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Abstract— Anticipating possible behaviors of traffic partici-
pants is an essential capability of autonomous vehicles. Many
behavior detection and maneuver recognition methods only
have a very limited prediction horizon that leaves inadequate
time and space for planning. To avoid unsatisfactory reactive
decisions, it is essential to count long-term future rewards in
planning, which requires extending the prediction horizon. In
this paper, we uncover that clues to vehicle behaviors over an ex-
tended horizon can be found in vehicle interaction, which makes
it possible to anticipate the likelihood of a certain behavior,
even in the absence of any clear maneuver pattern. We adopt a
recurrent neural network (RNN) for observation encoding, and
based on that, we propose a novel vehicle behavior interaction
network (VBIN) to capture the vehicle interaction from the
hidden states and connection feature of each interaction pair.
The output of our method is a probabilistic likelihood of
multiple behavior classes, which matches the multimodal and
uncertain nature of the distant future. A systematic comparison
of our method against two state-of-the-art methods and another
two baseline methods on a publicly available real highway
dataset is provided, showing that our method has superior
accuracy and advanced capability for interaction modeling.

I. INTRODUCTION

In recent years, there has been growing interest in build-
ing autonomous vehicles which can navigate naturally in
complex environments. Despite the fact that perception tech-
niques are maturing, autonomous vehicles are still criticized
for being over conservative or socially incompliant. To make
wise decisions, the planning module of autonomous vehicles
needs to reason about long-term future outcomes, which
requires predicting future behaviors in three to five seconds.

There is an extensive literature on the prediction of ve-
hicles, which can be divided into two categories [1]: inten-
tion/maneuver/behavior prediction and motion/trajectory
prediction. The two categories have different outputs: the
behavior prediction outputs high-level behaviors such as lane
keeping (LK), lane change (LC), etc., while the motion pre-
diction produces a time-profiled predicted trajectory. Recent
works suggest that the motion prediction can be augmented
by the behavior prediction to model the multimodal nature
of future motion [1]–[4]. In this paper, we focus on the
behavior prediction problem, and our method can be easily
incorporated into motion prediction algorithms to generate
time-profiled prediction.
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Fig. 1: Illustration of the benefit of extending the prediction horizon.
Assume that the green vehicle is the ego vehicle with the planning
module, while the transparency of the vehicles represents the time
elapsed. For a detection-based method, as shown on the top, the LC
prediction is given when the blue vehicle has a clear LC pattern,
which may result in a sudden braking of the ego vehicle due to
the late discovery. However, from the interaction point of view,
the blue vehicle is moving at a high speed and is blocked by
the slowly moving red car. The blue vehicle has two interaction
choices: brake to avoid collision or merge into the other lane. By
learning from a large number of interaction patterns, the likelihood
of LC can be estimated, even before the blue vehicle has a clear
LC maneuver. More examples can be found in the video https:
//www.youtube.com/watch?v=SuQzxAusU_0.

An overview of prediction methods is provided in Sect. II,
where we find that many proposed methods are detection-
based and only have a limited prediction horizon. For exam-
ple, a lane change is detected only 1.0 s to 1.7 s before the
prediction target crosses the dividing line [5]–[8]. To avoid
generating false alarms in the face of noisy maneuvers such
as zigzagging, these methods tend to detect the behavior
only when it is clearly happening. Detection-based methods
can achieve high accuracy and are suitable for a system like
ADAS. However, the short prediction horizon is problematic
for the planning module, as shown in Fig. 1.

To meet the needs of the planning module, the prediction
is required to anticipate the likelihood of the behavior even
before it is clearly happening, and we call prediction of this
kind prediction over an extended horizon. Such prediction
typically requires reasoning about the behavior in three to
five seconds. However, it is a challenging problem due to the
increasing uncertainty with respect to the distance of the fu-
ture. For example, at four seconds before a LC, the observed
maneuver lacks features to make the LC distinguishable.

Obviously, additional information is required to reduce the
uncertainty of the future. We uncover that social interaction is
highly informative for prediction over the extended horizon.

ar
X

iv
:1

90
3.

00
84

8v
2 

 [
cs

.R
O

] 
 3

 J
un

 2
01

9

https://www.youtube.com/watch?v=SuQzxAusU_0
https://www.youtube.com/watch?v=SuQzxAusU_0


An illustrative example is shown in Fig. 1. In [9], Alahi et
al. proposed a learning-based social pooling strategy for
modeling pedestrian interactions, which became very popular
and was later applied to vehicles [2]. However, using their
methods agents appearing in the same spatial location will
be weighted equally in spite of their different dynamics,
which is problematic for a highly dynamic driving scenario,
as shown in Fig. 2.

In this paper, we propose a novel vehicle behavior interac-
tion network (VBIN) for modeling vehicle interactions. The
novelty is that the VBIN is capable of learning to weight
the social effect of another agent on the prediction target
based on their maneuver features and also relative dynamics
(e.g., relative positions and velocities). Each interaction pair
is dynamically weighted and then used to evaluate the total
social effect on the prediction target. Contrary to the social
pooling strategy, which is effective in modeling low-speed
collision avoidance behaviors of pedestrians, our proposed
method is suitable for highly dynamic driving scenarios
where the dynamics of agents affect their importance in
social interactions. Our method is end-to-end trainable.

We compare the proposed method with state-of-the-art
interaction-aware models through systematic experiments on
a publicly available real-world highway dataset, and show
in Sect. IV that our novel VBIN structure can achieve
significant improvements for behavior prediction over the
extended horizon in terms of various critical metrics.

II. RELATED WORKS

Detection and prediction. Detection-based methods, such
as maneuver recognition approaches, have been studied ex-
tensively. Houenou et al. [5] identify maneuver patterns such
as LK and LC based on a handcrafted model which evaluates
the similarity between the vehicle trajectory and lane center
line. However, user-specified parameters and thresholds are
required. Mandalia et al. [6] classify the LC maneuver using
support vector machine (SVM), while Schlechitriemen et
al. [7] use Gaussian mixture models to estimate driving
intentions. Woo et al. [8] also adopt an SVM, and suggest
using trajectory prediction to reject false alarms from the
intention estimations. These methods detect LCs based on
the target’s own maneuver pattern and only have a limited
prediction horizon. In contrast, our method captures the
driver intention, even in the absence of any clear maneuver
pattern, by making use of the vehicle behavior interactions.
Behavior prediction and trajectory prediction. Many
methods focus on trajectory prediction and generate a time-
profiled trajectory directly. Regression methods, such as
linear regressions [10] and non-linear Gaussian process re-
gression models [11]–[13], are extensively studied. Recurrent
neural networks (RNNs) have recently been widely applied
to various trajectory prediction tasks including trajectory pre-
diction for pedestrians and vehicles. For vehicles, apart from
predicting trajectories, many methods also aim to predict
high-level intentions [7, 8, 14, 15]. Moreover, some recent
works suggest that trajectory prediction can be augmented
by the prediction of high-level semantic behaviors, e.g.,

Fig. 2: Illustration of the popular social pooling strategy [9]. The
RNN hidden states in the same spatial cell are pooled and passed
to a fully connected layer to generate the total social effect on
the target vehicle (yellow). Vehicles which have totally different
dynamics in the same cell will share the same weight. However, as
shown in the Illustration, if the vehicle that is highlighted with a
circle is moving slowly, it is supposed to has a large weight since it
blocks the LC route of the target vehicle, but if it is moving much
faster than the target vehicle, it should has little impact on the target
vehicle’s LC.

LCs and insertions, due to the multimodal nature of the
problem [1]–[3]. In this paper, we focus on the behavior
prediction problem.
Learning-based methods for various prediction tasks.
Many learning-based prediction methods follow an RNN
encoder-decoder structure [16] and use it for predicting the
trajectory of pedestrians [17]–[19] and vehicles [2, 18].
RNNs are an alternative to the traditional methods (e.g.,
SVM, Gaussian process) [20, 21] for capturing maneuver
patterns. Some works move one step further and consider
the multi-agent interactions among pedestrians [9, 18, 22, 23]
and vehicles [2, 18] in the RNN structure. The interaction-
aware models for vehicles mainly adopt a social pooling
strategy using RNN hidden states, which may be problematic
for a highly dynamic scenario, as elaborated in the following.
Modeling interactions. Modeling social interaction in RNNs
started with the seminal work by Alahi et al. [9], which
proposes a social occupancy grid pooling mechanism, as
shown in Fig. 2. This design is very effective for pedestrian
trajectory prediction in a crowd [18, 22, 24], and is suitable
for unstructured environments and modeling collision avoid-
ance behaviors. It is directly applied to vehicle prediction
in [18] and [2]. However, for highly dynamic on-road driv-
ing, spatial locations should not be the only reference for
weighting social effects, as shown in Fig. 2. Going beyond
these methods, our proposed VBIN can learn to weight the
interactions automatically based on the relative dynamics of
both agents.

III. METHODOLOGY

A. Problem Formulation

The motivation behind our proposed behavior prediction
method is to facilitate the development of socially com-
pliant planning algorithms. To this end, we describe the
problem from the planning perspective to make clear what
requirements the planning module for the prediction. We
follow multi-policy decision making (MPDM) [25, 26] for
a theoretically-grounded multi-agent planning formulation.
Note that our proposed method is interaction-aware and
can serve as a further developed prediction module for this
planning framework.

At time t, a vehicle v can take an action avt ∈ Av to
transition from a state xvt ∈ X v to xvt+1 and make an



Fig. 3: VBIN building block: pairwise interaction unit (PIU). RNNs
are implemented using gated recurrent units (GRUs) [16], and the
hidden states are used as the input of the PIU.

observation zvt ∈ Zv . For example, a state xvt can be a
tuple of the pose, velocity and acceleration, an action avt
can be a tuple of the controls for steering, throttle, braking,
etc., and an observation zvt can be a tuple of estimated poses
and velocities of other vehicles. Let e denote the ego (i.e.,
controlled) vehicle and Ve denote the set of vehicles in a
local neighborhood of the ego vehicle e. Let ze,vt denote the
observation made by the ego vehicle about its nearby vehicle
v ∈ Ve, let xt include all state variables xvt for all vehicles
at time t, let at ∈ A be the actions of all vehicles, and let
zt ∈ Z be the observations made by all vehicles. From the
planning perspective, the goal is to find an optimal policy
π′ that maximizes the expected reward over a given decision
horizon H , where a policy is a mapping π : X ×Zv → Av .
π′ can be obtained by solving a partially observable Markov
decision process (POMDP) with the following probability
transition:

p(xt+1) =
∏
v∈V

∫∫∫
XvZvAv

pv(xvt , x
v
t+1, z

v
t , a

v
t )davt dz

v
t dx

v
t , (1)

where pv(xvt , x
v
t+1, z

v
t , a

v
t ) denotes the joint density for a

single vehicle. The MPDM make the assumption on the
driver model p(avt |xvt , zvt ) that the agents are executing a
policy/behavior from a discrete set of behaviors, such as LC
and LK. Mathematically, the assumption is

p(avt |xvt , zvt ) = p(avt |xt, zvt , πv
t ) p(πv

t |xvt , zvt )︸ ︷︷ ︸
behavior decision

, (2)

where πv
t belongs to the discrete set of behaviors Π. The

ego vehicle needs to infer p(πv
t |xvt , zvt ) for all v ∈ Ve via

p(πv
t |ze0:t), where ze0:t is a time series of observations of the

nearby vehicles.
Many prediction methods actually simplify the problem

by further approximating p(πv
t |ze0:t) using p(πv

t |z
e,v
0:t ), where

p(πv
t |z

e,v
0:t ) denotes the observations of vehicle v only. Specif-

ically, the predicted behavior is only based on past obser-
vations of each vehicle itself. The approximation ignores
the potential interactions and results in a short prediction
horizon, as shown in Fig. 1. It also becomes clear that
learning-based methods try to find a parametric represen-
tation of the policy likelihood p(πv

t |ze0:t,θ) using the neural
network parameters θ. The idea of the proposed method is
to uncover the potential interactions lying inside ze0:t through
the specially designed VBIN structure and yield a better
parametric estimation of p(πv

t |ze0:t) which holds for a long
decision horizon H .

B. RNN Encoder Network

As introduced in Sect. III-A, the network is supposed to be
amenable to encoding the observed states of all vehicles. To
accomplish this task, we start with obtaining the encoding
for each individual agents, which provides a compact rep-
resentation of the vehicle’s maneuver. We adopt the popular
RNN encoder network [16] to obtain the maneuver encoding
for each individual vehicle. We first extract features from a
time series of the observed states of a given vehicle via a
feature selection function fm(ze,v0:t ). The selection of features
depends on the design of the behavior class, and in Sect. IV-
C, we provide a practical example of the feature selection
for LC behavior.

For brevity, we do not include details of the RNN encoder
structure, and refer interested readers to [9] and [18] for the
details. It is worth noting that, during the training phase, all
the RNNs share the same set of weights. After the RNN
encoding, the maneuver history of each vehicle v ∈ Ve is
encoded in a vector hv , RNN(fm(ze,v0:t )) ∈ Rr, where r
denotes the size of the RNN encoding. All the encodings can
be computed and stored before the inference of the VBIN.

C. Vehicle Behavior Interaction Network (VBIN)

Pairwise interaction unit (PIU). The basic element of the
VBIN is the pairwise interaction unit (PIU). The PIU learns
to weight the social effect of an interaction pair based on
their maneuver histories and relative dynamics. As shown
in Fig. 3, the PIU takes three inputs: two RNN encodings
hi and hj of a pair of vehicles, with i ∈ Ve, j ∈ Ve and
i 6= j, and the connection feature ci,j . The connection feature
ci,j is extracted via another feature extraction function,
ci,j = fc(z

e,i
0:t, z

e,j
0:t) ∈ Rl, which is based on the history

of both vehicles and represents the relative states of both
vehicles. For example, ci,j can include the relative positions
and relative velocities of the two vehicles.

In other words, the hidden states hi and hj are responsible
for describing the maneuver in each vehicle’s local reference
frame, and are invariant no matter which prediction target it
is. The connection feature ci,j ∈ Rl describes the “trans-
lation” of two reference frames and the dynamics of both
vehicles. The PIU is dedicated to “weighting” the two hidden
states given the additional information of translation and
vehicle dynamics. Unlike the conventional social pooling [9],
which weights the hidden states purely based on spatial
location, the PIU learns different weighting strategies for
different relative states of each interaction pair. The output
of the PIU unit is denoted as pi,j , PIU(hi, hj , ci,j) ∈ Rd,
with d denoting the size of the PIU embedding.
Neighborhood interaction unit (NIU). Before stepping
into the details of the NIU, we give a formal definition
of “neighborhood”. In the series of works on pedestrian
trajectory prediction [9], [2] and [22], the “neighborhood” is
defined by a grid centered at the prediction target and each
vehicle is associated with one cell. However, vehicles travel
in a semi-structured environment where there are semantic
elements, such as lanes, which makes the occupancy grid
not the best choice. [1] suggests selecting a fixed number of



Fig. 4: Illustration of the PIU connections for each selected neigh-
boring vehicle.

Fig. 5: VBIN building block: neighborhood interaction unit (NIU).
All the PIUs are identical.

reference vehicles around the prediction target based on the
environment semantics such as lanes. Taking the highway
scenario for example, vehicles tend to interact with the
nearest vehicles in the current and neighboring lanes, and
these neighboring vehicles will be informative for interaction
modeling [1].

In this section, we provide a selection strategy for a
highway scenario as an example, as shown in Fig. 4. The
selection process is as follows: 1) Select the two vehicles
at the front and rear in the current lane. 2) Select the
two vehicles with the closest longitudinal coordinates to the
target vehicle in the neighboring lanes. 3) Select the vehicles
immediately at the front and the vehicle immediately at the
rear w.r.t. the neighboring vehicle. In the case of the non-
existence of such neighboring vehicles, we create a virtual
vehicle with the same longitudinal velocity as the target
vehicle and a far longitudinal relative distance (e.g., 100 m)
in the same direction. Note that the neighboring vehicles are
determined online. For the consecutive rounds of predictions,
the neighboring vehicles may vary but the prediction results
are still consistent, as shown in the video.

Let Ni be the set of selected neighboring vehicles around
the target vehicle i ∈ Ve. We denote the number of selected
neighboring vehicles as Nnbr = |Ni|. Like [1], we use a
fixed Nnbr for each prediction target. As shown in Fig. 4, we
establish the PIU link between the prediction target i and
each selected vehicle j ∈ Ni. The Nnbr PIU embeddings are
concatenated and passed to three cascaded fully connected
layers with ReLU activation. The output of the NIU unit is
denoted as si ∈ Rn, with n denoting the NIU embedding
size. At a high level, si represents the total social effect of
the neighboring vehicles on the prediction target i.
Behavior decoding. As mentioned above, si represents the
social effect applied to vehicle i. We then concatenate si with
its original local maneuver encoding hi. The concatenated
vector now contains both the features extracted from its
own maneuver history and the features extracted from the
neighborhood interaction. Applying the above process to a
total number of Na prediction targets, we obtain a social
batch, with each row representing the combined encoding
for each individual vehicle, as shown in Fig. 6. The social

Fig. 6: Illustration of the VBIN structure. All the NIUs are identical.

batch is passed to cascaded fully connected layers with ReLU
activation and another softmax layer to decode the output,
which is the likelihood b ∈ RNa×C of C behavior classes
for each predicted vehicle.
Scalable deployment. In the following, we show that the
inference time of the VBIN does not scale with Na and
is amenable to scalable deployment. Specifically, since the
PIUs and NIUs are all identical, we can precompute and
reuse the following tensors: 1) precompute the connection
features for the neighborhood of each agent, which forms a
tensor of size Na×Nnbr× l, and store an index tensor of size
Na×Nnbr×1, which records the index of the corresponding
neighboring vehicle; 2) use the RNN to encode Na local
maneuver features and get the resulting hidden tensor of size
Na × r. After the preparations, we can run a forward pass,

Fig. 7: Illustration of the dataflow of the system.

as shown in Fig. 7. The input tensor of the NIU is of size
Na×Nnbr×(2r+l), and it combines each pair of hidden states
and the corresponding connection feature. Inside the NIU, the
PIU resizes and embeds the input tensor to size Na×Nnbr×d,
and its second and third dimension will be further flattened.
After the output layers of the NIU, the tensor is of size
Na×n, and it will be concatenated with the original hidden
states and decoded, as shown in Fig. 6. Na can be regarded
as the batch size and will not affect the inference time.

IV. EXPERIMENTAL RESULTS

We apply our proposed method to a highway scenario to
validate the performance and illustrate the implementation
details for highway application.

A. Dataset

We use a real traffic dataset, NGSIM, which is publicly
available online [27]. We use data collected from highways
US-101 and I-80. The dataset consists of trajectories of real
traffic captured at 10 Hz, and also provides mild, moderate
and congested traffic conditions. We define the behavior
classes as lane keeping, lane change left and lane change
right. We extract 1, 669 LCs (and LKs) from the dataset
and a total of 509 LCs (and LKs) are used for testing. The
training and testing set are totally disjoint.



B. Baselines

We compare our method with the following methods:
• Vanilla LSTM (VLSTM). This is a simplified setting of our

model, where we remove the interaction network VBIN.
• Social LSTM (SLSTM). This is from the seminal work [9]

on interaction-aware trajectory prediction, and we change
the output to the likelihood of behavior classes.

• Convolutional social pooling LSTM (CLSTM). This is a
modification of SLSTM [2]. Both SLSTM and CLSTM use
the social pooling strategy. The difference is that CLSTM
uses convolutional layers for the pooled hidden states.

• Semantic-based intention and motion prediction (SIMP).
We use the implementation from [1] and only adopt the
intention prediction part.
CLSTM and SIMP are two state-of-the-art methods, orig-

inally verified on the NGSIM dataset. We adopt the publicly
available implementation [28] of CLSTM and SLSTM, and
train the model on our generated dataset. Since the source
code of [1] is not officially available, we implement it
according to the implementation details provided in [1].

C. Implementation Details

The output of the feature selection function fm(ze,v0:t ) is
shown in Tab. I. The length of the observation window is

TABLE I: Feature selection for local maneuver encoding.

Feature Description

xlat Lateral coordinate of the center of the vehicle
xlong longitudinal coordinate of the center of the vehicle
dlat

clc Lateral distance to the current lane center normalized by lane width
vlong longitudinal velocity in the lane reference frame
vlat Lateral velocity in the lane reference frame
θ Vehicle orientation with respect to the lane longitudinal direction

set to 2 s (20 frames). For the sequence of local maneuver
features to be fed to the RNN, we subtract the xlat, xlong

of the last frame of the sequence to remove the absolute
translation. The length of the prediction window is set to
4s (40 frames). The criterion for labeling LC is that in the
prediction window the target vehicle crosses the lane dividing
line. The labeling process is conducted in a sliding window
manner starting from 8 s before the LC. All the methods
output the likelihood of the three behavior classes, and the
prediction decision is made by taking the class with the
maximum likelihood. The structure of the RNN encoder is
the same as [18] with 128 hidden states. The loss function
is the negative log-likelihood (NLL) loss with three classes.
All the models are implemented using Pytorch [29].

The connection feature consists of six elements: relative
longitudinal and lateral distances, longitudinal and lateral
velocities of the target vehicle, and longitudinal and lateral
velocities of the neighboring vehicle. The detailed network
specifications are shown in Tab. II.

TABLE II: Network specifications of the VBIN.
PIU NIU Decoder

r l d fc0 I/O fc1 I/O fc2 I/O fc3 I/O n fc4 I/O fc5 I/O

48 6 64 102/64 512/400 400/400 400/48 48 96/48 48/3

D. Evaluation Metrics

Accuracy. Precision, recall and F1-score are the three repre-
sentative metrics quantifying the accuracy for classification
problem. In the case of LC prediction, we define two positive
classes (lane change left and right) and one negative class
(LK), similar to [1] and [21]. However, we argue that for
different times-to-lane-change (TTLCs), there is particular
emphasis on different errors. We define the the false neg-
atives (FNs) inside the duration of TTLCs less than 1.5 s
as critical FNs, since it is too close to the actual LC and
any mis-detection will be extremely dangerous. Note that
the criterion is more strict than that adopted by [8], where
the FN is tolerated as long as the vehicle hasn’t crossed the
dividing line. We define the false positives (FPs) inside the
duration of TTLCs larger than 5.5 s as critical FPs, since a
lane change generally takes 3.0 to 5.0 s [30] and a too early
LC alarm will cause disturbance.
Negative log-likelihood (NLL). Apart from the traditional
accuracy metrics, we adopt the NLL loss of multi-class
classification to measure the classification uncertainty. Un-
certainty constantly decreases as the TTLC approaches 0,
but different methods perform differently for uncertainty
reduction. Note that the evaluation of NLL loss is irrelevant
to the definition of positive classes.
Average prediction time. Prediction time represents the
average effective prediction horizon for LCs. Generally, the
prediction time is obtained by recording the time of the
first successful LC prediction. However, we consider a strict
strategy and only record the starting point of a series of con-
sistent LC predictions, where two consecutive LC predictions
should not contain a gap larger than three frames.

E. Analysis

Overall accuracy. In Tab. III, we report the precision,
recall and F1-score of all the methods. The calculation
of the recall is based on the critical FNs representing the
most unacceptable misclassifications. Note that we start the
evaluation from an early phase, namely, 8 s before the target
vehicle crosses the lane dividing line, which may introduce
more FPs. Only the frames which contain enough ground
truth observation and prediction are picked. There are a total
of 13, 338 frames of prediction.

According to Tab. III, the proposed VBIN has the highest
precision, recall and F1-score among all the baseline meth-
ods. Note that the precision of SIMP reported in Tab. 8 is
slightly lower than that in [1], since [1] does not include the

TABLE III: A comparison of different prediction methods. The
methods marked with † are interaction aware.

Method Precision Recall F1-score Ave. Predict Time (s)

VLSTM 0.802 0.920 0.857 1.999
SLSTM† [9] 0.890 0.900 0.895 2.355
CLSTM† [2] 0.885 0.932 0.908 2.294
SIMP† [1] 0.873 0.931 0.901 2.102
Our VBIN† 0.922 0.967 0.944 2.622
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(c) Our VBIN
Fig. 8: Illustration of the comparison on the NGSIM dataset. The vehicle marked in yellow is the prediction target. The vehicles filled
with cyan and red are the selected neighboring vehicles. The pair of each red vehicle and target vehicle may have potential interaction
according to the RSS safety model [31]. Note that we do not use any handcrafted models and the RSS is used to aid understanding of
the scenario. The behavior predictions are marked in arrows, and the transparency represents the magnitude of the likelihood.

FPs from 8 s to 4 s. Compared to CLSTM, our method
achieves a higher recall of 0.967. Our conjecture is that
CLSTM may underestimate the likelihood of LC due to the
social pooling strategy, especially when the neighboring lane
is congested, which may result in more FNs.

The critical FPs and FNs are also listed in Tab. IV. Our
proposed method has the least critical FNs, at 206, which
indicates that our method preserves the accuracy of the
near future. Also, our proposed method has the least critical
FPs, at 322, which means that the interaction information
is useful for rejecting false alarms. Compared to [8], which
uses trajectory prediction on an artificial potential field to
reject FPs, our proposed method is completely data driven
and free of hand tuning.

TABLE IV: Critical misclassifications over 13, 338 predictions.

Method VLSTM SLSTM† CLSTM† SIMP† Our VBIN†

Critical FNs (< 1.5s) 435 597 400 477 206
Critical FPs (> 5.5s) 564 349 387 562 322

Ave. prediction time. Another concern is how early the
LC can be recognized, which represents the length of the
prediction horizon. Considering that the actual LC duration
is about 3.0 s to 5.0 s, according to previous research [8, 30],
a clear LC maneuver roughly occurs at 1.5 to 2.5 s before
crossing the dividing line. The average prediction time of
VLSTM is 1.999 s, which is reasonable if the prediction
only relies on the maneuver history of the vehicle itself. The
interaction-aware models all improve the average prediction
time, which verifies the conjecture that interaction can help
to predict behaviors over an extended horizon. Among all
the interaction-aware models, our proposed method achieves
the largest average prediction time of 2.622 s, which means
that it is better at capturing behaviors in the distant future.
Accuracy with respect to TTLC. How prediction accuracy
changes with respect to time is also a focus of our interest.
As shown in Fig. 9, we measure the accuracy from two
different perspectives: NLL loss and prediction distribution.
The NLL loss generally represents the accuracy of the multi-
class classification, and our proposed method achieves the
lowest NLL loss for all different TTLCs. It can be observed
that, compared to VLSTM, significant NLL loss reduction
can be achieved, which confirms the usefulness of modeling
interaction.

We also illustrate the distribution of the three behavior
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Fig. 9: Illustration of the prediction accuracy w.r.t. the TTLC.

predictions at different TTLCs for lane change right (LCR)
cases. The fractions of the three kinds of predictions of
our method are stacked for each TTLC. We represent the
distribution of VLSTM and CLSTM through lines in Fig. 9.
It is shown that our method outputs the LCR prediction at
the earliest phase, while outputting the least lane change left
(LCL) predictions. The distribution also confirms that our
proposed method has a superior prediction time.
Social Pooling vs. VBIN. In Fig. 8a, we provide an example
of VLSTM showing the qualitative performance without
modeling interaction. In Fig. 8b and Fig. 8c, we find that both
CLSTM and our VBIN discover the LC intention earlier,
and at a TTLC of 2.5 s, both methods predict LC with
a likelihood of over 80 percent. However, at a TTLC of
3.6 s, CLSTM cannot capture the LC intention, despite LC
being likely, since the target vehicle has a higher velocity
than the vehicle in front. Interestingly, in this case, the
neighboring vehicle to the right of the target vehicle is
actually conducting a rightward LC and leaving more room
for the target vehicle. However, it seems that CLSTM fails to
capture this information and thinks the neighboring vehicle
to the right will block the target vehicle’s LC, which matches
our conjecture about the drawback of social pooling in Fig. 2.
The proposed VBIN can address this problem and output a
reasonable prediction.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a VBIN for vehicle behavior
prediction. The proposed method is capable of predicting
vehicle behaviors of an extended horizon by taking vehicle
interaction into account. The VBIN is designed for highly
dynamic on-road driving and has a novel interaction-aware
network structure. It is also scalable and end-to-end trainable.
We conduct extensive experiments and compare the proposed
method with four baseline methods, including two state-
of-the-art methods, showing significant improvements in
accuracy and uncertainty reduction.
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