
Mechanical Search: Multi-Step Retrieval
of a Target Object Occluded by Clutter

Michael Danielczuk∗1, Andrey Kurenkov∗2, Ashwin Balakrishna1, Matthew Matl1,
David Wang1, Roberto Martín-Martín2, Animesh Garg2, Silvio Savarese2, Ken Goldberg1

Abstract— When operating in unstructured environments
such as warehouses, homes, and retail centers, robots are
frequently required to interactively search for and retrieve
specific objects from cluttered bins, shelves, or tables. Me-
chanical Search describes the class of tasks where the goal
is to locate and extract a known target object. In this paper,
we formalize Mechanical Search and study a version where
distractor objects are heaped over the target object in a bin.
The robot uses an RGBD perception system and control policies
to iteratively select, parameterize, and perform one of 3 actions
– push, suction, grasp – until the target object is extracted, or
either a time limit is exceeded, or no high confidence push or
grasp is available. We present a study of 5 algorithmic policies
for mechanical search, with 15,000 simulated trials and 300
physical trials for heaps ranging from 10 to 20 objects. Results
suggest that success can be achieved in this long-horizon task
with algorithmic policies in over 95% of instances and that the
number of actions required scales approximately linearly with
the size of the heap. Code and supplementary material can be
found at http://ai.stanford.edu/mech-search.

I. INTRODUCTION

In unstructured settings such as warehouses or homes,
robotic manipulation tasks are often complicated by the
presence of dense clutter that obscures desired objects.
Whether a robot is trying to retrieve a can of soda from a
stuffed refrigerator or pick a customer’s order from warehouse
shelves, the target object is often either not immediately
visible or not easily accessible for the robot to grasp. In these
situations, the robot must interact with the environment to
localize the target object and manipulate the environment to
expose and plan grasps (see Figure 1). Mechanical Search
describes a class of tasks where the goal is to locate and
extract the target object, and poses challenges in visual
reasoning, task, motion, and grasp planning, and action
execution.

Significant progress has been made in recent years on
sub-problems relevant to Mechanical Search. Deep-learning
methods for segmenting and recognizing objects in images
have demonstrated excellent performance in challenging
domains [16, 29, 40] and new grasp planning methods have
leveraged convolutional neural networks (CNNs) to plan and
execute high-quality grasps directly from sensor data [13,
23, 25]. By combining object segmentation and recognition
methods with action selectors that can effectively choose
between different motion primitives in long horizon sequential
tasks, multi-step policies can search for a target object and
extract it from clutter.
∗ Authors have contributed equally and names are in alphabetical order.
1University of California, Berkeley 2Stanford University

Fig. 1: To locate and extract the target object from the bin, the system selects
between 1) grasping objects with a parallel-jaw gripper, 2) pushing objects,
or 3) grasping objects with a suction-cup gripper until the target object is
extracted, a time limit is exceeded, or no high-confidence push or grasp is
available.

In this paper, we propose a framework that integrates
perception, action selection, and manipulation policies to
address a version of the Mechanical Search problem, with 3
contributions:

1) A generalized formulation of the family of Mechanical
Search problems and a specific version for retrieving
occluded target objects from cluttered bins using a series
of parallel jaw grasps, suction grasps and pushes.

2) An implementation of this version, using depth-based
object segmentation, single-shot image recognition, low-
level grasp and push planners, and five action selection
policies.

3) Data from simulation and physical experiments evalu-
ating the performance of the five policies and that of
a human supervisor. For simulated experiments, each
policy was evaluated on a set of 1000 heaps of 10-20
objects sampled from 1600 3D object models; physical
experiments used 50 heaps sampled from 75 common
household objects.

II. BACKGROUND AND RELATED WORK

Perception for Sequential Interaction: Searching for
an object of interest in a static image is a central problem
in active vision [28, 37, 44]. There has also been work

ar
X

iv
:1

90
3.

01
58

8v
1 

 [
cs

.R
O

] 
 4

 M
ar

 2
01

9

http://ai.stanford.edu/mech-search


on optimizing camera positioning for improving visual
recognition (i.e., active perception [1, 2]) and embodied
interactions to explore (i.e., interactive perception [4, 14]).
Mechanical Search differs from prior works in interactive
perception in that it deals with long grasping sequences.

Recent deep learning based methods achieve remarkable
success in segmentation of RGB [35, 38] and depth images [6],
as well as in localizing visual templates in uncluttered [22,
46] and cluttered scenes [29, 40]. Furthermore, one-shot
learning approaches using Siamese Networks for matching a
novel visual template in images [22, 46] can translate well
to pattern recognition in clutter [29, 40]. We build on Mask
R-CNN [16] by training a variant for depth-image based
instance segmentation and leverage a Siamese network for
target template matching for localization.

Grasping and Manipulation in Clutter: Past approaches
to this problem can be broadly characterized as model-based
with geometric knowledge of the environment [3, 30, 41]
and model-free with only raw visual input [20, 24, 39].
Recent studies have leveraged CNNs for casting grasping as
a supervised learning problem with impressive results [11,
18, 19, 23, 25, 45, 49]. Pushing and singulation can facilitate
grasping in cluttered scenes [5, 8, 17]. Techniques for grasping
in clutter, either as open-loop prediction or as closed-loop
continuous control, have been studied but have not dealt
with the multi-step plans that are critical to attain successful
grasps on occluded or inaccessible target objects [19, 31]. In
contrast, we formulate Mechanical Search as an interactive
search problem in significant clutter, necessitating a multi-step
process combining grasping and pushing actions.

Sequential Decision Making: Sequential composition of
primitives to enable long-term environment interaction has
often been approached through hierarchical decomposition
of control policies to manage task complexity. The idea of
using hierarchical models for complex tasks has been widely
explored in both reinforcement learning and robotics [21, 42,
43]. Training such multi-level models can be computationally
expensive and has been limited to either simulated or
elementary physical tasks [10, 48].

Search Based Methods: Traditional task planning ap-
proaches abstract away perception and focus on high-level
task plans and low-level state spaces [12, 41]. For instance,
in robotic applications, hierarchical methods have been used
to learn task planning strategies while abstracting away low-
level motion planning [34, 41, 47]. However, high-level
planning requires complete domain specification a priori,
and complex geometric and free space reasoning make this
approach applicable only to uncluttered environments with
few objects, such as a tabletop with one or two objects.

A similar problem has been studied in the context of
mobility under problem domains of target-driven and semantic
visual navigation [15, 32, 50]. These studies look at finding
visual targets in unknown environments without maps through
sensory pattern matching. The work by Gupta et al. [14] is
the closest to the approach considered in this paper. Their
work also considers the problem of searching for a specific

object using pushing and grasping actions, but when the
objects are arranged in a shelf. We consider significantly more
cluttered settings, while also executing temporally extended
manipulation policies.

III. MECHANICAL SEARCH: PROBLEM FORMULATION

In Mechanical Search, the objective is to retrieve a specific
target object (x∗) from a physical environment (E) containing
a variety of objects X within task horizon H while minimizing
time. The agent is initially provided with a specification of
the target object in the form of images, text description, a 3D
model, or other representation(s). We can frame the general
problem of Mechanical Search as a Partially Observable
Markov Decision Process (POMDP), defined by the tuple
(S,A,T ,R,Y).

• States (S). A bounded environment E at time t con-
taining N objects st = {O1,t , ...,ON,t}. Each object state
Oi,t includes a ground truth triangular mesh defining the
object geometry and pose. Each state also contains the
pose and joint states of the robot as well as the poses
of the sensor(s).

• Actions (A). A fixed set of parameterized motion
primitives.

• Transitions (T ). Unknown transition probability distri-
bution P : S×S×A→ [0, ∞).

• Rewards (R). Function given by Rt = R(st ,at)→ R
at time t that estimates the change in probability of
successfully extracting the target object x∗ ∈ X within
task horizon H.

• Observations (Y). Sensor data, such as an RGB-D
image, yt from robot’s sensor(s) at time t (see Fig. 1).

In this paper, we focus on a specific version of Mechanical
Search: extracting a target object specified by a set of k
RGB images from a heap of objects in a single bin while
minimizing the number of actions needed. For this problem,
we precisely specify the observations, the action set, and the
reward function. All other aspects of the problem formulation
are sufficiently captured by the general POMDP formulation
above.

• Observations. An RGB-D image from an overhead
camera.

• Actions.
– Parallel Jaw Grasping: A center point p=(x,y,z)∈
R3 between the jaws, and an angle in the plane of the
table φ ∈ S1 representing the grasp axis [25].
– Suction Grasping: A target point p = (x,y,z) ∈ R3

and spherical coordinates (φ ,θ) ∈ S2 representing the
axis of approach of the suction cup [26].
– Pushing: A linear motion of the robot end-effector
between two points p and p′ ∈ R3.

• Reward. Let vt , derived from yt , denote the estimated
grasp reliability on the target object. An intuitive reward
function would be the increase in estimated grasp
reliability on the target object:

R(st ,at) = vt+1− vt



Fig. 2: System architecture. At each timestep, the RGB-D image of the bin is segmented using a variant of Mask R-CNN trained on synthetic depth images.
The colorized masks are each assigned a probability of belonging to the target object using a Siamese Network as a pattern comparator. These masks are
then fed to an action selector, which chooses which object to manipulate and passes that object mask as context to all the action policies. These policies
each compute an action with an associated quality score and pass them back to the action selector, which then chooses an action and executes it on the
physical system. This process continues until the target object is retrieved. In simulation, the perception pipeline is removed and planners operate on
full-state information rather than object masks.

The policies used in this paper do not directly optimize
this reward function because it is difficult to compute;
instead, they continue to remove and push objects via
heuristic methods until the target object is extracted. In
future work, we will develop methods to approximate
this function.

IV. PERCEPTION AND DECISION SYSTEM

As shown in Figure 2, we implement the system both in
simulation and for physical experiments via a pipeline for
perception and policy execution.

A. Perception

The system first processes the RGB-D image into a set of
segmentation masks using an object instance segmentation
pipeline trained on synthetic depth images. Then, a Siamese
network is used to attempt to identify one of the masks as
the target object, and a target mask is returned if a high
confidence match is found. If no high confidence match is
found, the perception system reports that no masks match
the target object.

Object Instance Segmentation: We first compute a mask
for each object instance. Each mask is a binary image with the
same dimensions as the input RGB-D image. These masks
are computed with SD Mask R-CNN, a variant of Mask
R-CNN trained exclusively on synthetic depth images [9].
It converts a depth image into a list of unclassified binary
object masks, and generalizes well to arbitrary objects without
retraining. Recent results suggest that depth cues alone
may be sufficient for high-performance segmentation, and
this network’s generalization capabilities are beneficial in a
scenario where only the target object is known and many
unknown objects may be present.

Target Recognition: Next, the set of masks is combined
with the RGB image to create color masks of each object.
Each of the m color masks is cropped, scaled, rotated, and
compared to each of the k images in the target object image
set using a Siamese network [22]. For each pair of inputs,
the Siamese network outputs a recognition confidence value
between 0 and 1, with a mask’s recognition confidence score
set to the maximum recognition confidence value over the k

target object images. If the mask with the highest score has
a score above recognition confidence threshold tr, the mask
is labeled as the target object. Otherwise, we report that no
masks match the target object. See the appendix for training
and implementation details.

B. Search Policy

Given the RGB-D image and the output of the perception
pipeline, the system executes the next action in the search
procedure by selecting the object to act on and the action to
perform on it. Our approach to the version of Mechanical
Search described in Section III for bin picking includes
searching for actions in three continuous spaces (parallel
jaw grasp, suction grasp and push). However, more complex
versions of Mechanical Search (e.g., search for an object
in a house) could have even more complex search spaces
(e.g., navigation). To allow our method to scale to these more
complex versions, we propose a hierarchical approach: (1)
an action selector that queries a set of action policies on a
specific object for a particular action and associated quality
metric and (2) action policies that correspond to the possible
actions in the problem formulation.

Action Selection: The search policy first determines
which object masks to send to the action policies. Then, using
the actions and associated quality metric returned by the low
level policies, the high level planner determines whether to
execute the action in the environment.

The action selector takes as input from the perception
system the set of all m visible object masks ([o1, . . .om]),
possibly including an object mask that is positively identified
as the target object (oT ), from the perception system. It
then selects an action policy and a goal object, ogoal , from
[o1, . . .om] and sends the action policy a query q(ogoal). The
action policy pi responds with an action ai = pi(ogoal) and
a quality metric Q(ai,ogoal) for the action, which is used to
decide whether to execute the action.

Action Policies: Each action policy pi takes as input an
object mask from the action selector (ogoal) and the RGBD
image observation and returns an action ai = pi(ogoal) and a
quality metric Q(ai,ogoal). In simulation, the object masks and
depth images are generated from ground-truth renderings of



each object, while in physical experiments, depth images are
obtained using a depth sensor and object masks are generated
by the perception pipeline. The set of action policies in our
system are:

Parallel Jaw Grasping: In simulation, pre-computed
grasps are indexed from a Dex-Net 1.0 parallel-jaw grasping
policy [27], and the grasp with the highest predicted quality
on ogoal is returned as the action along with an associated
quality metric. For physical experiments, parallel-jaw grasps
are planned using a Dex-Net 2.0 Grasp Quality CNN (GQ-
CNN) [25]. To plan grasps for a single object in a depth image,
grasp candidate sampling is constrained to the goal object’s
segmentation mask. The GQ-CNN evaluates each candidate
grasp and returns the grasp with the highest predicted quality
and its associated quality metric.

Suction Grasping: For simulation experiments, grasp
planning is done with a Dex-Net 1.0 suction grasping
policy [27]. For physical experiments, suction cup grasps
are planned with a Dex-Net 3.0 GQ-CNN [26], with mask-
based constraints to plan grasps only on the goal object’s
segmentation mask. The GQ-CNN evaluates each candidate
grasp and returns the grasp with the highest predicted quality
and its associated quality metric.

Pushing: The pushing action policy, similar to that in [8],
selects p′ as the most free point in the bin. This point is
computed by taking the signed distance transform of a binary
mask of the bin walls and objects, finding the pixel with the
maximum signed distance value, and deprojecting that pixel
back into R3. Given an object to push, p is then selected so
that the gripper is not in collision at p, the line from p to
p′ passes through the object’s center of mass, and the push
direction is as close as possible to the direction of the most
free point in the bin. The pushing policy returns the push
satisfying the above constraints as its action if one exists.
The returned quality metric is 1 if a valid push exists and 0
if not.

V. ACTION SELECTION POLICIES

All action selection methods use input from the perception
system to generate a specific object priority list. Each action
selection method generates a priority list in a different way
but all have the same action execution criteria. For all action
selection methods described here, a grasp action is executed if
the quality metric returned by the action policy exceeds t(o),
the grasp confidence threshold for object mask o. The grasp
confidence threshold for the object mask positively identified
as the target object oT is given by t(oT ) = tthresh. For policies
without pushing, t(o) = tthresh,∀o, while for policies with
pushing, t(o) = thigh,∀o 6= oT . Policies with pushing can be
more conservative in their choice of grasps, so they use a
higher grasp confidence threshold thigh for non-target objects.
A push action is performed if a valid push is found (quality
1). Details on parameters used can be found in the appendix.

Each action selection method iterates through its priority
list, queries the grasping action policies for each object mask,
and executes the returned action with the highest quality
metric among the two grasping policies if it satisfies the

action execution criteria. If the target object is grasped, the
policy terminates and reports a success. If no grasping action
satisfies the criteria and the policy does not have pushing,
the policy terminates and reports a failure. If the policy does
have pushing, it iterates through its priority list, queries the
pushing action policy for each object mask, and executes
the first action that satisfies the criteria. If no pushing action
satisfies the criteria, or if a pushing action has been selected
more than three consecutive times, the policy terminates with
a failure.

Action Selection Methods: The action selection methods
are distinguished by whether or not they have pushing as an
available action policy and by their generated object priority
list:

1) Random Search: Prioritizes objects randomly, with no
preference for the target object mask (oT ).

2) Preempted Random Search (with and without push-
ing): Always prioritizes oT and prioritizes other objects
randomly.

3) Largest-First Search (with and without pushing):
Always prioritizes oT and ranks the other objects by
their visible area. If the target object isn’t visible, this
strategy will increase the likelihood of removing objects
that may be occluding the target object.
Termination Criteria: In addition to the termination

criteria outlined above (terminate and return success if target
object grasped, return failure if no good grasp/valid push
found), we impose two more termination conditions on our
policies which cause them to return a failure: (1) 2N timesteps
have elapsed, where N is the initial number of objects in the
bin and (2) The target object is inadvertently removed from
the work space when another object is grasped or pushed.

VI. EXPERIMENTS

A. Simulation

Heap Generation: Three datasets of simulated heaps
are generated, each containing 1000 heaps of N objects, for
N ∈ {10,15,20}. Then, using the Bullet Physics Engine [7],
sampled objects are dropped one by one into the bin, and
the target object is chosen to be the most occluded object.
Please refer to the appendix for further details.

Rollouts: To simulate grasp actions, we use the same
approach as in [24]: using wrench space analysis, we
determine whether or not an object can be lifted from the
heap [33, 36]. If the object can be lifted, a constant upward
force is applied to the object’s center of mass until it leaves
the bin, and the remaining objects are allowed to come to
rest. To simulate push actions, we check that the gripper can
be placed in the starting location without collisions, and only
execute pushes if this is the case. Then, we place a 3D model
of the closed gripper in the physics simulator and move it
from the start point to the end point of the push, as in [8].

B. Physical

Heap Generation: We randomly sample 50 heaps of 15
items each from a set of 75 common household objects with
relatively simple shapes, such as boxes and cylinders, as well



Fig. 3: (A) Front view of the robot and bin setup. The black bin is the
primary bin in which heaps are initialized, and the white bins provide
space for the robot to deposit grasped items. (B) The 75 objects used in
physical experiments. (C) A sample heap of 15 objects used in the physical
experiments.

as more complex geometries, such as plastic climbing holds
and scissors (see Figure 3). We also include several 3D-printed
items, which present a challenge for both segmentation and
target object recognition due to their unusual shapes and
uniform texture. A target object is chosen at random from
each 15 item heap. Then, in order to generate adversarial bin
configurations, each rollout is initialized by first shaking the
target object in a box to randomize its pose and dumping
into the center of the bin, and then shaking the other fourteen
objects and pouring them over the target object.

Policy Rollouts: We execute pushing and grasping
actions on an ABB YuMi robot equipped with suction-cup
and parallel-jaw grippers (see Figure 3). Actions generated by
the search policy are transformed into a sequence of poses for
the robot’s end-effectors, and we use ABB’s RAPID linear
motion planner and controller to execute these motions.

Human Supervisor Rollouts: For comparison, we also
benchmark a human supervisor’s performance as an action
selector. At each timestep, the human is asked to draw a mask
in the scene on which to plan a push or a grasp. Then, grasps
and pushes are planned and executed on the specified mask
with the same action primitives described above (parallel jaw
grasps, suction grasps, linear pushes). Thus, the human is
limited by the available action primitives, but is allowed to
use their own judgement for perceptual reasoning and high
level action planning.

C. Evaluation Metrics

We evaluate each policy according to its reliability and
efficiency in target object retrieval. Reliability is defined
as the frequency at which the target object is successfully
extracted, while efficiency is defined as the mean number of
actions taken to successfully extract the target object. For
each experiment, we recorded the number of successes and
failures, as well as statistics regarding the number of actions
taken.

VII. RESULTS

A. Simulation Results

We tested each action selection policy in simulation with
heaps generated using the method described in VI and running

until termination on each heap. A total of 15,000 simulation
experiments were conducted over all policies. The results for
each of the five policies are shown in Figure 4, and a detailed
breakdown of each policy can be found in the appendix.
Figure 4(A) shows the mean number of actions needed for
each policy as a function of heap size. These results suggest
that extracting the target object becomes more difficult as heap
size increases and the mean number of actions needed for
each policy appears to scale linearly with heap size, although
the rate of increase is not constant across policies.

Figure 4(B) shows cumulative successful extractions for a
given amount of actions (number of successful extractions
in that many actions or fewer). All policies have success
rates of 90% or higher on 15 object heaps. The cumulative
success plot suggests that grasping the target object when
possible provides improvement over the random policy, and
that prioritizing larger object masks when the target object
is inaccessible further increases efficiency. The largest-first
policies successfully extract the target object within 5 or
fewer actions on 50% of the heaps, while the preempted
random and random policies only do so for 30% and 10%
of heaps respectively.

Results also suggest that pushing can increase overall
success rate, as policies that included pushing succeeded
on at least 3% more heaps than those without pushing. For
policies with pushing, only 5% of all actions attempted are
pushes, as opposed to 29% parallel jaw grasps and 66%
suction grasps, on ten object heaps. The percentage of push
actions decreases further when increasing the number of
objects to just 3% for 15 object heaps. We suspect that the
reason pushes are selected so rarely is because the pushing
primitive is designed to execute a sequence of linear pushes
to singulate a particular object, rather than flatten a heap of
objects. While the former directly addresses the objective
of the push, the latter is much easier to achieve in practice,
since in many cases, especially with many objects in the bin,
it may be almost impossible to plan collision-free pushes that
successfully singulate the object of interest.

In simulation, failures account for 6-12% of all rollouts.
These failures fall into three categories: 1) the policy fails to
plan an action (e.g., no actions are available on any remaining
objects with a quality metric above the threshold), 2) the
target object is inadvertently removed from the bin, despite
an attempted action that was not a grasp on the target object,
or 3) the policy reaches the maximum number of timesteps
given to extract the object (2N timesteps, where N is the
initial number of objects in the heap).

Failure mode (1) accounts for 85-90% of all failures, while
(2) accounts for nearly all of the remaining failures. Mode (1)
typically happens because objects are moved to the corners of
the bin, making it difficult to plan collision-free grasps. Mode
(2) occurs more often for policies that include pushing actions,
since pushing in clutter can occasionally lead to objects being
pushed up and over the bin walls. It is also possible that the
target object is removed from the work space when another
object is grasped. Mode (3) never actually occurs in any
of our experiments, and the maximum timesteps cutoff is



Fig. 4: Performance of policies on (A) simulated heaps of 10, 15, and 20 objects over a total of 15,000 simulated rollouts and 300 physical rollouts, (B)
simulated heaps of 15 objects, and (C) real heaps of 15 objects. The largest-first search policies are the most efficient, and are able to extract the target
object in the least number of actions. All policies have similar reliability, although pushing shows potential to avoid more failures in simulation. The human
was allowed to look at the RGBD image inputs and choose an object to push or grasp. Means and standard deviations for successful extractions are shown
in parentheses for each policy.

intentionally set high to exhaust the policy of actions.

B. Physical Results

Figure 4(C) shows results on the physical system. A total of
300 physical experiments were conducted over all policies. All
policies retrieved the target object within the given number
of timesteps at least 90% of the time, and success rates
were not statistically different between policies. However,
the cumulative success curves suggest similar trends to those
seen in the simulation results, with the largest-first policies
outperforming the preempted random and random policies in
terms of efficiency. The largest-first policies again successfully
extract the target object within 5 or fewer actions on on 50%
of the heaps, while the preempted random and random policies
only do so for 40% and 10% of heaps respectively.

Stochasticity in the initial bin state in physical experiments
can result in varying difficulty for different policies on the
same heap. For example, a target object may be completely
covered by other objects when one policy is presented with
a given heap, but for another policy, the target may be
partially or fully visible in the initial state. Thus, policies
may occasionally get “lucky" or “unlucky" with respect to the
target object visibility in the initial state, which may account
for some increased variance in the physical results.

Failure cases for the physical heaps are very similar to those
in simulation: 93% of failures arise from the policy being
unable to plan an action. However, in physical experiments,
out of the 300 heaps evaluated for all policies, only 1 rollout
failed due to timing out. Failure to plan actions is almost
always due to the target object lying flat on the bottom of
the bin (e.g., the dice, sharpie pens, or another blister-pack
object), making it difficult to obtain accurate segmentation.
Another common reason for failure to plan actions is when
no mask is identified as the target object, which often occurs
for 3D printed objects.

C. Action-Limited Human Supervisor

The human supervisor outperforms all policies presented
here, requiring an average of just 3.1 actions to extract
the target object due to more intelligent action selection.
Specifically, we noticed that a human operator chose to push
far more frequently (26% of all actions, compared to 6%
for the other action policies with pushing), especially when
objects were heaped in the center of the bin and the target

was not visible. These pushes tend to spread many objects
out over the bottom of the bin, as opposed to a grasping
action that would remove only a single object from the top
of the heap.

VIII. DISCUSSION AND FUTURE WORK

We present a general formulation for mechanical search
problems and describe a framework for solving the specific
problem of extracting a target object from a cluttered bin.
While the best action selection method (largest-first) is much
more efficient than random search and provides a solid
baseline, a human selecting the low-level actions can still
achieve 37% higher efficiency by pushing significantly more
effectively and often. We will explore how reinforcement
learning in simulation can address this gap.

In future work, the action primitives used (grasp, suction,
push) can also be improved. We conjecture that more effective
push primitives can be learned from simulation.

IX. APPENDIX

A. Extended Results

Tables I, II, III, and IV give a detailed breakdown of
each policies selected actions and success rate over the 1000
simulated trials and 50 trials on the physical robot for each
policy on 15 object heaps. In simulation, pushing actions
result in higher success rates. On the physical system, the
human policy selects pushing actions much more frequently
to clear multiple occluding objects from the target object. We
will explore this discrepancy further in future work.

Simulation Policy Success Rate Mean Actions

Random 88.8% 11.26±0.15
Preempted Random 89.7% 8.55±0.16
Preempted Random + Pushing 94.3% 8.87±0.15
Largest-First 90.3% 6.35±0.14
Largest-First + Pushing 93.3% 6.51±0.14

TABLE I: Success rate and mean number of actions (with standard error of
the mean) for extraction for 1000 trials of each policy tested in simulation.
The largest-first policies extract the target most efficiently, and pushing shows
ability to increase overall success rate.



Simulation Policy Suction Parallel-Jaw Push

Random 7015 4467 0
Preempted Random 6168 2870 0
Preempted Random + Pushing 6180 2825 274
Largest-First 5266 1718 0
Largest-First + Pushing 5116 1706 259

TABLE II: Breakdown of action selection for each policy in simulation over
1000 trials. Policies typically attempt many more suction grasps due to better
accessibility in clutter, and only attempt pushes a small fraction of the time.

Physical Policy Success Rate Mean Actions

Random 92% 10.87±0.66
Preempted Random 90% 6.71±0.61
Preempted Random + Pushing 98% 6.31±0.63
Largest-First 94% 4.85±0.51
Largest-First + Pushing 96% 6.00±0.63
Human 98% 3.06±0.32

TABLE III: Success rate and mean number of actions (with standard error
of the mean) for extraction for 50 trials of each policy tested on the physical
system. All policies achieve success rates of over 90% due to effective low-
level grasping policies, but the human outperforms the best policy by 37%
in terms of mean number of actions, suggesting that there is considerable
room for action selection policy improvement.

Physical Policy Suction Parallel-Jaw Push

Random 275 300 0
Preempted Random 282 76 0
Preempted Random + Pushing 250 58 19
Largest-First 222 47 0
Largest-First + Pushing 244 59 18
Human 99 27 44

TABLE IV: Breakdown of action selection for each policy in 50 physical
trials. The human pushes much more frequently than the other policies,
especially to clear multiple occluding objects at the beginning of the trial.

B. Siamese Network Implementation Details

The Siamese network architecture involves first passing
each input 512× 512 RGB image through a ResNet-50
architecture pretrained on ImageNet. During training of
the Siamese network, these weights remained fixed. The
featurizations of the input images are then concatenated and
passed through two dense, fully connected layers: the first
with 1024 neurons and ReLU activations, and the second with
a single output neuron and sigmoid activation, whose output
represents the probability that the two input images are of
the same object. The motivation for this architecture is to
allow the Siamese network to learn a distance metric over the
ResNet-50 featurizations. The training dataset for the Siamese
network consists of 5 views of each of the objects used in
physical experiments. For each view, we generated a total
of 10 additional images: 5 randomly rotated versions of the
original image as well as 5 rotated versions that are partially
occluded. To simulate occlusions, we took randomly rotated
and scaled binary masks of a dataset of synthetic objects,
and overlay the masks on the original object. We only used
occlusions that covered at least 20% and at most 80% of
the original pixels of the object. For training, we sampled
10,000 positive and 10,000 negative image pairs, where a
positive image pair consists of an original image of an object
and one of the 10 augmented images and a negative image
pair consists of an original image of an object and one of
the 10 augmented images of an entirely different object. The

network is then trained with a contrastive loss function for
10 epochs using a batch size of 64 and the Adam optimizer
with a learning rate of 0.0001. For physical experiments, a
recognition confidence threshold tr = 0.9 was used.

C. Simulated Heap Generation

Simulated heaps are generated by sampling: 1) N objects
from a dataset of over 1600 3D models, 2) a heap center
around the center of the bin, and 3) planar pose offsets for
each object around the heap center. Then, using the Bullet
Physics Engine, sampled objects are dropped one by one into
the bin from a fixed height at their pose offset from the heap
center, and all objects are allowed to come to rest (i.e. all
velocities of all objects go to zero). Once all objects have been
added to the heap, the modal and amodal segmentation masks
for each object are rendered from the camera’s perspective.
The modal segmask of an object is a segmask of the portion
of the object visible from the perspective of the camera
(accounting for occlusions), while the amodal segmask of
an object is a segmask of the object’s exact position in the
scene given ground truth information from the simulation
environment. Using these masks, the target object is chosen
to be the object with the smallest ratio between modal and
amodal segmask area (i.e., the least visible object in the bin).
This metric is used as a proxy for finding the most occluded
object.

D. Policy Parameters

Simulation Policy Parameters: Grasp confidence thresh-
olds of tthresh = 0.15 and thigh = 0.3 are used in simulation
for the high-level action selector to determine whether to
execute grasp actions from the low level grasp policies. In
experimental trials, these values were found to provide a
balance between avoiding grasp failures and quickly clearing
objects from the bin as soon as sufficiently good grasps
become available.

Physical Policy Parameters: In physical experiments,
grasp confidence thresholds of tthresh = 0.1 and thigh = 0.3
were used for action selection to determine whether to execute
grasp action plans from the low-level grasp action policies.
These values are similar to those used in simulation, but
tthresh is made slightly lower for physical experiments since
it we observed that low confidence grasps succeeded more
often in physical experiments than in simulation, which was
designed to be conservative to encourage good transfer to
reality. Additionally, thigh = 0.5 was used for policies that
included low-level pushing action policies, so that pushing
would be further encouraged over low-quality grasp actions.

X. ACKNOWLEDGMENTS

This work is partially supported by a Google Focused Research Award and
was performed jointly at the AUTOLAB at UC Berkeley and at the Stanford
Vision & Learning Lab, in affiliation with the Berkeley AI Research (BAIR)
Lab, Berkeley Deep Drive (BDD), the Real-Time Intelligent Secure Execution
(RISE) Lab, and the CITRIS "People and Robots" (CPAR) Initiative. Authors
were also supported by the SAIL-Toyota Research initiative, the Scalable
Collaborative Human-Robot Learning (SCHooL) Project, the NSF National
Robotics Initiative Award 1734633, and in part by donations from Siemens,
Google, Amazon Robotics, Toyota Research Institute, Autodesk, ABB,
Knapp, Loccioni, Honda, Intel, Comcast, Cisco, Hewlett-Packard and by



equipment grants from PhotoNeo, and NVidia. This article solely reflects the
opinions and conclusions of its authors and do not reflect the views of the
Sponsors or their associated entities. We thank our colleagues who provided
helpful feedback, code, and suggestions, in particular Jeff Mahler.

REFERENCES
[1] A. Aydemir, K. Sjöö, J. Folkesson, A. Pronobis, and P. Jensfelt,

“Search in the real world: Active visual object search based on
spatial relations”, in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), IEEE, 2011, pp. 2818–2824.

[2] R. Bajcsy, “Active perception”, Proceedings of the IEEE, vol. 76,
no. 8, pp. 966–1005, 1988.

[3] D. Berenson and S. S. Srinivasa, “Grasp synthesis in cluttered
environments for dexterous hands”, in Humanoid Robots, 2008.
Humanoids 2008. 8th IEEE-RAS International Conference on, IEEE,
2008, pp. 189–196.

[4] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal,
and G. S. Sukhatme, “Interactive perception: Leveraging action in
perception and perception in action”, IEEE Trans. Robotics, vol. 33,
no. 6, pp. 1273–1291, 2017.

[5] L. Chang, J. R. Smith, and D. Fox, “Interactive singulation of objects
from a pile”, in Proc. IEEE Int. Conf. Robotics and Automation
(ICRA), IEEE, 2012, pp. 3875–3882.

[6] X. Chen, K. Kundu, Y. Zhu, H. Ma, S. Fidler, and R. Urtasun,
“3d object proposals using stereo imagery for accurate object class
detection”, IEEE transactions on pattern analysis and machine
intelligence, vol. 40, no. 5, pp. 1259–1272, 2018.

[7] E. Coumans and Y. Bai, Pybullet, a python module for physics
simulation, games, robotics and machine learning, http : / /
pybullet.org/, 2016–2017.

[8] M. Danielczuk, J. Mahler, C. Correa, and K. Goldberg, “Linear push
policies to increase grasp access for robot bin picking”, in Proc.
IEEE Conf. on Automation Science and Engineering (CASE), IEEE,
2018.

[9] M. Danielczuk, M. Matl, S. Gupta, A. Li, A. Lee, J. Mahler, and
K. Goldberg, “Segmenting unknown 3d objects from real depth
images using mask r-cnn trained on synthetic data”, in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), IEEE, 2019.

[10] Y. Duan, M. Andrychowicz, B. C. Stadie, J. Ho, J. Schneider,
I. Sutskever, P. Abbeel, and W. Zaremba, “One-Shot Imitation
Learning”, ArXiv preprint arXiv:1703.07326, 2017.

[11] K. Fang, Y. Zhu, A. Garg, A. Kurenkov, V. Mehta, L. Fei-Fei, and
S. Savarese, “Learning task-oriented grasping for tool manipulation
from simulated self-supervision”, ArXiv preprint arXiv:1806.09266,
2018.

[12] R. E. Fikes and N. J. Nilsson, “Strips: A new approach to the
application of theorem proving to problem solving”, Artificial
intelligence, vol. 2, no. 3-4, pp. 189–208, 1971.

[13] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt, “High precision
grasp pose detection in dense clutter”, in Proc. IEEE/RSJ Int. Conf.
on Intelligent Robots and Systems (IROS), IEEE, 2016, pp. 598–605.

[14] M. Gupta, T. Rühr, M. Beetz, and G. S. Sukhatme, “Interactive
environment exploration in clutter”, in Proc. IEEE/RSJ Int. Conf. on
Intelligent Robots and Systems (IROS), IEEE, 2013, pp. 5265–5272.

[15] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik,
“Cognitive mapping and planning for visual navigation”, ArXiv
preprint arXiv:1702.03920, vol. 3, 2017.

[16] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn. arxiv
preprint arxiv: 170306870”, 2017.

[17] T. Hermans, J. M. Rehg, and A. Bobick, “Guided pushing for object
singulation”, in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), IEEE, 2012, pp. 4783–4790.

[18] E. Jang, S. Vijayanarasimhan, P. Pastor, J. Ibarz, and S. Levine, “End-
to-end learning of semantic grasping”, in Conf. on Robot Learning
(CoRL), 2017.

[19] D. Kalashnikov, A. Irpan, P. Pastor, J. Ibarz, A. Herzog, E. Jang,
D. Quillen, E. Holly, M. Kalakrishnan, V. Vanhoucke, et al., “Qt-
opt: Scalable deep reinforcement learning for vision-based robotic
manipulation”, ArXiv preprint arXiv:1806.10293, 2018.

[20] D. Katz, A. Venkatraman, M. Kazemi, J. A. Bagnell, and A.
Stentz, “Perceiving, learning, and exploiting object affordances for
autonomous pile manipulation”, Autonomous Robots, vol. 37, no. 4,
pp. 369–382, 2014.

[21] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey”, Int. Journal of Robotics Research (IJRR), vol.
32, no. 11, pp. 1238–1274, 2013.

[22] G. Koch, R. Zemel, and R. Salakhutdinov, “Siamese neural networks
for one-shot image recognition”, in ICML Deep Learning Workshop,
vol. 2, 2015.

[23] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps”, Int. Journal of Robotics Research (IJRR), vol. 34, no. 4-5,
pp. 705–724, 2015.

[24] J. Mahler and K. Goldberg, “Learning deep policies for robot bin
picking by simulating robust grasping sequences”, in Conf. on Robot
Learning (CoRL), 2017, pp. 515–524.

[25] J. Mahler, J. Liang, S. Niyaz, M. Laskey, R. Doan, X. Liu, J. A.
Ojea, and K. Goldberg, “Dex-net 2.0: Deep learning to plan robust
grasps with synthetic point clouds and analytic grasp metrics”, Proc.
Robotics: Science and Systems (RSS), 2017.

[26] J. Mahler, M. Matl, X. Liu, A. Li, D. Gealy, and K. Goldberg, “Dex-
net 3.0: Computing robust vacuum suction grasp targets in point
clouds using a new analytic model and deep learning”, in Proc. IEEE
Int. Conf. Robotics and Automation (ICRA), IEEE, 2018, pp. 1–8.

[27] J. Mahler, F. T. Pokorny, B. Hou, M. Roderick, M. Laskey, M. Aubry,
K. Kohlhoff, T. Kröger, J. Kuffner, and K. Goldberg, “Dex-net 1.0: A
cloud-based network of 3d objects for robust grasp planning using a
multi-armed bandit model with correlated rewards”, in Proc. IEEE Int.
Conf. Robotics and Automation (ICRA), IEEE, 2016, pp. 1957–1964.

[28] C. Michaelis, M. Bethge, and A. Ecker, “One-shot segmentation
in clutter”, in Proc. Int. Conf. on Machine Learning, J. Dy and A.
Krause, Eds., ser. Proceedings of Machine Learning Research, vol. 80,
Stockholmsmässan, Stockholm Sweden: PMLR, 2018, pp. 3549–
3558.

[29] C. Michaelis, M. Bethge, and A. S. Ecker, “One-shot segmentation
in clutter”, ArXiv preprint arXiv:1803.09597, 2018.

[30] M. Moll, L. Kavraki, J. Rosell, et al., “Randomized physics-
based motion planning for grasping in cluttered and uncertain
environments”, IEEE Robotics & Automation Letters, vol. 3, no.
2, pp. 712–719, 2018.

[31] D. Morrison, P. Corke, and J. Leitner, “Closing the loop for robotic
grasping: A real-time, generative grasp synthesis approach”, ArXiv
preprint arXiv:1804.05172, 2018.

[32] A. Mousavian, A. Toshev, M. Fiser, J. Kosecka, and J. Davidson,
“Visual representations for semantic target driven navigation”, ArXiv
preprint arXiv:1805.06066, 2018.

[33] A. ten Pas and R. Platt, “Using geometry to detect grasp poses in 3d
point clouds”, in Robotics Research, Springer, 2018, pp. 307–324.

[34] C. Paxton, F. Jonathan, M. Kobilarov, and G. D. Hager, “Do what
i want, not what i did: Imitation of skills by planning sequences
of actions”, in Proc. IEEE/RSJ Int. Conf. on Intelligent Robots and
Systems (IROS), 2016.

[35] P. O. Pinheiro, T.-Y. Lin, R. Collobert, and P. Dollár, “Learning
to refine object segments”, in European Conference on Computer
Vision, Springer, 2016, pp. 75–91.

[36] D. Prattichizzo and J. C. Trinkle, “Grasping”, in Springer handbook
of robotics, Springer, 2008, pp. 671–700.

[37] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection”, in Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2016, pp. 779–
788.

[38] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards
real-time object detection with region proposal networks”, in Proc.
Advances in Neural Information Processing Systems, 2015, pp. 91–99.

[39] A. Saxena, L. L. Wong, and A. Y. Ng, “Learning grasp strategies with
partial shape information.”, in AAAI, vol. 3, 2008, pp. 1491–1494.

[40] A. Shaban, S. Bansal, Z. Liu, I. Essa, and B. Boots, “One-shot learn-
ing for semantic segmentation”, ArXiv preprint arXiv:1709.03410,
2017.

[41] S. Srivastava, E. Fang, L. Riano, R. Chitnis, S. Russell, and P. Abbeel,
“Combined task and motion planning through an extensible planner-
independent interface layer”, in Proc. IEEE Int. Conf. Robotics and
Automation (ICRA), IEEE, 2014, pp. 639–646.

[42] J. Sung, B. Selman, and A. Saxena, “Learning sequences of
controllers for complex manipulation tasks”, in Proc. Int. Conf. on
Machine Learning, Citeseer, 2013.

[43] R. S. Sutton, D. Precup, and S. Singh, “Between mdps and semi-mdps:
A framework for temporal abstraction in reinforcement learning”,
Artificial intelligence, vol. 112, no. 1-2, pp. 181–211, 1999.

http://pybullet.org/
http://pybullet.org/


[44] K. E. Van de Sande, J. R. Uijlings, T. Gevers, and A. W. Smeulders,
“Segmentation as selective search for object recognition”, in Proc.
IEEE Int. Conf. on Computer Vision (ICCV), IEEE, 2011, pp. 1879–
1886.

[45] U. Viereck, A. t. Pas, K. Saenko, and R. Platt, “Learning a visuomotor
controller for real world robotic grasping using simulated depth
images”, ArXiv preprint arXiv:1706.04652, 2017.

[46] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra, et al., “Matching
networks for one shot learning”, in Proc. Advances in Neural
Information Processing Systems, 2016, pp. 3630–3638.

[47] J. Wolfe, B. Marthi, and S. J. Russell, “Combined task and motion
planning for mobile manipulation”, in ICAPS, 2010.

[48] D. Xu, S. Nair, Y. Zhu, J. Gao, A. Garg, L. Fei-Fei, and S. Savarese,
“Neural task programming: Learning to generalize across hierarchical

tasks”, in Proc. IEEE Int. Conf. Robotics and Automation (ICRA),
2018.

[49] A. Zeng, S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza,
D. Ma, O. Taylor, M. Liu, E. Romo, et al., “Robotic pick-and-
place of novel objects in clutter with multi-affordance grasping and
cross-domain image matching”, ArXiv preprint arXiv:1710.01330,
2017.

[50] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning”, in Proc. IEEE Int. Conf. Robotics and

Automation (ICRA), 2017, pp. 3357–3364.


	I Introduction
	II Background and Related Work
	III Mechanical Search: Problem Formulation
	IV Perception and Decision System
	IV-A Perception
	IV-B Search Policy

	V Action Selection Policies
	VI Experiments
	VI-A Simulation
	VI-B Physical
	VI-C Evaluation Metrics

	VII Results
	VII-A Simulation Results
	VII-B Physical Results
	VII-C Action-Limited Human Supervisor

	VIII Discussion and Future Work
	IX Appendix
	IX-A Extended Results
	IX-B Siamese Network Implementation Details
	IX-C Simulated Heap Generation
	IX-D Policy Parameters

	X Acknowledgments

