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Learning Extreme Hummingbird Maneuvers on Flapping Wing Robots

Fan Fei*, Zhan Tu*, Jian Zhang, and Xinyan Deng

Abstract— Biological studies show that hummingbirds can
perform extreme aerobatic maneuvers during fast escape. Given
a sudden looming visual stimulus at hover, a hummingbird
initiates a fast backward translation coupled with a 180-degree
yaw turn, which is followed by instant posture stabilization
in just under 10 wingbeats. Consider the wingbeat frequency
of 40Hz, this aggressive maneuver is carried out in just
0.2 seconds. Inspired by the hummingbirds’ near-maximal
performance during such extreme maneuvers, we developed a
flight control strategy and experimentally demonstrated that
such maneuverability can be achieved by an at-scale 12-
gram hummingbird robot equipped with just two actuators.
The proposed hybrid control policy combines model-based
nonlinear control with model-free reinforcement learning. We
use model-based nonlinear control for nominal flight control,
as the dynamic model is relatively accurate for these condi-
tions. However, during extreme maneuver, the modeling error
becomes unmanageable. A model-free reinforcement learning
policy trained in simulation was optimized to ’destabilize’ the
system and maximize the performance during maneuvering.
The hybrid policy manifests a maneuver that is close to that
observed in hummingbirds. Direct simulation-to-real transfer
is achieved, demonstrating the hummingbird-like fast evasive
maneuvers on the at-scale hummingbird robot.

I. INTRODUCTION

Millions of years of adaptation have enabled insects and
hummingbirds to possess extraordinary flight capabilities
such as acrobatic aerial maneuvers including sharp turns,
fast acceleration, flying backward, landing upside-down, and
most impressive of all - rapid evasive maneuvers when
facing threat [1]-[3]. To date, much of the extraordinary
abilities remain unchallenged by small scale man-made fly-
ing devices, bio-inspired flapping wing robots holds great
potential to bridge this performance gap [4], [5]. Scientists
have been decoding the basic mechanisms of flapping flight
[6]-[8], while engineers are inspired to develop bio-inspired
Flapping Wing Micro Air Vehicles (FWMAVs), of which
the Nano Hummingbird [9], the Harvard Robobee [10],
and the Delfy [11] are notable examples which achieved
stable hovering and maneuvering. Beyond lift generation,
flight control is a challenging task for such small scale
vehicles. Some achieve this through stroke plane and/or
wing shape modulation with additional servos [9], [11]-[13],
similar to rotary wing vehicles where control is achieved
through swashplate-like mechanisms, while other designs use
two actuators to control the wings independently for lift
generation and simultaneously achieve flight control through
instantaneous wing kinematics modulation. While the former
method is efficient, it lacks the ability to directly change the
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Fig. 1. The at-scale flapping wing robot next to an illustration of a
Magnificent Hummingbird.

instantaneous wing kinematics [10], [14], [15]. The latter
designs with direct-driven wings hold the potential to achieve
a more agile and aggressive maneuver, such as in [16], where
successful vertical perching was demonstrated.

Recent studies on hummingbirds during escape maneuver
revealed how an agile flying animal performs an extremely
rapid evasive maneuver [3], [17]. To evoke such maneuver,
researches use a visual stimulus to startle the hummingbirds.
The hummingbirds responded with a stereotypical escape
pattern which is a combination of pitch and yaw maneuver
coupled with a linear translation. Comparing fruit fly and
hummingbird maneuvers suggests that although their per-
formance shares some similarities, the underlying dynam-
ics are different given their differences in size, Reynolds
number, and other morphological parameters. For example,
Hummingbirds need significant changes in wing kinematics
in order to generate the required body torque while fruit
flies require only subtle wing kinematic changes due to
its small size. Therefore even at its fastest maneuver, fruit
fly still falls under the helicopter analogy with average
wing motion control, whereas the same cannot be said
for hummingbirds which require instantaneous subwingbeat
wing kinematics modulation [3]. An analysis shows that at
its peak, magnificent hummingbird consumes as much as
4.5 times the power it requires for hovering. This sudden
power consumption spike can only be achieved through
anaerobic metabolism which insects do not possess [17]. This
near-maximal multi-axis acrobatic maneuver epitomize the
maneuverability extreme of animal fliers and makes an ideal
benchmark to test the performance of man-made flapping
wing robots.

In this study, we aim to tackle this challenge by using
an at-scale hummingbird robot [15] equipped with only two
actuators with independently controlled wings. Specifically,



we let the vehicle perform the same task as the hummingbirds
escape maneuver: translating backward while completing a
180° yaw turn as fast as it can. This is achieved through
a hybrid flight control strategy which combines a model-
based nonlinear controller to guarantee flight stability and
a model-free maneuvering policy learns to ’destabilize’ the
system to maneuver. Outputs of the two control policies
are added together, similar to that of the Structure Control
Network [18], albeit only the maneuvering policy is learned
in our case. This design choice is made because the averaged
dynamics model of the system for stabilization is relatively
accurate, while for extreme maneuvers the approximation
error becomes unmanageable for model-based controller de-
sign [19]. In this paper, we present the control algorithms and
experimental results in hovering, figure-of-eight trajectory
tracking, and most importantly - rapid evasive maneuver
which is comparable to that of a real hummingbird.

II. MODEL-BASED CONTROL POLICY

Modeling uncertainties in flapping flight are due to the
unstable and under-actuated body dynamics, modeling and
parameter uncertainty, unsteady flapping-wing aerodynamics
especially during the rapid aerobatic maneuver, and damping
effects induced by flapping wings, and ground effects. To
complicate the problem, parametric uncertainty coming from
mechanical asymmetry, manufacture imperfections, wear and
tear, operating condition change further introduce variations
in vehicle dynamics. Our previous controller proposed in
[20] has global exponential attractive property, however,
it lacks the ability to deal with changing trim condition,
which can slowly vary as vehicle wear and tear. While an
adaptive controller can cope with system parameter changes,
unmodeled dynamics can still affect the performance [16],
especially during transient. We propose a robust adaptive
control law to address these challenges. Online parameter
adaptation will estimate the changing system parameters, and
a robust controller is used to deal with parameter estimation
error and model uncertainties.

A. Vehicle Dynamic Model and Force Mapping

The vehicle is modeled as the standard rigid body dynam-
ics by Newton-Euler equation:
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where F and 7 are the external forces and torques applied
at the center of mass of the vehicle, I is a 3x3 identity, m
is the mass of the vehicle, J is the inertia matrix where the
small off-diagonal terms are ignored, p = [x,y,2]7 is the
vehicle’s position in the inertial frame, w = [p, q,7]7T is the
body angular velocity, and A is the lumped disturbance and
uncertainties.

We used the wingbeat modulation technique introduced in

[21] to generate the control torque and thrust, which can be
approximated with linear fitting as

Ty = K¢6V+TI0,
T, = Kydo + 7,0,

Ty = KoV + Ty0,

Fz:KFz(uz_V:e)a (2)
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Fig. 2. The control structure. During normal flight, the additional maneuver
policy is inactive. When given a trigger signal, the policy will generate
additional torque to facilitate the evasive maneuver.

where §V is the amplitude difference between two motors,
Vo is the voltage bias, do is the split-cycle parameter and
u, is the nominal amplitude voltage of the motor drive
signal. 7,0, Ty0 and 7o are the torque offsets introduced
by mechanical imperfections and V; approximates the motor
starting voltage. The control structure is shown in Fig.
The model-based control policy generates thrust and torque
for stabilization, while the model-free maneuvering policy
learns to ’destabilize’ the system to maneuver.

B. Model-based Control Design

Here we demonstrate that, without the knowledge of the
exact model and vehicle trim condition, robust performance
can be achieved. The goal is to track a desired position p, =
[, Yr, 2+]T and heading angle v,.. The attitude stabilization
(¢, 6) is merged into altitude and lateral control.

1) Altitude Controller: Similar to the procedure in [22],
we define a sliding surface s, for altitude control as s, =
€, + k1€, = 2 — zoq, where e, = z — 2, is the tracking
error, k.1 is a positive gain and z.4 is the equivalent velocity
target. The altitude error dynamics can be written as

ms.z == Kuzuz + (Pzaz + dz (3)

where the regressor ¢, and model parameters 6, are
@ = [~(9+ Zeq), —RaaKr. Vi, 1] 4)
0. =[m,1,d.]" )

K, = R33KF, is the lumped input gain, 33 is the rotation
matrix element, d, = A, — d, where d, is the estimated
lumped nonlinear uncertainties and disturbance. We assume
the unknown parameters and the uncertainty have known
bounds:
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Choose the following control law,
Kuzuz = Uq, + Us1, + Us2, (7)

where u, is the feedforward model compensation term, wug;
is the stabilizing term, and ugs is the robust feedback term
to dominate the uncertainties. They are given by

R 1
Uq, = —szez, Us1, = _kslzsz Us2 = _Ehisz (8)
z



where éz is the parameter estimation, ks;_, is a positive
gain, €, is a sufficiently small positive number represents
the approximation accuracy between the ideal sliding mode
control law and the proposed method, A is the upper bound
of the modeling and parametric uncertainties. Since the error
dynamics becomes

méz + kslzsz = Us2, — (CPZTéz - Jz)v (9)

the selected wugo, satisfies s,(us2, — cpféz + czz) < e, and

S,ug2, < 0 criteria that ensures the stability of s, and avoid

chattering problem in traditional sliding mode control.
With the adaptation law

6. = Projy_(T.p.s.), (10)

where I', > 0 is a diagonal adaptation rate matrix, Proj, (-)

is a component wise mapping as presented in [22], 6,
satisfies the bounds in (6) V¢. Stability proof is similar to
[22] and omitted for brevity.

2) Position and Heading Controller: Similar to the con-
troller presented in [16], we introduce a compound error term
that includes the jerk error:

(1)

where e, = p—p,- and P, is the equivalent third derivative
target for position tracking. kp2, kp1 and kpo are positive
gains.

For heading control, the error term is defined as e, =
(r—r)+ k:rlez) = r — req, Where 7, is the reference yaw
velocity, k.1 is a positive gain and eZ} is the yaw angular
position error ey, = 1 — 1, transformed into body frame.

Define a sliding surface vector, where the compound error
is projected onto the body = and y axes.
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Sw = | m(€sy-i)/F. | = |q—mPeq-i/F.
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Thus, s, = W — Weq.

Since our current control scheme does not generate forces
in the = and y direction, the lateral and longitudinal acceler-
ations are related to the body rotation angles. By including
jerk error, the angular velocity w shows up in the sliding
surface variable, allowing us to directly generate control
torque for position control.

Differentiating s,,,, the rotational error dynamics can be
written as:

Js, = Ky u, + 010, +d,, (13)

where,
P = (I3, diag([—(w x Jw) = Jg)), Is]  (14)
ew = [7—1077—31077—207171717d¢7d97d1/)}T (15)

The input gain K, = diag([Ky, Kg, Ky]), the input is
u, = [0V,Vp,d0]7, dy, = A, — d,,, where A, is the
lumped nonlinear uncertainty and disturbances, and d,, =

[dg,dg,dy]T is its estimation.

Similar to altitude control, the control law is given by

Ky, u, =u,, +us1, + usa, (16)
where
w1, = —Ka, S0, U, = —¢50.
Uso, = fidiag(hu)st (1n

Cw

kg1, is a positive diagonal gain matrix, h,, is the uncertainty
upper bound. )

With the adaption law 0, = Projéw (TwPuwSw), Ug, can
adapt to the time varying trim condition. us;,, and ugg,,
provide the stablizing and robust feedback. The close loop
stability is guaranteed.

C. Discussion

The proposed controller has three main advantages: 1) The
ability to adapt to varying physical trim conditions. Mechani-
cal imperfections of the vehicle will introduce varying torque
offset [16], [20], [23]. It is impractical to repeat the trimming
process before each flight test, and the controller can quickly
adapt to vehicle parameter changes online. 2) Robust control
can attenuate modeling uncertainties for highly complicated
dynamics. 3) Unlike traditional adaptive control, by adding
the robust control to deal with model uncertainties, transient
performance and a large region of attraction are guaranteed.

III. MODEL-FREE MANEUVER POLICY

For the maneuvering task, we use model-free Reinforce-
ment Learning (RL) to optimize a control policy to generate
the optimal escape maneuver. The main reason is that the
cycle-averaged dynamics model of the system for stabi-
lization is relatively accurate [16], [24], while for extreme
maneuvers the approximation error becomes unmanageable
for model-based controller design [19]. During aggressive
maneuvering, aerodynamic effects like FCF and FCT can
affect flight dynamic drastically and could result in sub-
optimal or unattainable trajectory for the vehicle. Here, we
train our RL policy in a high fidelity system simulation that
includes quasi-steady flapping-wing aerodynamics, actuator
dynamics, contact dynamics, joint frictions, spring non-
linearities, full aerodynamic damping, while incorporating
implementation details such as sensor delay, multi-sensor
fusion, and noise. The vehicle’s physical parameters used
in the simulation was based on the results from system
identification. More details about the simulation are in [25].

A. Problem Setup

The maneuver policy optimization is formulated as a stan-
dard reinforcement learning setup. The robot’s interaction
with the environment is a finite-horizon Markov decision
process with state space S C R18, action space A C R*. The
simulation starts with an initial state distribution p(s;). Given
a state s; € S, the agent takes action a; € A according to
a deterministic policy mg(a¢|st). The environment generates
a reward (s, a;) and transition to the next state sy, 1. The
state transition dynamics p(si11|$+, a¢) is the closed loop



vehicle dynamic with the controller presented in section
[ The total return is the sum of the discounted reward
R =YL v~ 1r(s;,a;) at the end of the episode at time 7.
The goal is to learn a policy with parameter 6 that maximizes
the expected return J = Eq, r, [R].

To simulate the scenario presented in [3], the robot is
first hovering at po = [0,0,0]” and )9 = 0. When given
a stimulus (trigger signal), the robot will try to escape
backward along the longitudinal (dorsal) direction to the

new setpoint pr = [z7,0,0]7 and change the heading to
Y = 180° as fast as possible. Similar to [3], we pick
z7 = —0.21m which is three wing length. The magnificent

hummingbird was able to complete this maneuver within 0.3
seconds. We set T' = 2s, which is long enough for the robot
to finish a similar maneuver. The states and the action is
defined as below

(18)
(19)

St = [R117R12a aR33ax7y7Zap7QaraJ’jay72}}T
a; = [Aus, ASV, AVy, Ado]”

The action signal is added to the output of the model-
based control policy. The mathematical justification for this
combination is similar to that of the SCN [18].

The reward is defined as

re=(fi+ep) ! —i I+ (k- K)” + X(ar —2)” (20)

where f; is the cost, ¢ is a small number for numerical
stability, I and K are the unit vector in the inertial frame
and A, is a positive scaling factor. The second term will give
negative reward when the FMWAV’s body z axis is pointing
towards the positive X direction and positive reward when
heading is turned towards the negative X direction. The third
term will generate negative reward when the body z axis
is pointing downwards and the last term will only generate
negative reward when the agent has not reached xr. These
terms will encourage the agent to learn a policy that enables it
to move backward away from [0, 0, 0]” and turn to ¢ = 180°
as fast as it can to avoid collecting negative rewards. The cost
is defined as

ft :fst +fcf,
=Apllep|| + Avl[pl| + Arller|| + Aw|w]]
+ Aallael| + Aallae|

2y

where the \’s are positive scaling factors. The first four
terms are the stability cost fs,, and f,, is the control cost
for regularization. e, = p — pr is position error and
er = R — Ry is the attitude error wherein ¢ =0, 7 =0
and ¢ = 180°.

B. Training

As a continuous control problem, we use the off-policy
actor-critic algorithm Deep Deterministic Policy Gradient
(DDPG) [26] as the training algorithm. Standard fully-
connected MLPs (multilayer perceptrons) were used as func-
tion approximators. We use 2 hidden layers of 32 hidden
units for the actor network and 2 hidden layers of 64 hidden
units for the critic network. Both networks use tanh for

hidden and output activation. The simulation is running at
10kHz and the control loop at SO0Hz to be consistent with
the physical robot. Each epoch runs for 10,000 samples
which correspond to 20 seconds or at least 10 episodes. The
implementation is based on [27] with the same hyperparam-
eters as [26] except the reward is scaled by 0.05 to keep the
total return in a reasonable range. If the agent completes the
maneuver successfully, it will collect positive reward near
pr until the end of the episode.

To help simulation-to-real transfer, we use the dynamics
randomization technique [28]. We inject randomness into
the physical parameters such as mass/inertia and motor
parameters, also mechanical trims such as spring stiffness,
wing midstroke position etc., as well as adding noise to
sensor and actuation signal [29].

IV. EXPERIMENTAL RESULTS

The FWMAYV experimental platform is described in details
in [15]. The vehicle has a wingspan of 167.9 mm, weights
12.1 grams, and is able to generate up to 26 grams of
lift, 2.7IN/mm roll, 1.12N/mm pitch and 0.53N/mm yaw
torques. Two motor drivers, a MARG (Magnetic, Angular
Rate and Gravity) sensor and a microcontroller are onboard.
For attitude feedback, sensor fusion algorithm presented
in [30] is used. The sensor fusion and control algorithms
are running onboard at 500 Hz and motor commutation at
10kHz. A VICON motion caption system with 6 cameras
running at 200 Hz is used to provide position feedback. A
simplified version of the algorithm presented in [31] is used
to fuse VICON and accelerometer data at S00Hz to deal with
VICON data transmission delay and provide fast and robust
position feedback.

A. Controller Verification

First, for hovering and altitude tracking, a filter is used
to generate the z, z reference with prescribed performance
requirement when giving a setpoint. The step response of
altitude tracking is shown in Fig. [3| The z velocity shows
some oscillation, but the transient and final position tracking
error is very small. The vehicle performed very well during
take-off, tracking, and landing.

Next, trajectory tracking using a figure-of-eight path is il-
lustrated. A fourth order filter is used to generate p..(t) when
the command waypoints are given, so its third derivative is
Lipschitz during implementation. Fig. ] shows the trajectory
tracking in X and Y direction and demonstrates the actual
trajectory in the horizontal plane.

The transient and steady-state (hovering) tracking errors
are evaluated over 10 different flights (123.7s). The mean

TABLE I
CONTROLLER TRACKING ERROR

Transient Steady-state
(mm) ‘ Mean RMS Max Mean RMS Max
T -3.81  21.92 9520 | 047 18.67  51.80
Y -097 2720 62.01 6.12 14.63 3249
z 5.22 11.33  41.52 | -0.63 3.95 13.75
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Fig. 3. Hovering and altitude tracking. The vehicle is commanded to
takeoff and hover at a height of 40 cm during the first 11 seconds, then
land afterwards. The motors shut off when position and altitude errors were
smaller than 10mm.
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Fig. 4. Top: A composed image showing robot tracking a figure of 8
trajectory in the X-Y plane. The image is transformed so the true lateral
position and error relative to the reference trajectory is shown. Bottom:
Lateral and longitudinal position tracking of a figure of 8 trajectory.

error, error root mean square (RMS) and absolute maximum
error are shown in table [l The result proves that the
controller is able to maintain the position mostly within
one wing length (70mm) during hovering and maneuvering
flight, with maximum x position error went slightly larger
during maneuvering. The error RMS is very close between
transient and steady state, which shows the controller can
adapt to unknown disturbances and model uncertainty quite
well. The maximum altitude control error is within one mean
chord length (21.2mm) at steady-state and two mean chord
during takeoff and landing.

B. Evasive Maneuver

The morphological parameters of a magnificent humming-
bird studied in [3] and our vehicle are compared in table

TABLE 11
HUMMINGBIRD & FWMAYV CHARACTERISTICS

| m(g) f(Hz) R(mm) & 7
Hummingbird 7.9 31.6 77 79 049
FWMAV 12.1 34 70 6.6 0.53

The wing morphology (wing length R, aspect ratio &
and second moment of wing area 75) and flapping frequency
f during evasive maneuver are very similar. The optimized
policy after 500 episodes of training manifests a behavior
which shares similarity to that observed in hummingbirds.
With limited wing actuation and degrees of freedoms, and
1.5 times the body mass of the real animal, the robot
completes the escape maneuver in 20 wingbeats, versus 10
wingbeats observed in the hummingbird. The comparison of
body kinematics of the Magnificent Hummingbird and the
hummingbird robot in simulation is shown in Fig. [5]

The hummingbird completes the evasive maneuver in three
stages as seen in Fig.[5] Similar movement was also observed
on hawkmoth [2]. During the first stage (wingbeat 1-4), it
initiates a pitch-up (negative y) and backward (negative X)
translation. At the end of this stage, the body z axis is almost
horizontal and points to the direction of escape. During the
second stage (wingbeat 4-7), the hummingbird maintains its
horizontal pose and starts to yaw, which in turn changes the
body x axis from pointing upwards to downwards. The last
stage is the recovering stage, where the hummingbird returns
to hover pose and decelerates.

The overall motions for both the hummingbird and the
robot follows the same pattern: backward and pointing body
horizontal toward the direction of escape, yaw turn, then
pointing body upwards again. For comparison, we break
down robot maneuver similar to that of the hummingbird.
The vehicle starts its maneuver with a combined negative
roll, negative pitch and positive yaw motion. At the end of
this stage (wingbeat 1-5), the body z axis is almost horizontal
just like the hummingbird, however, the body positive x
axis (ventral) is already pointing up and to the side. At the
end of the first stage, the vehicle gained a large negative
pitch velocity. In the second stage (wingbeat 5-13), since the
vehicle has relatively weak yaw torque, it cannot complete
the 180° yaw turn in time and point the x axis downwards.
Instead, the vehicle will leverage its ability to generate strong
roll and pitch torque, initiate a combined roll and pitch
motion, and brings the z axis pointing upwards again. During
the last stage, the vehicle stabilizes and continues to generate
yaw torque until the ventral axis aligns with the negative X
axis. A time sequence of the experimental result is shown
in Fig. [6] Since the real vehicle generates a net negative
yaw torque given the physical trim condition, the maneuver
mirrors that observed in the simulation.

The robot’s ability to generate yaw torque is the weakest
among the three axes due to its being severely underactuated
with only two actuators. Although they share many similar-
ities, the optimal maneuver is slightly different from that
of the real hummingbird which has many groups of power
and steering muscles. Given their different capabilities to
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Fig. 5. Comparison of the evasive maneuver of hummingbird and robot. a). Evasive maneuver sequence of a Magnificent Hummingbird[3]. b). Body

kinematics of magnificent hummingbird evasive maneuver averaged over three flights. c). Evasive maneuver sequence of the FWMAV robot with optimized
policy. d). Body kinematics of FWMAYV robot averaged over ten flights and sample experimental data superimposed on top.
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Fig. 6. Time sequence of the FWMAYV escape maneuver showing every other wingbeat. The maneuver follows positive roll and negative yaw given the

vehicle trim condition. The trajectory is plotted in Fig. [3.

generate yaw torque, the hummingbird was able to complete
180° yaw turn in just 4 wingbeats, whereas the robot keeps
on generating yaw torque throughout the entire maneuver.
Furthermore, the hummingbird can change its wing kine-
matic to generate force in z direction to decelerate, whereas
the robot relies on pointing the thrust in the X direction to
decelerate. Nevertheless, our result is still very promising
as it suggests that a flapping wing vehicle can produce
animal like extreme maneuver even with severely limited
wing actuation.

V. CONCLUSIONS

In this work, we demonstrated that a hummingbird-sized
flying robot is capable of maneuvering like its natural coun-
terpart. Despite the severely limited actuation (2 actuators
only) and the limited degree of freedom in wing motion, the
vehicle can still achieve agile movements. This is enabled
by a hybrid flight control strategy which combines a model-
based nonlinear controller to guarantee flight stability and a
model-free reinforcement learning maneuvering policy learns
to ’destabilize’ the system to maneuver. Sim-to-real transfer
results show that, even with limited wing actuation on the
robot, it can still perform an aggressive movement that is
similar to the Magnificent Hummingbird.
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