

University of Birmingham

A constraint programming approach to
simultaneous task allocation and motion scheduling
for industrial dual-arm manipulation tasks
Behrens, Jan Kristof; Lange, Ralph; Mansouri, Masoumeh

DOI:
10.1109/ICRA.2019.8794022

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Behrens, JK, Lange, R & Mansouri, M 2019, A constraint programming approach to simultaneous task allocation
and motion scheduling for industrial dual-arm manipulation tasks. in 2019 International Conference on Robotics
and Automation (ICRA) . International Conference on Robotics and Automation (ICRA) , IEEE Computer Society
Press, pp. 8705-8711, 2019 International Conference on Robotics and Automation (ICRA), Montreal, Canada,
20/05/19. https://doi.org/10.1109/ICRA.2019.8794022

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 23. Apr. 2024

https://doi.org/10.1109/ICRA.2019.8794022
https://doi.org/10.1109/ICRA.2019.8794022
https://birmingham.elsevierpure.com/en/publications/5c1f18a7-789f-457a-a1ae-43e48584615d

A Constraint Programming Approach to Simultaneous Task
Allocation and Motion Scheduling for Industrial Dual-Arm

Manipulation Tasks

Jan Kristof Behrens1 Ralph Lange1 Masoumeh Mansouri2

Abstract— Modern lightweight dual-arm robots
bring the physical capabilities to quickly take over
tasks at typical industrial workplaces designed for
workers. Low setup times – including the instruct-
ing/specifying of new tasks – are crucial to stay
competitive. We propose a constraint programming
approach to simultaneous task allocation and mo-
tion scheduling for such industrial manipulation and
assembly tasks. Our approach covers the robot as
well as connected machines. The key concept are
Ordered Visiting Constraints, a descriptive and ex-
tensible model to specify such tasks with their spa-
tiotemporal requirements and combinatorial or or-
dering constraints. Our solver integrates such task
models and robot motion models into constraint op-
timization problems and solves them efficiently us-
ing various heuristics to produce makespan-optimized
robot programs. For large manipulation tasks with
200 objects, our solver implemented using Google’s
Operations Research tools requires less than a minute
to compute usable plans. The proposed task model
is robot-independent and can easily be deployed to
other robotic platforms. This portability is validated
through several simulation-based experiments.

I. Introduction
Modern lightweight dual-arm robots such as the ABB
YuMi or the KaWaDa Nextage are engineered in the
style of a human torso to be easily applicable in industrial
workplaces designed for workers. These robots are an an-
swer to the demand for flexible, cost-effective production
of customer-driven product variants and small lot sizes.

Such flexible production requires fast methods to spec-
ify new tasks for these robots. Classical teach-in by
means of fixed paths is not appropriate. With the capa-
bilities of today’s perception systems, which can detect
and localize workpieces, boxes, and tools automatically,
and a formalized goal or high-level task specification, the
manual teach-in may be replaced by automated planning
– in principle. Planning in these contexts involves three
aspects: (a) task planning of the necessary steps and
actions to achieve the overall task, (b) scheduling of these
steps and actions, and (c) motion planning for each step
and action.

For dual-arm robots, additionally (d) the allocation of
task steps and actions to the individual arms must be
decided upon. Moreover, the complexity of scheduling

1Robert Bosch GmbH, Corporate Research, Renningen, Ger-
many, behrens.jk@gmail.com, ralph.lange@de.bosch.com

2Örebro University, Sweden, masoumeh.mansouri@oru.se

1. Assembling of wiper
motors with a dual-arm
robot. The robot picks
a tool from (C), places
it on the shaft of the
rotor of an electric mo-
tor in the workpiece
holder (A), picks an
electric interface, sup-
plied in a container (B)
and places it on (A).

and motion planning is increased heavily, due to the ne-
cessity to closely coordinate the manipulators to prevent
self-collisions of the robot.

All four aspects – task planning, scheduling, allocation
and motion planning – are closely interrelated. Ideally,
to achieve optimal plans with regard to the makespan
(production time), they have to be considered in one
coherent formalism and planning algorithm. In the last
years, significant progress has been made to closely
couple task planning with motion planning by passing
feedback from motion planning (e.g., [10], [6], [16], [18],
[7]), but research is still far from an ideal solution.

In many industrial use-cases, task planning is not
required as the necessary steps and actions to process
and assemble a workpiece are already given in digital
form, i.e. there is an abstract plan with a number of
unknowns and degrees of freedom in terms of scheduling,
allocation and motion planning. Computing an optimal
plan requires to treat the aspects scheduling, allocation
and motion planning in a highly integrated and coherent
manner, which we refer to as simultaneous task alloca-
tion, and motion scheduling (STAAMS). An optimal plan
depends not only on the motions of the manipulators
but also on the order in which a workpiece is assembled,
the order in which the components are taken from boxes
or conveyor belts, in which they are processed by other
machines, etc. – in particular, if connected systems or
machines impose temporal constraints. The number of
actions to be scheduled can be very high which results
in big combinatorial complexity. Moreover, a suitable
STAAMS solver has to consider different assignments of
subtasks to arms, while taking the individual working
ranges into account as well as task steps in which the

arms have to cooperate.
In this paper, we propose a flexible model and solver

for STAAMS for multi-arm robots in industrial use-cases.
The proposed model and solver are based on constraint
programming (CP) and constraint optimization, respec-
tively. In detail, our contributions are as follows:

1) For specifying the abstract task decomposition of
a STAAMS problem, we propose a novel and intuitive
model primitive named Ordered Visiting Constraints
(OVC). It is developed out of the observation that many
production steps can be described concisely by sequences
of actions (e.g. drilling, picking, welding or joining) to be
performed at given locations with ordering or temporal
constraints in-between.
2) We propose an advanced CP concept named Connec-
tion Variables to link the OVC-based task model with a
roadmap-based time-scalable motion series model into an
unified STAAMS problem model. At the same time, we
explain how this modularity allows to easily port a given
OVC-based task model not only to different workspace
layouts but even to different robots.
3) We present an adaptable solver, which allows for
fine-grained user control over the different constraint
optimization techniques to compute an almost-optimal
plan for typical STAAMS problem sizes in few seconds.

The remainder of this paper is organized as follows:
We present an analysis of typical industrial use-cases in
Sec. II before we discuss related work in Sec. III. The
STAAMS model with the OVC-based task model and
the motion model as well as the corresponding solver,
are presented in Sec. IV and Sec. V. Scalability and
portability of the proposed system is evaluated in Sec. VI.
The paper is concluded in Sec. VII.

II. Use-case Analysis and Problem Definition

We analyzed several industrial workplaces for character-
istic properties and prevalent concepts serving as basis
for the design of our STAAMS model. In this section, we
report on these results, state our assumptions and then
derive a problem definition for STAAMS.

Controlled environment. Industrial workplaces pro-
vide a controlled environment by design. We may assume
that object locations and possible placements are known
in advance, which allows for offline pre-calculation of mo-
tion roadmaps. Also, we assume the absence of external
interferences such as humans.
Unobstructed workspace. We assume that relevant
objects never obstruct each other. This implies that
there exists a collision-free subset of the workspace that
does not alter over time and allows to reach all relevant
object locations with at least one robot arm. For example
this applies to drilling, riveting, welding, glueing, and
assembling of small parts. As a consequence, we do
not require a complex scene graph (cf. [4]) that tracks
geometric relations between all objects in the workspace.

Ordered Visiting Actions. Suitable plans for these
use-cases may be specified as a series of motions (per
arm) to visit relevant locations in the workspace. At each
location, the manipulator may perform local actions such
as screw in a screw or picking an object from a container,
which – for our scheduling purposes – can be abstracted
as constraint on the visiting duration at that location.
While the overall order of actions may be changed, some
actions like pick-and-place are subject to a partial order-
ing and are therefore considered as an entity. We refer to
such entities as Ordered Visiting Actions (OVA). OVAs
may be used to model many advanced tasks such as
joining, welding, sorting, inspecting, drilling, and milling.
Temporal dependencies. Often, there are additional
temporal dependencies between OVAs. In the motor
assembly use-case depicted in Fig. 1, the temporal de-
pendencies are given by the assembly sequence for each
motor. Also, in general, each arm can carry only one
object at a time, i.e. the gripper is a reservable resource
requiring to schedule the OVAs per arm.
Active components. Another important observation is
that processing stations in the workspace may also take
on different configurations, just as the robot arms. An
example is the door of a molding machine, which is closed
during processing. We generalize such stations and the
robot arms together as active components.

Problem Definition. From the use-cases point-of-view,
the problem of STAAMS can be defined as an integrated
task and motion planning (ITAMP) problem limited
to (1.) a given partially-ordered task decomposition
with further spatiotemporal, combinatorial and ordering
constraints, and (2.) predefined locations (6DoF poses)
for small-sized objects so that motion planning can be
reduced to motion scheduling along the shortest paths
from precomputed roadmaps.

From a formal perspective, there is a close relation
to multi-agent path finding (MAPF). More precisely,
STAAMS can be formulated as the anonymous variant
of MAPF, combined with target assignments (TAPF)
given by partially-ordered sets of subtasks/actions with
spatiotemporal, combinatorial and ordering constraints
on predefined locations; and is NP-hard [21].

III. Related Work

In the last years, a number of techniques for ITAMP
have been proposed, including extensions of classical task
planning which iteratively query and take feedback from
motion planning (e.g., [8], [25], [16], [3], [10], [7]), motion
planning being guided by a symbolic layer (e.g., [6], [27]),
and two-staged approaches (e.g., [18]).

From the listed works, only [6] and [25] consider mul-
tiple manipulators – multiple mobile single-arm robots
or a mobile dual-arm robot, respectively. Both works
unveil the complexity of ITAMP for multiple robots
or manipulators. In contrast, STAAMS assumes a pre-
existing abstract task decomposition effectively reducing

the task planning subproblem to task allocation and
motion scheduling.

The state-of-the-art optimal TAPF method [20] can-
not solve STAAMS problems in general, as it does not
compute kinematically feasible motions for agents, nor
can it be applied in cases requiring ordering decisions
about task assignments. Online methods for multi-agent
task assignment and scheduling algorithms have been
developed for small-sized teams of agents, and very
robust in the face of execution uncertainty [24]. Multi-
robot task allocation with temporal/ordering constraints
has been studied in the context of integrating auction-
based methods with Simple Temporal Problems [22].
These methods, however, do not account for conflicting
spatial interactions, as needed, for example, in dual-arm
manipulations. The applications of CP to multi-robot
task planning and scheduling often use a simplified robot
motion model, and ignore the cost of spatial interaction
among robots in the scheduling process [5].

The motion planning and scheduling subproblems of
STAAMS can be seen as a multi-robot motion planning
problem. LaValle [17] defined the following three classes:
Prioritized planning assigns an order to the robots (arms)
according to which their movements are planned (e.g.,
[15]). Fixed-path planning (also named time-scaling) only
adjusts timings to prevent collisions (e.g., [23]). Fixed-
roadmap planning considers paths in topological graphs
. Our method falls in the third category.

Time-scaling problems are a special-case of STAAMS.
In Sec. VI, we compare our approach against the time-
scaling method by Kimmel et al. [13].

Regarding the task sequencing subproblem of
STAAMS, we refer to the survey by Alatartsev et al. [1].
The survey, however, lacks the coverage for tasks that
are applicable for multi-arm robots.

Very close to our work is the CP-based approach
for dual-arm manipulation planning and cell layout
optimization by Ejenstam et al. [9]. It uses a coarse
discretization of the workspace. In contrast, our dense
roadmaps enable the close coordination of the arms and
thus allow more parallel movements. Kurosu et al. [15]
describe a decoupled MILP-based approach to solve a
STAAMS, where the motion planner is prone to fail due
to simplified motion and cost models used in the one-
shot MILP formulation. In contrast, our solver finds a
mutually feasible solution for all subproblems.

In [2], we presented a toy use-case and solved it using
MiniZinc. Without the OVC model and the tailored
search strategy, this solution did not scale adequately.

IV. Modeling STAAMS Problems with OVCs

In this section, we present our formalism for specifying
STAAMS problems as constraint programs. Our model
consists of two submodels named task model and motion
model. As illustrated in Figure 2, the task model is inde-
pendent of any kinematic details and actual trajectories.

𝐼𝐼1𝑤𝑤 𝐼𝐼2𝑤𝑤 𝐼𝐼3𝑤𝑤𝐼𝐼1𝑡𝑡 𝐼𝐼2𝑡𝑡 ⋯ 𝐼𝐼𝑛𝑛𝑡𝑡

C1 Cn

OVC ω2

Motion
Model

Task
Model

Connection
Variables

resource r1

I5I1

⋯ X5X1

L5⋯

OVC ω1

I3I1

A

⋯ X3X1

L1 ⋯

makespan

L1L3

𝐼𝐼1𝑤𝑤 𝐼𝐼2𝑤𝑤 𝐼𝐼3𝑤𝑤𝐼𝐼1𝑡𝑡 𝐼𝐼2𝑡𝑡 ⋯ 𝐼𝐼𝑚𝑚𝑡𝑡

C1 C2 C3 Cm

= integer variable = interval variable = index-based assignment

A

motion series σ2

motion series σ1

Fig. 2. Overview of our CP-based STAAMS model

Conversely, the motion model represents the trajecto-
ries of all active components independent of any task
information. Both models are linked through Connection
Variables, a special kind of CP variable. Next, we explain
both submodels and then the Connection Variable mech-
anism. For readability, we write constants or values as
lowercase Latin letters and constraint variables as capital
letters. Compounds of constraint variables are denoted
with small Greek letters.

A. Task Model
The first and most important element of the task
model are OVCs, which can be considered as variable,
constraint-based blueprints of OVAs. An OVC consists
of four sets of CP variables modeling primitive actions
(e.g. pick, place, drill, etc.) to be executed at certain
locations in the workplace within certain time intervals
by an active component. The locations L are a finite set
of 6DoF poses of interest in the workplace – in particular
possible object placements in containers and workpiece
holders – in a common reference system.
Def 1. Formally, an OVC is a tuple

ω = (A, [P1, ..., Pl], [L1, ..., Ll], [I1, ..., Il], Cintra).

The variables Pj represent the primitive actions, the
variables Lj ∈ L describe the locations, and the variables
Ij model the time intervals. The variable A represents
the active component to be used. A triple Pj , Lj and Ij

denotes that active component A shall perform action Pj

during time Ij at location Lj .
In Cintra, arbitrary constraints on and between these

variables can be specified. In particular, each Pj can be
constrained to a specific primitive action to be executed.
Similarly, each Lj is typically constrained to one or
few specific locations or specific location combinations
for all location variables. Also, quantitative temporal
constraints on the time intervals may be given.

The task model also allows for arbitrary constraints
between OVCs, named inter-OVC constraints Cinter.
Typical examples are temporal constraints between
OVCs (e.g., for synchronization or ordering of OVCs or
combinatorial constraints – e.g., to distribute m locations

3. Example of a
roadmap for the left
arm of a KaWaDa
Nextage robot.

amongst n OVCs). In the following, we refer to the set
of all OVCs as Ω.

The second element of the task model are resources
which describe abstract or physical objects such as tool,
workpiece holders or robot grippers. A resource r can
be reserved exclusively for arbitrary time intervals. Typ-
ically, reservations are defined the by referencing start
or end variables of interval variables of those OVCs that
require this resource.

B. Motion Model
The motion model represents the trajectories of all active
components as motion series consisting of configura-
tion variables – in the respective joint space of the
active component – with time interval variables for the
transition in-between. To be able to model the motion
with CP, a roadmap-based approach is used (cf. for
example [12]). The roadmap of an active component is a
sufficiently dense sampling of the joint space, where the
nodes are joint configurations and the edges represent
short collision-free motions between them (cf. Fig. 3). In
particular, the roadmap contains one or more nodes for
each location l ∈ L in reach of the active component.
Def 2. Hence, the motion series σa of an active
component a is a sequence of m configuration variables
and a sequence of 2m− 1 interval variables

σa = ([C1, . . . , Cm], [Iw
1 , I

t
1, I

w
2 , I

t
2, . . . , I

w
m]),

where the domain of the variables Ci are the nodes
C of the active component’s roadmap r = (C,E). An
interval variable Iw

i models the time spent at configura-
tion Ci whereas It

i denotes the traveling time between
the configurations Ci and Ci+1. For this purpose, the
roadmap edges E denote the expected traveling time as
edge weight. The roadmap thus yields information about
paths between configurations and their durations to be
used in the CP. Note that the roadmaps may also include
multiple nodes for the same configuration – for example
to consider the different collision geometries of the arm
depending on the gripper state. The set of all motion
series is named Σ. Collisions between any two active
components ai and aj are prevented by a constraint
requiring that pairs of conflicting joint configurations ci

and cj , which are precomputed in a collision table, must
not be assumed simultaneously.

C. Connection Variables
The task model and the motion model are linked in two
ways: On the constants, a static location mapping λ per

active component links the roadmap nodes C with the
task locations L. On the variables, Connection Variables
are introduced to link the location variables of the OVCs
with the configuration variables of the motion series.
Such a connection denotes that the configuration vari-
able has to be chosen such that the respective active
component reaches the location given in the location
variable. There exists exactly one such connection per
location variable. Configuration variables not referenced
by Connection Variables are used for evasive movements
to avoid collisions and deadlocks.

These connections are also CP variables. They can be
considered as meta variables as they specify to which con-
figuration variable to point to. Formally, the domain of
the Connection Variable Xω,j for the location variable Lj

of OVC ω is the index of the configurations [C1, . . . , Cm]
of the motion series σ of the active component A of ω.

An assignment Xω,j = i states that the ith configura-
tion variable Ci of the motion series σ of A has to reach
to the jth location of ω, formally Ci ∈ λ(Lj).

Connection Variables of ω always have to be strictly
monotonic, i.e. Xω,j < Xω,j+1, since the locations
[L1, . . . , Ll] of ω have to be visited in this order. Yet, two
OVCs for the same active component may be interleaved
(e.g., Xω1,1 = 3, Xω2,1 = 4, Xω2,2 = 5, and Xω1,2 = 6) if
there is no conflicting inter-OVC constraint or resource-
constraint. Two Connection Variables must never refer-
ence the same configuration variable.

D. Example for Task Modeling with OVCs
As an example, we model a bi-manual pick-up of a
workpiece container. Therefore, we create two OVCs
ωL and ωR, each of length 2. We constrain the first
location variables L1 to assume either of the locations
{lGrasp1, lGrasp2}. Through an inter-OVC constraint, we
ensure that the combination of selected grasp poses yields
a valid combination for a stable grasp. We constrain
the second location variables L2 to take either of the
locations {lPlace1, lPlace2} and an additional inter-OVC
constraint ensures, that all 4 pick and place locations
take compatible values. Temporal constraints ensure that
the first intervals I1 end together and the second in-
tervals I2 start together. Note, that the arms have to
be controlled by a dedicated controller for the actual
carrying. We assume, that the controller either provides
information about occupied space over time, such that
the solver can schedule possible other components to not
interfere, or stays within a given subset of the workspace.

V. STAAMS Solver for OVCs
A constraint satisfaction solver usually interleaves back-
tracking search with constraint propagation. In the back-
tracking search, variables are selected according to a
variable-ordering heuristic and variable values are chosen
based on a value-ordering heuristic. In the following,
we explain the horizon estimation for the motion series.
Then we describe our choices for the search heuristics.

Horizon estimation. Initially, we do not know the opti-
mal horizon m for every active component, i.e. the num-
ber of configuration variables. Therefore, we integrate
an iterative deepening approach directly in our model.
For each active component a, we create a constraint
variable H named horizon. We prevent any movements
after the Hth configuration in the motion series of a by
constraining all configurations Ci>H to CH . Small hori-
zon values generally render the problem unsatisfiable,
while large values bloat the search space unnecessarily
and may cause superfluous motions. A lower bound
for H is the number of all location variables of the
OVCs assigned to the corresponding active components.
Therefore, the placement of the horizon variables in the
variable-ordering heuristic is a crucial factor.

Variable ordering. Constraint information between
the task and model model cannot be propagated until
decisions on the involved Connection Variables have been
made. The Connection Variables, again, require to first
decide on the active component variables A and the
location variables Li. In our experiments, searching (1.)
on the location variables, (2.) on the active component
variables, (3.) on the Connection Variables, (4.) on the
horizon variables, and then (5.) on the configurations
variables of the motion series yielded reliably good so-
lutions within a few seconds planning time.

Then, only the time interval variables of the resources,
OVCs and motion series remain to be decided. As the
resources’ time interval variables are connected to the
OVCs, which in turn are linked with the motion series,
the solver thus determines the time-scaling of the motion
series. More precisely, it decides about the waiting times
Iw

1 , . . . , I
w
H . The time-scaling allows to prevent collisions,

resolve resource conflicts, and satisfy any inter-OVC con-
straint (e.g. synchronization or ordering). In this process
no superfluous waiting times should be added to optimize
the makespan.

Value selection. For each variable, the solver has
to assign a value from the variable’s domain. For the
Connection Variables (4) and horizon variables (3), we
use a minimum value heuristic to foster short motion
series. For (1), (2), and (5), we use a random value
selection heuristic as there is no clear preference for these
variables. In case of a good value selection, the remaining
search process involves only few backtracks. To avoid
long-lasting searches in the time-scaling step (i.e. in the
6th step) for disadvantageous decisions in the preceeding
steps, we employ a Luby restart strategy (cf. [19]).

VI. Evaluation
We implemented our STAAMS model and solver in
Python using the Google Operation Research Tools [11]
and experimented with a KaWaDa Nextage dual-arm
robot in a Gazebo simulation environment [14] on a
HP zBook laptop. We implemented a wiper motor use-
case (see Fig. 1) as well as a sorting use-case which

resembles the experiment by Kimmel at al. for their dual-
arm coordination algorithm [13]. In the latter use-case,
the robot has to pick up colored objects from the table
and place them depending on their color in one of two
containers. All parts on the table are reachable by both
arms. The containers are only reachable by either of the
arms (see Fig. 4) so that an object’s color defines the arm
that has to pick this object.

In this section, we focus on the sorting use-case. First,
we compare our results with [13]. Then, we show how our
solver scales on instances of this use-case for up to 200
objects. Finally, we show the modularity of our STAAMS
model by using one and the same task model on two
robotic platforms. Code and setup details are available at
https://github.com/boschresearch/STAAMS-SOLVER.

Comparison with pure time-scaling. We modeled
three instances of the sorting use case with increasing
number of objects from 12 to 24 and varying degree of
conflict between the two arms (see Fig. 4). Then, we com-
pared our approach against the theoretical lower bound
obtained by ignoring collisions between the manipula-
tors as well as against the method by Kimmel et al.,
which time-scales the trajectories of both manipulators
to prevent collisions. We mimic their solver by using
a randomized but fixed order of collecting the objects
and leave only the scheduling to our solver. The results
are visualized in Fig. 4. The diagrams show plots of the
makespan (as quality measure) over the time spent to
solve the instance (stopped after 100 s) for ten different
fixed order runs (red) and ten runs with order optimiza-
tion (dark-blue). Our solver produces the first solutions
sometimes as fast as in 0.1 s and usually converges within
3 s on the instances shown. By optimizing the order, our
solver consistently outperforms the fixed order runs –
or reaches the same performance in the rare case that
by chance a very good order is selected. Since both
approaches utilize some random decisions, the plotted
outcomes visualize a distribution. With this in mind, it
becomes very clear that our STAAMS solver provides
much more consistent and higher-quality results. In sce-
nario (b), it gets very close to the theoretical lower bound
(light blue). Interestingly, it takes only 7 s more to handle
eight additional objects in (b) compared to (a).

Scalability. To evaluate the scaling properties of our
approach, we ran a series of 80 experiments similar to
scenario (b) with a time limit of 180 s. Starting from
the twenty parts depicted in Fig. 4b, we added for each
experiment two extra parts to the scene – one for each
arm – up to 200 parts in total. In Fig. 5, the normalized
makespan, i.e. the makespan divided by the theoretical
lower bound, is plotted over the problem size for the
first solutions, the best solutions, and computing time
budgets from 10 s to 60 s. The solution quality for the first
solution ranges approximately from 1.1 to 1.37 normal-
ized makespan (solutions with a normalized makespan of
approx. 2 can be constructed), which rapidly improves

.

.

.

a

.

.

b

.

.

c

.

100

.

101

.

102

.
Planning Time [s] (log)

.

40

.

50

.

M
ak
es
pa

n
[s
]

.

100

.

101

.

102

.
Planning Time [s] (log)

.

55

.

60

.

65

.

70

.

100

.

101

.

102

.
Planning Time [s] (log)

.

80

.

100

.

120

.

Random Fixed Order

.

Optimized Order

.

Ignoring Collisions

Fig. 4. Sorting scenarios (a)-(c) and makespan-vs-planning-time plots. Red lines show the makespan over planning time for a random
fixed order of execution (cf. [13]). The blue lines depict the makespan, where we let the solver decide on the order. A lower bound for each
problem – obtained by ignoring collisions (relaxation of the problem) – is plotted in light blue, Blue Objects are dropped into a container
by the left arm at the left destination (green), and vice versa for the red objects. (a) 12 objects with high conflict potential, (b) as (a) but
with eight uncritical objects more to allow for efficient scheduling. (c) A randomly chosen instance with 24 objects and much interaction

20 50 100 150 200
Problem size [parts]

1.0

1.1

1.2

1.3

1.4

N
or

m
.M

ak
es

pa
n

First Solution
Budget: 10sec
Budget: 30sec
Budget: 45sec
Budget: 60sec
Best Solution

Fig. 5. Relative solution quality (i.e. makespan divided by the
lower bound) for different problem sizes and stages in the search.
The vertical lines in the right half of the figure indicate cases in
which no solution was found within the given time budget.

with the following solutions to finally settle around 1.1
normalized makespan.

This high scalability compared to ITAMP planners
stems from two facts: First, STAAMS solving does not
require to decide about the actions to be executed but
rather to complete and optimize a given abstract plan
only. Second, in our motion model we limit the motions
to stick to predefined roadmaps.

Portability. Flexibility and portability of our modeling
language are validated through several experiments on
different simulated robot platforms (see Fig. 6). The
task models, i.e. the sets of OVCs, that have been
used to perform the pallet emptying on the KaWaDa
Nextage and KUKA LBR iiwa platforms are identi-
cal. The differences are: The robot model (Moveit! [26]
robot configuration to access motion planning, kinematic
calculations, and collision checking); a seed robot con-
figuration (as required by the Inverse kinematics (ik)
solvers); a ”tuck” robot configuration (in which the arms
do not obstruct each others workspaces); the names of
kinematic chains, end-effectors, and the base frame; the
static scene collision layout (represented in meshes or
primitive shapes; and the locations of the workpieces.
With this information and scripts in place, our system

6. A task – cleaning
up the table – deployed
on a KaWaDa Nextage
robot (left) and a pair of
KUKA LBR iiwa robots
(right).

automatically creates the roadmaps, collision tables, and
name-location-configuration mappings.

VII. Conclusion and Future Work
In this paper, We have proposed a flexible model
and solver for simultaneous task allocation and motion
scheduling (STAAMS) for industrial manipulation and
assembly tasks for dual-arm robots. Our STAAMS solver
quickly completes and optimizes a given problem model
instance – i.e. an abstract task specifications given as
collection of Ordered Visiting Constraints for a robot
motion model – and delivers high-quality, executable
motion plans. We demonstrated the scalability of our
approach on large problem instances with up to 200
actions, which were solved in less than 180 s. Also, Or-
dered Visiting Constraints allow us to transfer a given
task model to another robot and/or workspace only by
exchanging the relevant motion submodels. In order to
broaden the applicability of this approach, we plan to
include more task primitives like trajectories for welding.
We will also investigate the extension of our approach to
include action models with safe approximations, when
the actual space occupancy and duration are not known,
e.g., when employing force-position control.

Acknowledgments. We like to thank the researchers
of the Robotic perception group (ROP) at the Czech In-
stitute of Informatics, Robotics and Cybernetics (CIIRC
CTU) for providing the KUKA simulation environment.
This work is partially supported by the Swedish Knowl-
edge Foundation project “Semantic Robots”.

References
[1] Sergey Alatartsev, Sebastian Stellmacher, and Frank Ort-

meier. Robotic Task Sequencing Problem: A Survey. J Intell
Robot Syst, 80(2):279–298, November 2015.

[2] Jan Kristof Behrens, Ralph Lange, and Michael Beetz. CSP-
Based integrated Task & Motion Planning for Assembly
Robots. In Proc. of the Workshop on AI Planning and Robotics
at ICRA ’17, Singapore, May 2017.

[3] Julien Bidot, Lars Karlsson, Fabien Lagriffoul, and Alessandro
Saffiotti. Geometric backtracking for combined task and
motion planning in robotic systems. Artificial Intelligence,
247:229 – 265, 2017.

[4] S. Blumenthal, H. Bruyninckx, W. Nowak, and E. Prassler.
A scene graph based shared 3D world model for robotic
applications. In Proc. of ICRA ’13, pages 453–460, Karlsruhe,
Germany, May 2013.

[5] Kyle E. C. Booth, Goldie Nejat, and J. C. Beck. A constraint
programming approach to multi-robot task allocation and
scheduling in retirement homes. In Proc. of Principles and
Practice of Constraint Programming (CP), 2016.

[6] S. Cambon, R. Alami, and F. Gravot. A Hybrid Approach
to Intricate Motion, Manipulation and Task Planning. Int’l
Journal of Robotics Research, 28(1):104–126, January 2009.

[7] Neil T Dantam, Zachary K Kingston, Swarat Chaudhuri, and
Lydia E Kavraki. An incremental constraint-based framework
for task and motion planning. The International Journal of
Robotics Research, March 2018.

[8] Christian Dornhege, Patrick Eyerich, Thomas Keller, Sebas-
tian Trüg, Michael Brenner, and Bernhard Nebel. Semantic
attachments for domain-independent planning systems. In
Proc. of ICAPS ’09, pages 114–121, 2009.

[9] Joakim Ejenstam. Implementing a Time Optimal Task Se-
quence For Robot Assembly Using Constraint. Master’s thesis,
Uppsala Universitet, Sweden, 2014.

[10] Caelan Reed Garrett, Tomas Lozano-Perez, and Leslie Pack
Kaelbling. FFRob: Leveraging Symbolic Planning for Efficient
Task and Motion Planning. The International Journal of
Robotics Research, 37(1):104–136, January 2018.

[11] Google Inc. Google Optimization Tools. Retrieved February
28, 2018, from https://github.com/google/or-tools.

[12] L. E. Kavraki, P. Svestka, J. C. Latombe, and M. H. Overmars.
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Trans. on Robotics and Automa-
tion, 12(4):566–580, August 1996.

[13] A. Kimmel and K. E. Bekris. Scheduling Pick-and-Place
Tasks for Dual-arm Manipulators using Incremental Search
on Coordination Diagrams. In Proc. of PlanRob Workshop
at ICAPS ’16, London, UK, June 2016.

[14] N. Koenig and A. Howard. Design and use paradigms
for Gazebo, an open-source multi-robot simulator. In 2004
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), volume 3, September 2004.

[15] Jun Kurosu, Ayanori Yorozu, and Masaki Takahashi. Simulta-
neous Dual-Arm Motion Planning for Minimizing Operation
Time. Applied Sciences, 7(12):1210, November 2017.

[16] F. Lagriffoul and B. Andres. Combining task and motion plan-
ning: A culprit detection problem. Int’l Journal of Robotics
Research, 35(8):890–927, July 2016.

[17] S. M. LaValle. Planning Algorithms. Cambridge University
Press, 2006.

[18] T. Lozano-Pérez and L. P. Kaelbling. A constraint-based
method for solving sequential manipulation planning prob-
lems. In Proc. of IROS ’14, pages 3684–3691, September 2014.

[19] M. Luby, A. Sinclair, and D. Zuckerman. Optimal speedup
of Las Vegas algorithms. Information Processing Letters,
47(4):173–180, September 1993.

[20] Hang Ma and Sven Koenig. Optimal target assignment and
path finding for teams of agents. In Proceedings of the
International Conference on Autonomous Agents; Multiagent
Systems, AAMAS ’16, pages 1144–1152, 2016.

[21] Hang Ma, Sven Koenig, Nora Ayanian, Liron Cohen, Wolfgang
Hönig, TK Kumar, Tansel Uras, Hong Xu, Craig Tovey, and
Guni Sharon. Overview: Generalizations of multi-agent path
finding to real-world scenarios. In Proceedings of the IJCAI-16
Workshop on Multi-Agent Path Finding, 2016.

[22] E. Nunes, M. Manner, H. Mitiche, and M. Gini. A taxon-
omy for task allocation problems with temporal and ordering
constraints. Robotics and Autonomous Systems, 2017.

[23] P. A. O’Donnell and T. Lozano-Perez. Deadlock-free and
collision-free coordination of two robot manipulators. In Proc.
of ICRA ’89, pages 484–489, Tsukuba, Japan, May 1989.

[24] Julie A. Shah, Patrick R. Conrad, and Brian Charles Williams.
Fast distributed multi-agent plan execution with dynamic task
assignment and scheduling. In Proc of ICAPS ’09, 2009.

[25] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and
P. Abbeel. Combined task and motion planning through an
extensible planner-independent interface layer. In Proc. of
ICRA, pages 639–646, May 2014.

[26] Ioan A. Sucan and Sachin Chitta. Moveit! Retrieved Septem-
ber 08, 2018, from http://moveit.ros.org.

[27] Marc Toussaint. Logic-geometric programming: An
optimization-based approach to combined task and motion
planning. In Proc. of 24th IJCAI, pages 1930–1936, Buenos
Aires, Argentina, jul 2015.

