CHiMP: A Contact based Hilbert Map Planner

Constantin Uhde!, Emmanuel Dean-Leon? and Gordon Cheng?

Abstract— This work presents a new contact-based 3D path
planning approach for manipulators using robot skin. We
make use of the Stochastic Functional Gradient Path Planner,
extending it to the 3D case, and assess its usefulness in com-
bination with multi-modal robot skin. Our proposed algorithm
is verified on a 6 DOF robot arm that has been covered
with multi-modal robot skin. The experimental platform is
combined with a skin based compliant controller, making the
robot inherently reactive. We implement different state-of-the-
art planners within our contact-based robot system to compare
their performance under the same conditions. In this way,
all the planners use the same skin compliant control during
evaluation. Furthermore, we extend the stochastic planner with
tactile-based explorative behavior to improve its performance,
especially for unknown environments. We show that CHiMP is
able to outperform state of the art algorithms when working
with skin-based sparse contact data.

I. INTRODUCTION

When children explore their surroundings, they use their
tactile senses of touch in conjunction with their sight. In fact,
the interdependence of these two senses, particularly during
the learning phase, is fundamental [1]. This interdependence
helps humans to navigate in unknown environments, with
both vision and tactile exploration, in order to maximize the
knowledge of their surroundings. Tactile feedback is used,
especially if vision is temporarily impaired, for example, if
one tries to find the light switch in a dark room.

Planning algorithms are used in robotics to achieve tasks
such as grasping and motion planning. The environment of
the robot is often recorded with the help of laser scan-
ners, cameras, and depth sensors. This leaves out tactile
information (e.g., robot skin), which can provide additional
knowledge especially when these optical sensors suffer from
occlusions.

Existing state-of-the-art planning algorithms based on sam-
pling [2], [3], or optimization [4], [5], have yet to be
optimized for planning with robot skin.

The concept of intentional contact was introduced with the
work of Guadarrama et al. [6], with a focus on control,
similar to the work of Jain et al. [7]. The goal of this work
is to integrate a feasible planning-based approach with robot
skin to enhance exploration and general planning behavior
in unknown environments.

To achieve this, we selected the Stochastic Functional Gra-
dient Path Planning in Occupancy Maps [8] as planning
approach since it is able to robustly incorporate un-occupied
and occupied data samples into the environment reconstruc-
tion.

Institute for Cognitive Systems, Technical University of Munich
lc.uhde@tum.de, 2dean@tum.de, 3gordon@tum.de

CHiMP

|| Compliant [
Hilbert Map

Skin

of Proximity Force

@%Tm

Temperature

" Acceleration

Fig. 1: Overview of the system. The planner interacts with the compliant
skin controller to provide reactive planning in the presence of complex
obstacles. The robot skin [9] is a multi-modal sensor providing proximity,
acceleration, force, and temperature information on each skin cell.

A. Structure of this Work

The rest of this paper is structured as follows: Section
II covers the related work, Section III covers the chosen
approach and Section IV proposes a flexible exploration
versus exploitation extension. Results on a real robot and
a comparison of different planners are presented in Section
V. The paper is concluded with Section VI.

II. RELATED WORK
A. Hilbert Maps

This work utilizes the Octomap implementation for data
preparation and sensor-fusion [10]. Octomaps are a very
efficient and scalable 3D environment representation that
handles robust sensor fusion. It includes descriptions for both
the occupied and unoccupied regions. The Octomap is used
as an input for the Hilbert map occupancy classifier. Hilbert
maps [11] are a solution to generating a robust probabilistic
occupancy representation. The big advantage over occupancy
distance fields is the fact that Hilbert maps can be generated
and updated online [4], [5]. The map uses observations to
generate a continuous representation of the world without a
priori discretization into grid cells. It also captures statistical
relations between observations intuitively.

This occupancy inference is important for working with
sparse occupancy data, for example, contact information
produced by the robot skin. Hilbert maps are built by first
transforming observations via a kernel approximation into a
high dimensional Reproducing Kernel Hilbert Space, where
a linear classifier learns the map representation. We use the
Nystroem approximation [12] since it is simple to imple-
ment while providing good generalization performance by
correctly labeling undiscovered areas. The objective function

is convex in all parameters, which ensures optimality. The
model is trained via Stochastic Gradient Descent which de-
couples computational cost from the number of observations.

B. Planning

The continuous occupancy reconstruction from sparse data
allows employing an optimization-based planning approach
that is able to maximize the trajectory distance to the obstacle
by design. This helps with reducing the number of required
contact points during the exploration phase. Following the
principles behind the Hilbert Map, the selected planner [13],
[8] utilizes functional gradient descent and doesn’t commit
to a fixed trajectory resolution. This makes the planner a very
elegant and conceptually compact solution to the problem of
planning in maps.

III. APPROACH
A. Querying the Hilbert Map Classifier

Ramos et al. [11] describe the Hilbert map classifier. The
occupancy of a new position x, is queried with the following
sigmoid logit function:

B 1

1 +exp(wTz,)
where y,. = —1 is the value for non-occupancy and w is the
vector of model parameters. The key to correctly modeling
a complex environment lies in not directly applying the
highly nonlinear position values of z but a high-dimensional

feature projection ®(z). This effectively results in a kernel
projection in the logit function.

d(w)Td(x,) ~ k(w, x,) (2)

H(zy) = Py = —1|xs, w) ()

This kernel trick can be used, to train the linear logistic
regression classifier on highly nonlinear data by transforming
it into high-dimensional space, in which a suitable linear
hyperplane may exist.

B. Nystroem features

Belongie et al. provide the steps to calculate the Nystroem
approximation [12] in a concise fashion [14]. The idea is that
a subset of the training data is sufficient for the classifier to
work. The subset is called inducing points from here on. The
standard kernel matrix can then be displayed as

_[Kn K
K {Km K22])
Ky; € R™*™ is full rank and needs full evaluation only
once, since it is comprised of the static inducing points-set.
Ko € Rn=m)xm ig calculated for all points of interest, and
Koy € R(=m)x(n=m) can be inferred from the other two.
This reduces the number of required computations greatly.
Using the eigendecomposition of K gives

T
_ T _ |U1 U] _ [hAUT
K=UAU" = {Uz] A [Uz} B |:U2AU1T

Ui AUT

voavr| @

Where U; and A can be found by eigendecomposition of K7,
which is comprised of the inducing points. Ko = UgAUlT
can be rewritten as

Uy = KoyUyA™! (5)

Which leaves us with Koy = UQAUQT . Substituting Uy with
equation 5 results in

_1 _I\T
Koy = <K21K112> (K21K112) (6)

Note here that this equation contains the feature transform
for the non-inducing points in K9y which will be important
later on. K can then be reconstructed by writing

1 1 T
K= (i)(i)T _ l Kll_I] l Kll_ll (7)
Ko Ky,* | [Ko1Ky
K 1_1% itself is easy to calculate by utilizing the eigendecom-
position and applying the exponent to the elements of the
diagonal matrix A. The feature vector is then calculated as
follows:

N

b(x) = (k(x,&1), ... k(2,2 A2 UL (8)

Here, for new samples,
(k(x,21), ..., k(x,&y,)) matrix is
kernel function k(z,).

The Nystroem kernel approximation speeds up the Hilbert
map and trajectory training and querying to allow near-real-
time performance of the planning algorithm.

only the Ko =
calculated with the

C. Hilbert Map Update rule

According to Ramos et al [11], gradient descent is em-
loyed to train the map model, which minimizes the follow-
ing objective function of the weight vector:

N
NLL(w) = Zlog (1 + exp(—yiwT - @(zz))) + R(w))

=1

where R(w) € R is a regularizer term (L1, L2, or the linear
combination of L1 and L2 called elasticnet) and x;, y; are
the data points and their occupancy label, respectively. The
gradient 1s calculated as:

SR Toa o1, OR(w)
VNLL(w) = —y;i®(x:)(1+exp(ysw” - &(x:))) +—5o (10
i=1 w
This gradient function is then used in Stochastic Gradient
Descent, which randomly selects one sample from the train-
ing data and updates the weights in an iterative fashion with
the following update rule:

4 0
wy = wi—1 — N4, 1%NLL(w)

where 17 > 0 is the learning rate and A is a preconditioning
matrix, which can be set to the identity matrix in the naive
case. This update rule can be directly used in online learning,
feeding new data points into the model as they arrive. Figures
3 a) and b) depict a basic Hilbert Map generated from binary
occupancy samples in a two-dimensional scenario.

Y

D. Defining the Planner Cost-Function

Similar to points in the the Hilbert map, one trajectory is
a point in its own high dimensional Hilbert Space. Francis
et al. [13] [8] describe the steps.

£€:[0,1] - Qe RP (12)

A path ¢ which maps time ¢ € [0,1] to the configuration
space Q (in our case the joint space). The Hilbert Space
properties allow for homologous transformation between
trajectories. The gradient information for direction can be
obtained by constructing an objective functional which as-
signs a scalar real-valued cost to a trajectory: U({) : E — R

The functional is typically comprised of two penalties:
a obstacle proximity and a shape or dynamics part with a
multiplier A to balance the functionals impact.

u(ﬁ) = uobs(g) +)‘udyn(g) (13)
Uops (§) = > elw(é(t),u)) (14)
(t,u)€T(E)
1 2
Ua(€) = 5 [| Ge0)] 15)

Here, T(§) = t,u; is a finite set of time ¢; and body points
u;. ¢ is the workspace cost function.

The obstacle functional U,ps is defined in Configuration
Space. Obstacles are represented by the Hilbert map in
Cartesian Space. To calculate the cost in Configuration
Space, a kinematic mapping is required which maps a Q-
space configuration £(t) together with a point on the robot
u € B to a point in Workspace z({(t),u). The obstacle
cost functional is a reduction via a workspace cost function
c: R® — R over all trajectory and robot points. In reality,
the reduce operator needs to be representable by a sum over
a finite set of trajectory and robot points to be practical.
The dynamics functional Ugy, is a secondary constraint
which smooths the results of the obstacle functional. There-
fore, it is important to balance the functional multiplier
A correctly to not conflict with the actual obstacle avoid-
ance provided by U,ps, wWhile providing sufficient trajectory
smoothing. Ug,, can be implemented in various ways, with
one of the more popular approaches being a penalty on
first and second order derivatives of the trajectory since
this is independent of time parametrization and works with
already given information. The downside of this variant of
the regularizer is the lack of direct control over real-world
dynamics.

The cost function U is used to train a linear regression model
in combination with the kernel trick, which we utilize for
generating trajectory candidates.

E. Functional gradient descent

The cost functional is not used directly, but its gradient,
similar to the approach for Hilbert maps. The obstacle
and dynamics costs in Eq. 14 and 15 are both of the

form f:v(t,ﬁ,g’) which allows to formulate the gradient

according to Zucker et al. [15] VF(§) = %Z - %g—g,. This

results in the following cost function gradient.

2
im(é(t), W) Vze(z(E(t), w)) — %5

Ve = 5ew

) (6

where V, is the Euclidean gradient and %(t)a:(f (t),u) is
the workspace Jacobian.

Algorithm 1: Stochastic Gradient Path Planner

Require: H: Occupancy Map Eq. 1
£(0),&(1): Start and Goal states
Pgg e Safety threshold
&(¢,-): Inducing Feature vector Eq. 8
Ensure: w,,;, Optimized Trajectory Weights
w <— initialize with lin. interpolation from £(0) to £(1)
n <0
while not converged and n < N4, do
Stochastic sampling:
(ts,us) U[0,1] < Draw sample uniformly
Poce = H(x(&n(t7), u"))
if Py < Psype then
wp+1 + update Eq. 21
end if
Fix boundary conditions Eq. 22
end while
n<—n+1

FE. Planner Update rule

Francis et al. [13] [8] describe the update rule, which is
derived as linear approximation in the region of the current
trajectory &,.

U(E) = U(&n + VeU(En) (€ — &n) + O((€ — €n)?) (17

where O((£—¢&,,)?) is a regularizer based on the norm of the

update ﬁ € — €,]/3, which is the squared Mahalonobis

distance and a learning rate 7,.
1
Gt = argminU(En) + (€= &) Vell(En) + 5 - IE = Ealliy (1)

By differentiating eq. 18 with respect to & we get the general
update rule, which is valid for various cost functions U:

€nt1 =&n — MM TV U(ER) (19)

The actual trajectory is sampled from the weight matrix w
at time ¢: X R
£(t) = &o(t) + w" ()T (1) (20)

Where & is the initialization of the trajectory, which can
be a simple interpolation between desired start and goal
configuration. This can be left out, if the weights are an inter-
polation themselves, as w has dimensionality R°*™ where ¢
1s the configuration space dimensionality and m the number
of inducing points ¢’ for the Nystroem Kernel. ®(¢')®(¢)”
is a new instance of the Nystroem kernel approximation
discussed in Section III-B. This changes the optimization
goal to Woptimar = arg min,, U(w) and allows to formulate
the weight update rule:

Wn i1 & wn — N M TR () VeU(En) (t:) (2)

The boundary conditions are handled by a similar equation
to 21. The difference lies in the used time-stamps ¢, € 0,1
and cost function Axy(¢p), which is the deviation from the
start and goal states:

Wn+1 = Wn —]Vf_lqA)(tl)T&(tb)A:Bb(tb) (22)
The resulting weight update algorithm can be seen in Algo-

rithm 1. Note that the difference to the employed algorithm in
[8] lies in not using batch processing and utilizing the same

0.75 1

0.5 1

0.25 1

0 v Y : P(x
0 025 05 075 1

Fig. 2: Simple occupancy probability remapping from regressor output P(x)
to simple remapped output P(z)* with a set point s = 0.5 for pure
explorative behaviour. Where P(z) represents the occupancy probability
of position x.

weight matrix for initial trajectory and bounds correction.
Both changes are simplifications to the algorithm by giving
up part of its generality. The removed batch processing also
means that typical iteration counts are visually higher, while
actually performing the same amount of calculations.

IV. EXPLORATION VS. EXPLOITATION

The presented approach provides a sample efficient frame-
work for planning in known environments. With CHiMP, we
offer a very elegant and simple contribution for seamless
transition between exploration and exploitation to facilitate
working with incomplete information about the surroundings.
The optimization based algorithm, as discussed in Section III,
tries to fit a trajectory into the areas of the Hilbert Map that
are least probable to contain obstacles. This probability is
normalized in the [0,1] range with O being zero probability
of occupancy and 1 describing certain occupancy.

This map results in very conservative behavior as the tra-
jectory is drawn to known and occupancy-free areas of the
environment. To prioritize undiscovered regions, we propose
to change the occupancy cost functional to facilitate explo-
ration. This can be achieved by remapping the probability
values in a way that minimizes probabilities between 0
and 1, thus the robot is drawn towards areas of medium
probability. With roughly equal amounts of occupied and
non-occupied training samples, the occupancy probability for
position x, P(x) = 0.5 represents two phenomena: Since the
map is continuous, the value of 0.5 occurs at the transition
between free and occupied areas, for example right in front
of a known wall. Additionally, the same value may arise
in unknown areas where the classifier, using the Nystroem
Kernel approximation, is not certain and thus defaults to the
inherent probability value (P(z) = 0.5).

A naive remapping approach looks similar to an inverted
triangular pulse function:

. (s — P(x))/(ps)
P(z)" =
@ =1 (e s
Where s is the target probability to be explored. The mapping

is visualized in Fig. 2. In this paper, we use s = 0.5 as an
example for purely explorative behaviour. p > 1 guarantees

for 0 < P(x) < s

for s < P(z) <1 (23)

a) Observations b) Hilbert Map

10 g 1
. ® oo
8 L ' >
e 3
L) L] * §
51 o ‘. ° ° S
&
(] L]
o ©° .] 3
° 2
4) &
L 3
° °]
2 °® S
° '-'.
° %
0 []

o
B
Occupancy Probability
Occupancy Probability

0 0

0 2 4 6 8 10 0 2 4
Fig. 3: Implementation of two dimensional Hilbert Map remapping variants.
a) The observation data used for training, where red indicates occupied (1)
and blue free (0) regions. The goal is to emphasize the undiscovered areas
(neither blue nor red points). b) The standard continuous Hilbert map output
for exploitative planning. ¢) The naive remapping applied to b), incorrectly
highlighting the transitional regions around obstacles (dark blue region).
In this case, the robot would fit the trajectory close to obstacles. d) The
gradient-based remapping applied to b), favouring the undiscovered regions
correctly, while excluding the transitional areas.

that the remapped values at P(z) = 0 are lower than
P(zx) = 1, in this way, the system prefers free over occupied
areas in densely sampled and thus already known regions.
We heuristically defined the value of p = 1.5. Applying
the naive remapping to a Hilbert Map regressor results in a
map as depicted in Figure 3 c¢). The mapping is continuous,
but not differentiable at the set point s, see Fig. 2. For
the presented work, this is not relevant as we use numeric
derivations up to the second order, which are robust and
produces non-diverging output. If one wants to analytically
derive the probability function, a mapping variant based on
polynomial functions can be used instead. Looking at the
results in Figure 3 c), this naive approach emphasizes not
only areas with low data coverage but also the transition
zones between free and occupied areas. This may be useful
in some scenarios where planning close to known walls is of
interest but not in the case of explorative intent. Therefore,
additional information about the environment is required to
filter out these transitional zones. A good indication is given
by the gradient information of these remapped zones. In
the original version of the map, the gradient at the points
of interest is small in contrast to the undesired transitional
zones. An extended version of the remapping function is thus
given below:

1 — arctan(||VP(z)]2)
0.57

This results in Figure 3 d). As can be seen, including gradient

information drastically enhances the output. The rim around

the object is correctly classified as occupied. Furthermore,

all regions of low data density are highlighted as free and

thus facilitate exploration correctly. Only the region inside

P()y0a = Pla)" 24

* —
grad —

Intial Postions
Sideways

Upwards;

First Goal — Second Goal =
Fig. 4: Planner comparison experimental setup. a) The consecutive first and
b) second goal, c¢) upright, d) sideways and e) folded starting conditions.

of objects is problematic since the gradient between the
known border and unknown inside of objects has a similar
gradient to the outside of the object. However, these artifacts
are completely enclosed by high occupancy regions and can
therefore be ignored since the trajectory update only occurs
below a user-defined occupancy threshold.

V. EXPERIMENTS

All experiments are included in the accompanying video,
with the exception of the scalability test V-A which was
done in simulation. We reduced the execution speed of
all planned trajectories in this experiment, to accommodate
for the slow dynamics, caused by conservative compliant
controller parameters. A longer version is available at:
https://github.com/cuhde/chimp.

A. Configuration space scalability

As a first test, the CHiMP planner was set up in simulation
and validated with three different kinematic configurations.
A 3DOF, 5DOF, and 7DOF robot, with identical simulation
environments. Average planning times indicate that the algo-
rithm scales well, as can be seen in Figure 6.

The data show, that the algorithm [8] employed in CHiMP
is able to not only scale from 2D to 3D space but can also
be applied to high DOF systems.

B. Compliant exploration planner comparison

Our approach was validated in comparison to four
other planners. Two sampling-based algorithms: i) rapidly-
exploring random trees (RRT) [2]; and ii) probabilistic
roadmaps (PRM) [16], and two more recent optimization
based algorithms: i) Covariant Hamiltonian optimization
for motion planning (CHOMP) [15] [4]; and ii) stochastic
trajectory optimization for motion planning (STOMP) [5].
The former two planners utilize the sparse contact samples
retrieved from the skin directly through the Octomap, while
the latter two generate a distance field in addition.

For the comparison test, the URS robot covered with
multi-modal skin is required to plan inside a loosely stacked

TABLE I: Comparative test results with three different starting poses.
Contact numbers in brackets indicate that the corresponding run failed due
to not finding a valid path after the first contact. In our tests, CHOMP was
generally not able to find a valid path with very few Octomap samples as
provided by the skin, but succeeded with dense obstacle data.

Average Execution

Upwards plan. time [s] time [s] Contacts | Successful

CHiMP 7.98 68 1 yes
RRT 3.19 62 (1) no

CHOMP 1.02 29 (1) no

STOMP 0.96 76 2 yes

Sideways Ave'rage Ex;cutlon Contacts | Successful

plan. time [s] time [s]

CHiMP 7.54 95 3 yes
RRT 0.08 73 6 no
PRM 5.03 320 9 no

STOMP 2.92 126 4 yes

Folded Ave.rage Exgcutlon Contacts | Successful

plan. time [s] time [s]

CHiMP 6.80 84 1 yes
PRM 5.01 95 2 yes

CHOMP 0.81 39 (1) no

STOMP 4.15 160 5 no

packing-foam loop and back out, without toppling the con-
struction (see Figure 4). The environment is not known in
advance and has to be detected solely by the proximity
sensors of the robot skin. The goal of this experiment is
to evaluate which planner is able to effectively navigate
unknown environments using the data that the robot skin
provides.

All planners are given 10 consecutive planning tries per goal,
each starting from the resulting position of the preceding
one. The idea is to produce more natural behaviors, where
in case of obstacle detection during exploration, the system
continues from where it encountered something unexpected.
This is more natural and human-like. We chose to evaluate
all approaches with these same constraints. Three starting
positions are tested. The results can be seen in Table I. Even
though it can get stuck in local minima (this impact can
be reduced by random restarts), the CHiMP planner is able
to navigate most runs with a minimal number of contacts in
practice. The Hilbert Map is able to infer object shapes from
only a few data samples. Due to the contact-based nature of
the approach, the provided data is heavily skewed towards
free samples. Utilizing this information is crucial for efficient
planning with robot skin as we want to keep the number of
contacts — and thus occupied samples — low. In contrast to
pure collision detection or distance field calculation, which
is used with CHOMP and STOMP, this approach utilizes
this non-occupied data to shape the Gaussian approximation
based probability representation. This can be seen in samples
being off-center to the red blobs in Figure 5.

C. Exploration with Hilbert map remapping

Inciting explorative behavior has been tested with CHiMP
and the same setup as in Experiment V-B. The remapping
function causes the system to prefer undiscovered regions,
as expected. Due to requiring gradient information for all
Hilbert map calls, the planning time is nearly tripled. Narrow

Fig. 5: Narrow goal with CHiMP planner setup. The planner is able to avoid the obstacle with only four contact points. The first four columns show
the contacts, the last two depict the two successfully reached goals. The reconstruction in the Hilbert map can be seen in the last two shots. Notice the
difference between the Octomap and the Hilbert map, where the former shows a discrete non-gradient representation, while the latter provides gradient
information useful for the planner. For visibility purposes, we only show the occupancy probabilities P(z) > 0.7.

T
75 B
7.35
7 |-
g
S 65 .
£
6 |- -
% 5.78
5.5 -

| | |
3 DOF 5 DOF 7 DOF

Fig. 6: Comparison of CHiMP planning time in seconds for three diferent
joint configurations over 20 runs each. The algorithms scales well with the
number of joints.

goals cannot be reached, due to the degradation of gradient
information caused by halving the probability range. The
remapping set point (here s = 0.5) can be moved between
planning attempts to first prefer explorative behavior, before
exploiting the collected data with regular planning. The
experiment can be seen in the accompanying video.

The presented numeric implementation for Hilbert map
derivation is comparatively slow. This is particularly apparent
in the remapping case as it requires more sample points
for the gradient-based filtering. The number of calls can be
drastically reduced by implementing analytic partial deriva-
tions with respect to the workspace dimensions. This requires
the somewhat lengthy derivation of the regression model in
conjunction with the feature space transformation performed
by the kernel approximation.

D. Planning with new obstacles

The online nature of Hilbert maps allows planning with
newly appearing obstacles in mind. This experiment tested if
the system using the CHiMP planner is able to react to new
obstacles in already discovered regions. The CHiMP planner
was able to detect and avoid the obstacle with a big margin.
The experiment can be seen in the accompanying video.

E. Planning towards narrow goals

For a final setup, the CHiMP planner was tested with a
narrow version of the test setup in experiment V-B. The
planner successfully approximated the obstacle with only
four contact points and reached both goals. The contacts and
goal sequence can be seen in Figure 5, and the accompanying
video.

VI. CONCLUSION

This work has shown that planning with multi-modal skin
is feasible, given enough robot surface skin coverage. The
difference in data acquisition, compared to global camera
systems requires novel approaches for planning. In this
work we extended the Stochastic Functional Gradient Path
Planning algorithm to 3D space, verified that it works
with high dimensional configuration spaces, integrated the
approach into a intentional contact-based system, added
seamlessly controllable explorative behavior and showed that
the CHiMP planner is able to utilize the skin-based sparse
contact data effectively by approximating the obstacle shape,
where available state-of-the-art planners struggle. As de-
picted in Table I, even though the proposed planner reached
all the goals successfully, it doesn’t match the convergence
time of state-of-the-art planners. This performance optimiza-
tion is considered as future work.

ACKNOWLEDGMENT

The research reported in this paper has been (partially)
supported by the German Research Foundation DFG, as part
of Collaborative Research Center (Sonderforschungsbereich)
1320 “EASE - Everyday Activity Science and Engineer-
ing”, University of Bremen (http://www.ease-crc.org/). The
research was conducted in subproject R1: NEEM-based
embodied knowledge system.

[1]

[2]
[3]

[5]

[6]

[7

—

[8

[t}

(10]

(1]

[12]

[13]

[14]

[15]

[16]

REFERENCES

M. Gori, M. D. Viva, G. Sandini, and D. C. Burr, “Young Children Do
Not Integrate Visual and Haptic Form Information,” Current Biology,
vol. 18, pp. 694-698, 2008.

S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” 1998.

L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, ‘“Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566-580, 1996.

N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
Robotics and Automation, 2009. ICRA’09. IEEE International Con-
ference on. 1EEE, 2009, pp. 489-494.

M. Kalakrishnan, S. Chitta, E. Theodorou, P. Pastor, and S. Schaal,
“STOMP: Stochastic trajectory optimization for motion planning,” in
Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 4569-4574.

J. R. Guadarrama-Olvera, E. Dean, and G. Cheng, “Using intentional
contact to achieve tasks in tight environments,” in Robotics and
Automation (ICRA), 2017 IEEE International Conference on. 1EEE,
2017, pp. 1000-1005.

A. Jain, M. D. Killpack, A. Edsinger, and C. C. Kemp, “Reaching in
clutter with whole-arm tactile sensing,” The International Journal of
Robotics Research, vol. 32, no. 4, pp. 458-482, 2013.

G. Francis, L. Ott, and F. T. Ramos, “Stochastic Functional Gradient
Path Planning in Occupancy Maps,” CoRR, vol. abs/1705.05987, 2017.
P. Mittendorfer and G. Cheng, “Humanoid Multimodal Tactile-Sensing
Modules,” IEEE Transactions on Robotics, vol. 27, pp. 401-410, 2011.
A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “OctoMap: an efficient probabilistic 3D mapping framework
based on octrees,” Auton. Robots, vol. 34, pp. 189-206, 2013.

F. T. Ramos and L. Ott, “Hilbert maps: Scalable continuous occupancy
mapping with stochastic gradient descent,” I. J. Robotics Res., vol. 35,
pp. 1717-1730, 2015.

C. K. I. Williams and M. W. Seeger, “Using the Nystrom Method to
Speed Up Kernel Machines,” in NIPS, 2000.

G. Francis, L. Ott, and F. T. Ramos, “Stochastic functional gradient
for motion planning in continuous occupancy maps,” 2017 IEEE
International Conference on Robotics and Automation (ICRA), pp.
3778-3785, 2017.

S. Belongie, C. Fowlkes, F. Chung, and J. Malik, “Spectral partitioning
with indefinite kernels using the nystrom extension,” in European
conference on computer vision. Springer, 2002, pp. 531-542.

M. Zucker, N. Ratliff, A. D. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. A. Bagnell, and S. S. Srinivasa, “CHOMP: Covariant
Hamiltonian optimization for motion planning,” The International
Journal of Robotics Research, vol. 32, no. 9-10, pp. 1164-1193, 2013.
D. Hsu, J.-C. Latombe, and H. Kurniawati, “On the probabilistic
foundations of probabilistic roadmap planning,” The International
Journal of Robotics Research, vol. 25, no. 7, pp. 627-643, 2006.

