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Abstract— n-shot learning, i.e., learning a classifier from only
few or even one training samples per class, is the ultimate
goal in minimizing the cost of sample acquisition. This is
esp. important for active sensing tasks like tactile material
classification. Achieving high classification accuracy from only
few samples is typically possible only when pre-knowledge is
used. In n-shot transfer learning, knowledge from pre-training
on a large knowledge set with many classes and samples per
class has to be transferred to support the training for a given
task set with only few samples per new class.

In this paper, we show for the first time that deep end-to-end
transfer learning is feasible for tactile material classification.
Based on the previously presented (TactNet-II) [1], a deep con-
volutional neural network (CNN) which reaches superhuman
tactile classification performance, we adapt state-of-the art deep
transfer learning methods.

We evaluate the resulting deep n-shot learning methods
with a publicly available tactile material data set with 36
materials [1] in a 6-way n-shot learning task with 30 materials
in the knowledge set. In 1-shot learning, our deep transfer
learning method reaches 75.5% classification accuracy and in
10-shot more than 90%, outperforming classification without
knowledge transfer by more than 40%. This results in an up
to 15 time reduction in the number of samples needed to reach
a desired accuracy level.

We also provide insights of the inner workings of the derived
deep transfer learning methods.

I. INTRODUCTION

Tactile sensing, esp. on hands, is indispensable for robots
to perform complex dextrous manipulation tasks or to del-
icately explore the physical properties of the environment.
As the physical interactions between the sensor and surface
while sliding over it are involved, usually learning has to be
used to interpret the tactile data. Deep learning has shown
very robust [2] and even superhuman performance [1] in
tactile material classification. But learning typically needs
a large number of training samples and in robotics, sample
acquisition is costly, even more so for active sensing tasks
like tactile sensing.

It is therefore desirable to need only as little training data
as possible; in the extreme case, needing only one sample per
to be learned class. This is the well known one-shot learning
problem [3]]. The generalized n-shot learning, where n (small
number) samples per class are used, is a topic of intensive
research in the machine learning community (see Sec. [[-A).

The main idea in n-shot learning methods is to take
usage of pre-knowledge to support the learning task at hand.
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Fig. 1. n-shot transfer learning. From a large number of samples (the
knowledge set) a classifier is trained once. The learned knowledge is then
extracted and transferred to a new classifier (often of the same architectural
type) to support the learning of a new classification task on previously
unseen classes with only a few n samples per class. The depicted materials
are a subset of the used publicly available data set from [I]] of typical
materials found in households: (3) jersey, (4) cotton fabric reverse, (5) cotton
fabric, (6) linen fabric smooth reverse, (8) linen fabric smooth(9) wood, (12)
reflecting fabric, (13) metal, (23) cork, (26) carton, (28) carpet rough, (31)
rubber rough horizontal, (32) rubber smooth, (34) foam.

Typically, the pre-knowledge is acquired by training on a
large data set once and is then transferred to the new task
with previously unseen classes. Fig. [T]depicts such a transfer
learning procedure.

In this paper, we investigate and show for the first time the
feasibility of deep one-shot transfer learning for a real world
tactile material classification task with a flexible pressure-
sensitive skin (see Fig. [2| for the experimental setup). Deep
one-shot learning means that learning is done end-to-end
with no manually pre-constructed feature mapping but di-
rectly on the raw high-dimensional sensor signal.

A. Related Work

Tactile material classification and tactile sensing in general
has gained increasing attention in the robotics community in
the last years. Reviews of tactile sensors can be found , e.g.,
in Dahiya et al. [4] and Kappassov et al. [3)]. Tulbure and
Bauml [[1] give a thorough overview of research in tactile
material classification.

To our knowledge, the only work on transfer learning in
tactile material classification is [6]. They use the signals
of the 2kHz pressure sensor and the 19 electrodes (50 Hz
sample rate) of the BioTac [7] sensors mounted on the
fingertips of a Shadow Hand. The hand holds the objects
while sliding over the surface with two fingers. From the
raw high-dimensional signal, first lower dimensional features



are extracted using manually designed feature descriptors.
Their online tactile learning algorithm which is based on a
least squares support vector machine (SVM) classifier works
in this lower dimensional feature space. For 1-shot learning
with a knowledge set of 10 objects and a task set of 12
objects, they reach an excellent accuracy of 97%.

In contrast, the work we present in this paper is based on
[1] and uses a flexible pressure-sensitive skin instead of the
BioTac sensor. This is an important advantage as the flexible
skin can be easily mounted (glued) to an existing robotic
structure whereas for the bulky BioTac sensor parts, e.g., the
fingertip, have to replaced. We also use the larger data set
from with 36 materials which, in addition, is publicly
available and allows for comparison to other methods in the
future.

However, the most important difference is that we do not
use manually designed feature descriptors but use a deep
learning based end-to-end learning scheme with automatic
feature extraction directly from the 16000 dimensional raw
input signal. End-to-end learning is important not only
because it makes the time-consuming feature design by an
expert obsolete but because the automatic feature extraction
gives better performance for the flexible skin sensor as was
shown in [2] (different feature descriptors and classification
methods including SVMs have been compared to deep learn-
ing).

Recently, there has been much interest in n-shot learning in
the context of deep learning which usually demands for large
training set sizes. Early works [8] use feature extraction from
a network trained on the large knowledge set and then use
classification in this feature space. A more advanced match-
ing variant is the Siamese network method [9] where twin
networks are trained especially for getting a good feature
space for later matching via a simple distance function, e.g.,
the euclidian distance.

Newer work use quite complex (recurrent) neural networks
needing episodic training [10] [11]] [12]]. Those transfer
learning networks are not easy to train and usually work
only for rather simple base network architectures. In contrast,
Bauer et al. show in their recent work that, using a ca-
pable feed forward neural network trained on the knowledge
set as a basis, simple matching and logistic regression based
transfer methods work surprisingly well and outperform all
the more complicated methods by a large margin on the usual
benchmark tasks.

Therefore, in this work we use the high performing
TactNet-1I as the basis for the state of the art transfer learning
methods from Bauer et al. [13]].

II. ROBOT SETUP & N-SHOT LEARNING TASK
A. Setup

1) Robot Setup: Fig.[2]summarizes the experimental setup
for recording the tactile data from a flexible tactile skin
mounted on a robot’s finger tip.

2) Material Data Set: For all the experiments we use
the publicly available material data set from (K = 36
materials and m = 100 samples per class) from everyday
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Fig. 2. DLR’s Agile Justin [14] performing a sweeping motion to identify
the material of a tube. For our "Mars Habitat” demonstrator the robot has to
discriminate geometrically identical tubes (50 cm X 5cm.) by touch alone.
Agile Justin is equipped with two DLR Hand-II [T3]]. To the soft finger tip
of the index finger of the right hand a flexible tactile skin with a 4 x 4 taxel
array from Tekscan (VersaTek® sensor 4256E) is attached providing
a spatio-temporal pressure signal at 750 Hz sample rate. The right column
depicts a close-up (upper) of the contact situation and how the tactile sensor
is taped to the finger tip (lower) with a thin laboratory glove on top to
increase the grip. The procedure for exploring a given tube is performed
autonomously by the robot: grasp the tube with the left hand to stabilize it;
grasp the tube with the thumb and the index finger of the right hand; slide
down along the tube at a constant velocity of 3 cm/s with a roughly constant
force of 1N (20% precision) using the hand’s joint torque sensors for 2s.
The plot at the bottom shows the resulting raw spatio-temporal signal of the
tactile skin. For material classification, the 1.33 s sliding motion, resulting
in a 1000 x 4 x 4 = 16000 dimensional sample, is used without any
pre-processing.

household objects which has been recorded with the setup
described before (see Fig. [I] for a subset of the materials).
Tulbure and Bduml also present human performance
data for a classification and differentiation task from a large
human study.

B. n-Shot Learning Task

Fig. describes n-shot learning. The knowledge set D=
{Zi, 7}, has many classes C' and a large number of
samples n per class, i.e., N = Cn. If the task set D =
{x;,y;}}, consists of C classes with only few samples n
per class, i.e., N = Cn, the problem is called a C-way n-
shot learning problem. The goal in n-shot transfer learning is
to reach high accuracy on test samples from the task classes
although the task set for training has only few samples. The
trick is to transfer knowledge from the large knowledge set
(with different classes).

III. N-SHOT TRANSFER LEARNING METHODS
A. Fine-Tuning

As a typical CNN, our TactNet-II architecture (Fig. 3] a)
consists of two parts: the automatic hierarchical feature
extraction layers and the classification perceptron. The first
part extracts important features from the input in a hier-
archical fashion from low (elementary) to high semantic



level [17, 18], whereas the second part expands these fea-
tures into a high dimensional space to fit a classification
hyperplane.

The idea is, inspired by Hoffman et al. [8]], that the
hierarchical features learned are generic when the number
of training samples and classes is large enough. So, this
features can be learned once from a large knowledge set
and then be reused. For a new task, the input samples = are
first transformed into the feature space, u = ¢(x; ), with
the parameters ( previously learned from the knowledge set.
Then, only the classification in the abstract feature space has
to be learned from the task set.

A nice property of CNNs is how such an idea directly
leads to a concrete implementation: given a C-way n-shot
problem, the knowledge set is first used to train a CNN.
The trained weights (layers) are then extracted and saved.
For training the network on the task set with C' new classes,
the trained weights are loaded into the network and only a
subset of the layers are re-trained, typically a subset of the
last layers (classifier perceptron), using n samples per class.

Choosing the subset of retrainable layers results in differ-
ent variants of n-shot transfer learning CNNs.

OL: All layers except for the output layer (OL) are pre-
trained on the knowledge set and then the weights are fixed.
Only the OL is then trained on the task set.

FCL-OL: Like in OL, all layers are pre-trained on the
knowledge set but this time the OL as well as the fully
connected layer (FCL) are retrained on the task set.

NK: As a baseline, also the no-pre-knowledge (NK)
method fits into this scheme as an extreme case. In NK,
the original TactNet-II is directly trained on the task set, i.e.,
without any pre-training on the knowledge set. We use the
knowledge set only for an individual hyperparameter search
for each n of the n-shot learning tasks.

Fig. 3] a gives a graphical summary of these learning
variants.

B. Matching

Another method for reusing the learned feature mapping
u = ¢(x; ), hence, the knowledge set, is to directly perform
a nearest neighbor (NN) classification without any learning
on the task set. The idea is, that a simple distance metric in
the abstract feature space can cover the class structure better
than using the simple metric in the original sample space.

For 1-NN, given the task set D = {z;,y;}, and a
distance metric d(uj,us2) in the feature space, a sample x
is classified as y* according to

*

" = argmind (¢(z; ), (233 9)), y* =y

We use the feature mapping of TactNet-II without the output
layer and the simple euclidian metric d(uy, us) = |Jus—usz2.

Fig. 3| b depicts this NN method as a network structure,
where two identical shortened TactNet-IIs are fed in parallel
with x and the z;.

An advanced variant of this matching idea is the Siamese
network [9]]. In this method, also the training on the knowl-
edge set for getting the feature mapping is done in the
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Fig. 3. Deep transfer learning network architectures. a) The TactNet-II
CNN [1]. In transfer learning, first the full TactNet-II is trained on the
knowledge set. For the n-shot learning only, parts of the network are re-
trained. The boxes on the left indicate for the fine-tuning methods OL and
OL-FCL which layers are kept fixed (gray) and which are re-trained (empty).
As baseline, the NK method without knowledge transfer retrains the full
network. b) Matching network architecture. During testing, a pair of a test
sample and a sample from the task set are mapped in parallel to the feature
space by two trained identical TactNet-IIs. The Euclidean distance is then
computed in this feature space. For the NN method, a standard pre-trained
TactNet-II is used whereas the Siamese method trains the networks explicitly
for discrimination between two given classes.

similarity measure

matching setup with the two identical twin networks (hence,
the name Siamese). The idea is, that this way the mapping
learns better features for the matching than when trained for
a classification task.

For training on the knowledge set, the network is fed
with pairs of training samples (Z;,%;),(Z;,¢;) and it has
to predict if they belong to the same (; = ;) or different
(¥i # ;) classes. This is a binary classification problem with
label ¢ = 0 (same) or ¢ = 1 (different) and the contrastive
loss function is used. For a single training pair the loss is

E(p) = (1 —t)d* + t max(0, e — d)?,
with d = d (¢(Z:; ), 6(Zj3 ), €>0.

For training, Ngj,m/2 pairs with same and Ngj,,/2 pairs
with different class labels are randomly drawn from the
knowledge set.

At test time on the task set, the same scheme as in NN is
used. Fig. 3] b shows the network structure.

C. Concept Learning

In all above methods, the transfer of knowledge is per-
formed solely via the learned mapping into the feature space.
Bauer et al. [13] describe a simple probabilistic method that
additionally transfers knowledge from the learned weights of
the output layer in a OL fine-tuning setting like in Sec.

Given the weights W of the C class neurons in the output
layer, which have to be trained from thgiransformed task set
samples u = ¢(x; ), with z € D and W the weights of the
C class neurons that have been trained on the knowledge
set D. The full Bayesian approach in Bauer et al. [13]
using the assumptions of a large number of classes C' and
samples per class 7 in the knowledge set and a small number
of samples per class n in the task set, leads then to the
following maximum a posteriori (MAP) point estimate for



the predictive probability distribution for a new sample of a
task class

p(y|x,D, 5) ~ p(y‘xa WMAP)7
with Wyiap = arg mvgxp(mW)p(WfW).

This is the same maximization expression as in standard
MAP estimation but with a prior p(W|W) for the weights
W that depends on the weights W trained on the knowledge
set.

With W = (w1,...,wc) are the weights of the C' task
class neurons and W = (w1, ...,wg) of the C knowledge
class neurons and the probabilistic model assumption that
the prior is a univariate Gaussian distribution, the prior can
be written as

C
p(WIW) = [TV (welpa. o5),

IZC:@ o2 12031(@ V2 (e — i)
K@ 5 - cs w 5 - Ia c Hw c Mg ).
we and 0'% are the empirical mean and variance of the
trained weights of the knowledge set class neurons and F' is
the dimensionality of the feature space (i.e., ' = dim(u)).
Important to note is that the prior p(WW|W) is not centered
at 0 but shifted by pg. In summary, the concept learning
method of Bauer et al. [13] biases the weights of the task
class neurons to be close to the mean of the knowledge
class neuron weights and the strength of this bias is inversely
proportional to the variance of the knowledge class neuron
weights.

In the error function, the prior results in a Lo regularization
term but with the calculated optimal strength and the shift

c
EW)=—logp(DIW) + s Z (we — m)T(wC —m),

s=1/(20%), m = ug.

We call the method using the full regularization term
OL-mean. When only the calculated optimal regularization
strength s but not the shift term (m = 0) is used, we call it
OL-opt. The method OL from Sec[[TI-A]is the case where the
strength s is set to the default value as used in the TactNet-1I
training.

IV. EVALUATION & DISCUSSION
A. Cross-Validation

To evaluate the n-shot learning performance of a classifier
with the material data set from Sec. [[EA] with K = 36
classes, we use a double cross-validation scheme. On the
class level, we split the K = 36 materials randomly into
C = 6 task set classes and the C' = 30 knowledge set classes,
i.e., we perform 6-way n-shot learning. If not mentioned
otherwise, all results are reported for averaging over S = 100
random splits (but the same random splits are used for all
learning methods).
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Fig. 4. Performance comparison of the best transfer learning methods and

the NK method without pre-knowledge.

For each split, the knowledge training (and potentially
hyperparameter training) is performed using all n = m =
100 samples per class of the knowledge classes. For the n-
shot training, the task set contains only n samples for each
task class. But we use cross-validation on the sample level
where for R = 10 runs, randomly n new samples out of the
m = 100 samples for each of the C classes in the task set
are chosen and all other m — n samples per class are used
for testing. The accuracy is averaged of all runs.

TABLE 1
N-SHOT TRANSFER PERFORMANCE

method n=1|n=5| n=10
NK 33.8 57.0 68.7
Siamese 66.7 67 75.6
NN 75.4 84.4 86.8
OL-FCL 67.0 83.8 88.8
OL 75.0 87.5 89.9
OL-opt 75.1 87.6 90.2
OL-mean 75.5 87.9 90.3

B. Transfer Learning Performance

Table [[ lists the accuracy for all methods from Sec. [l and
Fig. compares the most important results.

1) Method Comparison: Using no pre-knowledge (NK
method) performs poorly when using 1-shot learning and
even for 10-shot learning the accuracy is with < 70%
unusably low. But the n-shot transfer learning methods work
very well and reach accuracies of > 75% even for 1-shot
learning and > 90% for 10-shot learning. Compared to using
no pre-knowledge, the accuracy gain is as high as 40%.

For 1-shot learning, the fine-tuning as well as the matching
based NN methods perform comparably well but for large
n the accuracy of the NN method is almost 4% lower
than the best OL methods. This shows that learning of a
shallow classifier in the feature space, although on only few
examples, still covers better the class structure of the tactile
data.

2) Matching Methods: Other than expected, the Siamese
network performs > 10% worse than the NN method al-
though it explicitly trains a feature mapping for pairwise
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Fig. 5. Dependence of the accuracy on the regularization strength for OL-
mean. The red cross marks the calculated strength, the green cross marks
the standard strength of TactNet-1I as it is found by hyperparameter search
for training on the knowledge set. The calculated strength is always optimal
proving that the probabilistic model assumption of concept learning are valid
for TactNet-II.

matching via a distance function. We suspect that this is
due to the inefficiency of the needed training with pairs of
samples which would lead to (C1)2 = 9 - 10° of pairs to
present all information of the knowledge set to the network.
But for performance reasons we can only provide 27000 pairs
per epoch (a usual ratio in training Siamese networks).

3) Fine Tuning Methods: In the fine-tuning methods, the
OL-FCL method performs worst, as expected, due to the high
number of weights that have to be trained from only few task
set samples. For 1-shot learning, the full concept learning
method OL-mean with the calculated optimal regularization
strength and shift term performs 0.5% better than OL with no
shift term and the default regularization strength of TactNet-
IT (found by hyperparameter search on the knowledge set).

Fig. shows for OL-mean that the calculated regu-
larization strength is actually optimal. This proves that the
assumptions of the probabilistic concept learning model are
valid in case of the tactile material classification task and the
TactNet-II network architecture.

C. Analysis

1) Easy/Hard Material Combinations: For some combi-
nations of materials, the classification is harder than for
others. Therefore, Table [II] lists the individual accuracies for
the hardest and the easiest combinations out of the S = 100
material splits we evaluated. In 1-shot learning, the difference
in the accuracies is > 40% for OL-mean but even for the
hardest combination, transfer learning performs 30% better
than when using no pre-knowledge.

2) Uncertainty: Table[[|also shows the standard deviation
ogr over the R = 10 cross-validation runs for the two extreme
material combinations and the average g = 1/R Y%, o).
The or represent the uncertainty due to different sets of n
randomly chosen samples out of the m samples for each
material in a given task set. As expected, the uncertainty is
highest for 1-shot learning (= 5%). But with increasing n, gr
rapidly shrinks to about 1% for OL-mean but stays at ~ 3%
for NK. This shows that the knowledge transfer not only
increases the accuracy but also decreases the uncertainty.

3) Feature Mapping: All the transfer learning methods
from Sec. depend on the assumption that TactNet-II
learns a good feature mapping u = ¢(x; ) when trained

#*
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Fig. 6. t-SNE of all m = 100 samples per material for the easy and
hard combination. Images of the materials are depicted in Fig.[T] Left: Easy
combination with (3) jersey, (12) reflecting fabric, (26) carton, (28) carpet
rough, (32) rubber smooth, (34) foam. Right: Hard combination with (4)
cotton fabric reverse, (5) cotton fabric, (8) linen fabric smooth, (9) wood,
(23) cork.

on the knowledge set so that classification in the feature
space is easier than directly in the input space. To check
this assumption, we performed t-SNE [19] on the mapped
input samples of the two extreme material combinations.
Fig. shows that for the easy combination the classes
are clearly separated and even for the hard combination only
two classes get heavily mixed.

TABLE 11
EASY/HARD MATERIAL COMBINATIONS

task method n=1 n=>5 n =10
acc OR acc OR acc OR
hard OL-mean | 56.0 | 55 | 75.1 | 29 | 80.8 | 2.1
NK 263 | 43 | 438 | 3.5 | 534 | 52
easy | OL-mean | 904 | 4.7 | 968 | 0.6 | 97.3 | 04
NK 437 | 43 | 77.0 | 3.6 | 89.8 | 2.6
mean | OL-mean | 75.5 | 55 | 87.9 | 1.8 | 90.3 1.3
NK 338 | 53 | 57.0 | 5.1 | 68.7 | 3.4

D. Sample Efficiency

In robotics, the usefulness of transfer learning depends
on the reduction in the number of samples needed to reach
a desired accuracy level. For this, Fig. compares
the accuracies of transfer learning (OL-mean) and learning
without pre-knowledge (NK) for n = 1,...,80. For 1-shot
learning, NK reaches the same level only for 15 times more
samples. In case, an accuracy of > 90% is desired, 10-shot
transfer learning still needs about 5 times less samples than
NK.

V. CONCLUSIONS

In this paper, we have shown for the first time that
deep end-to-end learning for tactile material classification is
feasible. By adapting state of the art deep transfer learning
methods to our previously reported TactNet-II [1] with
superhuman performance, we reached classification accuracy
in this real world setting of 75.5% for 6-way 1-shot learning
and over 90% for 10-shot learning. This leads to a 15 resp.
5 time reduction in the number of samples needed compared
to learning without knowledge transfer.

This high classification accuracy also shows that the
knowledge set with 30 materials is large enough to cover
relevant knowledge for all 100 tested task set material
combinations.
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Fig. 7. Performance comparison of n-shot transfer learning OL-mean and
learning without prior knowledge NK.

Our analysis shows that the probabilistic concept learning
method [13] which was previously only used in a vision
benchmark example is applicable to the real world material
classification task. By using the TactNet-1I, it outperforms
all other tested deep n-shot transfer learning methods for all
n.

In future work, we will further examine methods for
sample efficient training in tactile material classification,
namely semi-supervised learning and guided active learning.

ACKNOWLEDGMENTS

We thank DLR’s Agile Justin hardware team for their indispensable

technical support.

REFERENCES

[1] A. Tulbure and B. Bduml, “Superhuman performance
in tactile material classification and differentiation
with a flexible pressure-sensitive  skin,” in
Proc. IEEE/RAS International Conference on
Humanoid Robots, 2018 (submitted). [Online]. Avail-
able: https://drive.google.com/file/d/1ybR2Bk5UN_
J1R-vrcyARC67gKrBYQk7J/view?usp=sharing

[2] S. Baishya and B. Bduml, “Robust material classifica-
tion with a tactile skin using deep learning,” in Proc.
IEEE International Conference on Intelligent Robots
and Systems, 2016.

[3] L. Fei-Fei, R. Fergus, and P. Perona, “One-shot learning
of object categories,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 4, pp.
594-611, 2006.

[4] R. S. Dahiya et al., “Directions toward effective utiliza-
tion of tactile skin: A review,” IEEE Sensors Journal,
vol. 13, no. 11, 2013.

[5] Z. Kappassov, J. A. C. Ramon, and V. Perdereau,
“Tactile sensing in dexterous robot hands - review,’
Robotics and Autonomous Systems, vol. 74, no. Part
A, pp. 195-220, 2015.

[6] M. Kaboli, R. Walker, and G. Cheng, “Re-using prior
tactile experience by robotic hands to discriminate in-
hand objects via texture properties,” in Proc. IEEE

International Conference on Robotics and Automation,
2016.

[7] N. Wettels, V. Santos, R. Johansson, and G. Loeb,
“Biomimetic tactile sensor array,” Advanced Robotics,
vol. 22, no. 8, pp. 829-849, 2008.

[8] J. Hoffman er al., “One-shot adaptation of supervised
deep convolutional models,” in Proc. International
Conference in Learning and Representation, 2014.

[9] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese
neural networks for one-shot image recognition,” in
Proc. ICML Deep Learning workshop, 2015.

[10] O. Vinyals et al., “Matching networks for one
shot learning,” in Advances in Neural Information
Processing  Systems 29, D. D. Lee et al.,
Eds. Curran Associates, Inc., 2016, pp. 3630-
3638. [Online]. Available: http://papers.nips.cc/paper/
6385-matching-networks-for-one-shot-learning.pdf]

[11] J.  Snell, K. Swersky, and R. S. Zemel,
“Prototypical networks for few-shot learning,” CoRR,
vol. abs/1703.05175, 2017. [Online]. Available:
http://arxiv.org/abs/1703.05175

[12] S. Ravi and H. Larochelle, “Optimization as a model for
few-shot learning,” in Proc. International Conference
on Learning Representations, 2017.

[13] M. Bauer et al., “Discriminative k-shot learning using
probabilistic models,” in NIPS workshop on Bayesian
Deep Learning, 2017.

[14] B. Béuml et al., “Agile Justin: An upgraded member
of DLR’s family of lightweight and torque controlled
humanoids,” in Proc. IEEE International Conference on
Robotics and Automation, 2014.

[15] J. Butterfa3, M. Grebenstein, H. Liu, and G. Hirzinger,
“DLR-Hand II: Next generation of a dextrous robot
hand,” in Proc. IEEE International Conference on
Robotics and Automation, 2001, pp. 109-114.

[16] Tekscan. [Online]. Available: https://www.tekscan.com

[17] Y. Xu et al., “Deep learning of feature representation
with multiple instance learning for medical image anal-
ysis,” in Proc. IEEE Int. Conf on Acoustics, Speech and
Signal Processing, 2014.

[18] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet
classification with deep convolutional neural networks,”
in Proc. NIPS, 2012.

[19] L. van der Maaten and G. Hinton, “Visualizing high-
dimensional data using t-sne,” Journal of Machine
Learning Research, vol. 9, pp. 2579-2605, 2008.


https://drive.google.com/file/d/1ybR2Bk5UN_J1R-vrcyARC67qKrBYQk7J/view?usp=sharing
https://drive.google.com/file/d/1ybR2Bk5UN_J1R-vrcyARC67qKrBYQk7J/view?usp=sharing
http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning.pdf
http://papers.nips.cc/paper/6385-matching-networks-for-one-shot-learning.pdf
http://arxiv.org/abs/1703.05175
https://www.tekscan.com

	Introduction
	Related Work

	Robot Setup & n-Shot Learning Task
	Setup
	Robot Setup
	Material Data Set

	n-Shot Learning Task

	n-Shot Transfer Learning Methods
	Fine-Tuning
	Matching
	Concept Learning

	Evaluation & Discussion
	Cross-Validation
	Transfer Learning Performance
	Method Comparison
	Matching Methods
	Fine Tuning Methods

	Analysis
	Easy/Hard Material Combinations
	Uncertainty
	Feature Mapping

	Sample Efficiency

	Conclusions

