37]. See Table ]| for a detailed network description.
Our experiments use an AnyNet implementation with four
stages, as shown in Figure 2| and described in the previous
section. The maximum disparity is set to 192 pixels in the
original image, which corresponds to a Stage 1 cost volume
depth of M = 192/16 = 12. In Stages 2 & 3 the residual
range is £2, corresponding to +16 pixels in Stage 2 and
+8 pixels in Stage 3. All four stages, including the SPNet
in Stage 4, are trained jointly, but the losses are weighted
differently, with weights \; = 1/4, Ao = 1/2, A3 = 1 and

0 [ Input image

2-D Unet features

1 3% 3 conv with 1 filter
2 3% 3 conv with stride 2 and 1 filter
3 2 X 2 maxpooling with stride 2
4-5 3% 3 conv with 2 filters
6 2 X 2 maxpooling with stride 2
7-8 3 X 3 conv with 4 filters
9 2 X 2 maxpooling with stride 2
10-11 3 3 conv with 8 filters
12 Bilinear upsample layer 11 (features) into 2x size
13 Concatenate layer 8 and 12
14-15 3 x 3 conv with 4 filters
16 Bilinear upsample layer 15 (features) into 2x size
17 Concatenate layer 5 and 16
18-19 3% 3 conv with 2 filters
Cost volume
20 Warp and build cost volume from layer 11
21 Warp and build cost volume from layer 15 and layer 29
22 Warp and build cost volume from layer 19 and layer 36
Regularization
23-27 3x3x3 3-D conv with 16 filters
28 3x3x3 3-D conv with 1 filter
29 Disparity regression
30 Upsample layer 29 to image size: stage 1 disparity output
31-35 3x3x3 3-D conv with 4 filters
36 Disparity regression: residual of stage 2
37 Upsample 36 it into image size
38 Add layer 37 and layer 30
39 Upsample layer 38 to image size: stage 2 disparity output
40-44 | 3x3x3 3-D conv with 4 filters
45 Disparity regression: residual of stage 3
46 Add layer 44 and layer 38
47 Upsample layer 46 to image size: stage 3 disparity output
Spatial propagation network
48-51 3 X 3 conv with 16 filters (on input image)
52 3% 3 conv with 24 filters: affinity matrix
53 3 x 3 conv with 8 filters (on layer 47)
54 Spatial propagate layer 53 with layer 52 (affinity matrix)
55 3% 3 conv with 1 filters: stage 4 disparity output

TABLE I. Network configurations. Note that a conv stands
for a sequence of operations: batch normalization, rectified
linear units (ReLLU) and convolution. The default stride is 1.

Ay = 1, respectively. In total, our model contains 40,000
parameters - this is an order of magnitude fewer parameters
than StereoNet [21], and two orders of magnitude fewer
than PSMNet [4]. Our model is trained end-to-end using
Adam [22] with initial learning rate 5e~* and batch size
6. On the Scene Flow dataset [32], the learning rate is kept
constant, and the training lasts for 10 epochs in total. For the
KITTTI dataset we first pre-train the model on Scene Flow,
before fine-tuning it for 300 epochs. The learning rate is di-
vided by 10 after epoch 200. All input images are normalized
to be zero-mean with unit variance. All experiments were
conducted using original image resolutions. Using one GTX
1080Ti GPU, training on the Scene Flow dataset took 3.5
hours, and training on KITTI took 30 minutes. All results are
averaged over five randomized 80/20 train/validation splits.

Figure 5] visualizes the disparity maps predicted at the four
stages of our model. As more computation time is made
available, AnyNet produces increasingly refined disparity
maps. The final output from stage 4 is even sharper and
more accurate, due to the SPNet post-processing.

b) Datasets: Our model is trained on the synthetic
Scene Flow [32] dataset and evaluated on two real-world
datasets, KITTI-2012 [8] and KITTI-2015 [34]. The Scene
Flow dataset contains 22,000 stereo image pairs for train-
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Fig. 5: (a)-(d) Disparity prediction from 4 stages of AnyNet
on KITTI-2015. As a larger computational budget is made
available, the prediction is refined and becomes more accu-
rate. (e) shows the ground truth LiDAR image, and (f) shows
the left input image.

ing, and 4,370 image pairs for testing. Each image has a
resolution of 960 x 540 pixels. As in [20], we train our
model on 512 x 256 patches randomly cropped from the
original images. The KITTI-2012 dataset contains 194 pairs
of images for training and 195 for testing, while KITTI-2015
contains 200 image pairs for each. All of the KITTI images
are of size 1242 x 375.

c) Baselines: Although state-of-the-art CNN based
stereo estimation methods have been reported to reach 60FPS
on a TITAN X GPU [21], they are far from achieving real-
time performance on more resource-constrained computing
devices such as the Nvidia Jetson TX2. Here, we present a
controlled comparison on a TX2 between our method and
four competitive baseline algorithms: PSMNet [4], Stere-
oNet [21], DispNet [32], and StereoDNN [44]. The PSM-
Net model has two different versions: PSMNet-classic and
PSMNet-hourglass. We use the former, as it is much more
efficient than PSMNet-hourglass while having comparable
accuracy. For StereoNet, we report running times using a
Tensorflow implementation, which we found to be twice as
fast as a PyTorch implementation.

Finally, we also compare AnyNet to two classical stereo
matching approaches: Block Matching [23] and Semi-Global
Block Matching [12], supported by OpenCV [3].

In order to collect meaningful results for these baseline
methods on the TX2, we use down-sampled input images

Stage 1 Stage 2 Stage 3 Stage 4

Dataset 58 o 48.8ms 87.9ms 97.3ms
KITTI2012 15.1 £1.1 9.9+ 0.6 6.7+ 0.4 6.14+0.3
KITTI2015 14.0£0.7 9.7+ 0.7 6.8+ 0.6 6.2+ 0.6

TABLE II: Three-Pixel error (%) of AnyNet on KITTI-2012
and KITTI-2015 datasets. Lower values are better.

for faster inference times. The baseline methods are re-
implemented, and trained on down-sampled stereo images
- this allows a fair comparison, since a model trained on
full-sized images would be expected to suffer a significant
performance decrease when given lower-resolution inputs.
After obtaining a low-resolution prediction, we up-sample it
to the original size using bilinear interpolation.

A. Evaluation Results

Table [I] contains numerical results for AnyNet on the
KITTI-2012 and KITTI-2015 datasets. Additionally, Figures
and[6al demonstrate the evaluation error and inference time
of our model as compared to baseline methods. Baseline
algorithm results originally reported in [3], [21], [4], [31],
[44] are shown plotted with crosses. For AnyNet as well
as the StereoNet and PSMNet baselines, computations are
performed across multiple down-sampling input resolutions.
Results are generated from inputs at full resolution as well
as at 1/4, 1/8, and 1/16 resolution, with lower resolution
corresponding to faster inference time as shown on Figs. [6a]
and [6b] As seen in both plots, only AnyNet and StereoNet
are capable of rapid real-time prediction at >30 FPS, and
AnyNet obtains a drastically lower error rate on both data
sets. AnyNet is additionally capable of running at over 10
FPS even with full-resolution inputs, and at each possible
inference time range, AnyNet clearly dominates all baselines
in terms of prediction error. PSMNet is capable of producing
the most accurate results overall, however this is only true
at computation rates of 1 FPS or slower. We also observe
that the only non-CNN based approach, OpenCV, is not
competitive in any inference time range.

a) Anytime setting: We also evaluate AnyNet in the
anytime setting, in which we can poll the model prema-
turely at any given time ¢ in order to retrieve its most
recent prediction. In order to mimic an anytime setting for
the baseline OpenCV, StereoNet, and PSMNet models, we
make predictions successively at increasingly higher input
resolutions and execute them sequentially in ascending order
of size. At time ¢ we evaluate the most recently computed
disparity map. Figures [6c| and [6d] show the three-pixel error
rates in the anytime setting. Similarly to the non-anytime
results, AnyNet obtains significantly more accurate results
in the 10-30 FPS range. Furthermore, the times between
disparity map completions (visualized as horizontal lines
in Figs. [6c] and [6d) are much shorter than for any of the
baselines, reducing the amount of wasted computation if a
query is issued during a disparity map computation.

B. Ablation Study

In order to examine the impact of various components
of the AnyNet architecture, we conduct an ablation study
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using three variants of our model. The first replaces the U-
Net feature extractor with three separated ConvNets without
shared weights; the second computes a full-scale prediction
at each resolution level, instead of only predicting the resid-
ual disparity; while the third replaces the distance-based cost
volume construction method with the method in PSMNet [4]
that produces a stack of 2 x M cost volumes. All ablated
variants of our method are trained from scratch, and results
from evaluating them on KITTI-2015 are shown in Fig. [7]

a) Feature extractor: We modify the model’s feature
extractor by replacing the U-Net with three separate 2D
convolutional neural networks which are similar to one
another in terms of computational cost. As seen in Fig. [7]
(line AnyNet w/o UNet), the errors increase drastically in
the first two stages (20.4% and 7.3%). We hypothesize that
by extracting contextual information from higher resolutions,
the U-Net produces high-quality cost volumes even at low
resolutions. This makes it a desirable choice for feature
extraction.

b) Residual Prediction: We compare our default net-
work with a variant that refines the disparity estimation
by directly predicting disparities, instead of residuals, in
the second and third stages. Results are shown in Fig. []
(line AnyNet w/o Residual). While this variant is capable
of attaining similar accuracy to the original model, the
evaluation time in the last two stages is increased by a factor
of more than six. This increase suggests that the proposed
method to predict residuals is highly efficient at refining
coarse disparity maps, by avoiding the construction of large
cost volumes which need to account for a large range of
disparities.

c¢) Distance-based Cost Volume: Finally, we evaluate
the distance-based method for cost volume construction, by
comparing it to the method used in PSMNet [4]. This method
builds multiple cost volumes without explicitly calculating
the distance between features from the left and right images.
The results in Fig. [/| (line AnyNet w/o DBCV) show that our
distance-based approach is about 10% faster than this choice,
indicating that explicitly considering the feature distance
leads to a better trade-off between accuracy and speed.

V. DISCUSSION AND CONCLUSION

To the best of our knowledge, AnyNet is the first algorithm
for anytime depth estimation from stereo images. As (low-
power) GPUs become more affordable and are increasingly
incorporated into mobile computing devices, anytime depth
estimation will enable accurate and reliable real-time depth
estimation for a large variety of robotic applications.
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