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Dynamic Channel: A Planning Framework for Crowd Navigation

Chao Cao!, Peter Trautman? and Soshi Iba2

Abstract— Real-time navigation in dense human environ-
ments is a challenging problem in robotics. Most existing path
planners fail to account for the dynamics of pedestrians because
introducing time as an additional dimension in search space is
computationally prohibitive. Alternatively, most local motion
planners only address imminent collision avoidance and fail
to offer long-term optimality. In this work, we present an
approach, called Dynamic Channels, to solve this global to
local quandary. Our method combines the high-level topological
path planning with low-level motion planning into a complete
pipeline. By formulating the path planning problem as graph-
searching in the triangulation space, our planner is able to
explicitly reason about the obstacle dynamics and capture the
environmental change efficiently. We evaluate efficiency and
performance of our approach on public pedestrian datasets and
compare it to a state-of-the-art planning algorithm for dynamic
obstacle avoidance. Completeness proofs are provided in the
supplement at http://caochao.me/files/proof.pdf. An extended
version of the paper is available on arXiv.

I. INTRODUCTION

Autonomously navigating through crowded human envi-
ronments is a cornerstone functionality for many mobile
robot applications (e.g., service, safety, and logistic robotics).
However, crowd navigation requires safe operation of the
robot in close proximity to agile pedestrians: a competent
crowd planner needs to efficiently generate feasible, opti-
mal, and even socially compliant trajectories. Most existing
approaches focus on either global or local optimality. For
instance, sampling based motion planners often assume a
static environment because adding a time dimension expo-
nentially increases computation. Search-based, optimization-
based and geometry-based planning algorithms are subject
to the same computational shortcoming. Alternatively, local
planners attend to agent dynamics by seeking collision-free
paths over short time horizons but neglect global optimality.

We introduce dynamic channels, a novel crowd navigation
architecture combining global optimality and a heuristic for
efficiently managing agent dynamics. Our method abstracts
the environment using Delaunay Triangulation and then
projects obstacle dynamics onto the triangulation. A modified
A* algorithm then computes the optimal path. Empirically,
performance and efficiency are validated with thousands of
real world pedestrian datasets. Our approach outperforms
state of the art methods by a significant margin for task
completion while remaining real-time computable even for
large numbers of dynamic obstacles.
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Fig. 1: (a) A crowded crosswalk in Japan, among which the navigation of a
robot will be challenging without an efficient planner. (b) The environment
abstraction used in our framework. Pedestrians are shown as circles with
arrows indicating the moving direction and speed. The ”Dynamic Channel”
and a safe trajectory inside are shown by bold line segments and the red
curve with an arrow.

A. Local and Global Planning

Local planning seeks to optimize near-term objective
functions; classic approaches include the Dynamic Window
Approach [1], Inevitable Collision States [2], and Velocity
Obstacles [3]. Variants of Velocity Obstacles [4], [5], [6],
[7] solve the multi-agent system problem for reciprocal
collision avoidance by assuming that each agent adopts the
same navigation strategy (e.g., each agent passes to the
right). However, human behavior is probabilistic, and so
assuming fixed actions can lead to unsafe robot behaviors.
However, even with guaranteed collision-free local actions,
local planning is insufficient, since such trajectories may not
guarantee e.g. the shortest traveling distance.

Global planning searches for feasible paths connecting
initial and goal states of the robot. Most traditional sampling
based algorithms including Rapidly-exploring Random Tree
(RRT) [8] and Probabilistic roadmap methods (PRM) [9],
[10] assume the environment to be static when planning;
replanning is employed to account for dynamics. To reduce
unnecessary computation [11] proposed a dynamic RRT
variant by reusing branches from previous search trees.
In [12] a replanning scheme based on RRT* [13] dealt with
unknown dynamic obstacles blocking the robot’s path.

Many global planners decouple static and dynamic obsta-
cles. An intuitive strategy relies on a local reactive collision
avoidance system to deal with local disturbances. Sepa-
rating static and dynamic obstacles can also be achieved
by hierarchical planning and the combination of potential
fields: [14], [15] decouples high and low level planning
with a two level-search. Globally, a roadmap is built upon
static obstacles while locally a collision free trajectory is
obtained. In [16], a dynamic pedestrian potential field se-
lects the traversal and safety optimal trajectory. The same
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problem also exists in other planning methods. For Elas-
tic Band [17], Timed Elastic Band [18] and spline-based
planners [19], the initial guess determines path partition,
which is based on the static assumption. Ultimately, treating
static and dynamic obstacles separately has the advantage of
being efficient and probabilistically complete. However, sub-
optimal paths can result because obstacle dynamics affects
global optimality. An important class of planning methods
leverages computational geometry to gain efficiency; Voronoi
diagrams and Delaunay Triangulation have long been used
for environment abstraction. With Voronoi diagrams, the de-
composition of free space based on Voronoi cells efficiently
generates homotopically distinct paths [20], [21], [22], [23].
Delaunay Triangulation has also been used in graphics to
solve the virtual character navigation [24], [25]. These data
structures have important complexity properites in 2D planar
environments: compared to grid-based maps, computational
geometric approaches search a much smaller graph while
faithfully capturing topological properties like connectivity.
In [26] Triangulation A* (TA*) and Triangulation Reduction
A* (TRA¥*) is introduced for pathfinding in the triangulation
space. Similarly, [27] presents a path planning approach in
Constrained Delaunay Triangulation (CDT) to account for
static polygon obstacles. Finally [28] uses dynamic Delaunay
triangulation (DDT) to solve the problem navigation in the
absence of a pre-specified goal position.

However, these algorithms do not reason about obstacle
dynamics, and naively adding a time dimension results in
exponential computation. Our approach introduces a novel
approach to incorporate obstacle dynamics in the global plan-
ning step and extends the pathfinding algorithm to efficiently
analyze environmental evolution.

B. Human Aware Navigation

Human aware navigation [29] focuses on socially ac-
ceptable robot behaviors rather than explicitly solving the
collision avoidance problem. In [30] cooperative collision
avoidance is leveraged to develop a tractable interacting
Gaussian Process (IGP) model. A socially-inspired crowd
navigation approach is developed in [31] where the robot
follows pedestrians moving towards its goal. However, this
method might fail in situations where the major flow of
pedestrians is not in the robot’s goal direction. Other work
leverages learning to model and replicate socially compliant
behaviors for crowd navigation [32], [33], [34], [35], [36]

In this work, we do not explicitly address socially accept-
able navigation. However, our framework can be extended
to incorporate social norms. For example, in the graph
construction step (described below), the interaction between
people can be encoded in the graph is obtainable (one person
taking pictures for the other, a group of friends walking
together) so that edges between pedestrians can be denoted
as non-crossable for the robot. Moreover, the path generated
by our planner naturally captures some social norms. For
example, when passing a pedestrian, our planner will favor
passing from behind rather than in front of the pedestrian,
because the former leads to a shorter traveling distance.

II. METHODOLOGY

Let the crowd positions at time 7 be denoted as P, =
{pT | pI € R%i = 1,...,n;}, where n, is the number
of pedestrians. Let V, = {v7 | v] € R%i = 1,...,n4}
be pedestrian velocities at 7. Let the robot starting point be
s € R? and goal t € R?. We seek the collision free trajectory
that is optimal with respect to travel time and distance.

A. Delaunay Triangulation

Our first objective is to plan a path through the obstacles
‘P- at the topological level. This is achieved by Delaunay
triangulation on P, which produces the graph 7 (light gray
graph in Fig. p; are vertices). The dual graph 7.* (black
graph in Fig. has one vertex for each face of 7, and one
edge for face pairs separated by an edge in 7. If we define
homotopic equivalence as paths that can be continuously
deformed into each other without passing through vertices
p7, then R%-paths and 7.*-graphs are equivalent (Fig :

Theorem 2.1: Any path through P, in R? uniquely deter-
mines a path in 7*.

Theorem 2.2: A path on T* without repeating vertices
corresponds to one homotopy class of paths in R?

For brevity, we prove these theorems in a supplement. E]
Thus, instead of optimizing paths in R? we can equivalently
search the graph T*. This graph search is computationally
efficient (Section[[II-B). An important advantage of searching
T is that we can reason about pedestrian pair interactions,
instead of individually checking collisions. Consider a path
passing through a group of people as shown in Fig. [2a] and
the directional curve showing the robot path. By projecting
pedestrian velocities onto triangulation edges, triangulation
time evolution is achieved. In this manner, pedestrian dy-
namics are analyzed as a network.

B. Dynamic Channel

A path on 7* (Fig. is equivalent to a triangulated
simple polygon called a “channel” [24] (Fig. 2d). We extend
this concept to a “dynamic channel.” This dynamic channel
is precisely the time evolution of our triangulation.

Pedestrian dynamics cause the dynamic channel to deform
constantly. Of most concern is “gate” change (light gray
dashed lines in Fig. , the distance between pedestrian ¢
and 7 at time T:

DY(r) = |Ip;. = pL| (1)
where ||.|| denotes the Euclidean distance. Let Dipresn =
2(robs + Ssafe) be a threshold for the width of a gate
considered feasible for the robot to pass, where 7,45 is the
radius of a pedestrian expanded by the radius of the robot,

and Sy, . is the minimum safe distance between the robot
and pedestrians. Solving for

Dij (T) Z Dthresh (2)

we obtain the time intervals Tfeqsivie = [71,72) U -+ U
[Tm—1, Tm] when the gate is wide enough for the robot to
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Fig. 2: (a) A path from s to ¢ planned through the crowd. Pedestrians are shown as grey circles with arrows denoting velocities. (b) The path sequentially
passes through pairs of pedestrians shown as darker circles connected by dashed line segments. (c) The dual graph 7* of the triangulation of P. A path
connecting s and ¢ is shown in red. (d) A “channel” (bold line segments) and the corresponding homotopy class of paths (red curves) bounded within.

cross. Given the Estimated Time of Arrival (ETA) for the
robot to reach the gate 71 4 (detailed in the next subsection),
safe passage is guaranteed when Tpra € Tfeqsibie. This
condition must hold for all gates to guarantee safe passage.

We assume that pedestrian behaviors can be modeled
linearly. Thus the trajectory (starting from the current frame
7 = 0) of pedestrian 7 can be described by:

p(t) = pl + o't 3)

where po and v® are the current position and velocity. D% (1)
is then a quadratic function with respect to 7 and the graph of
D% (7) is a parabola opening upward as in Fig. [3b| Solving
for Equation [2| gives zero, one or two solutions. When there
is no solution, the minimum distance D)’ (7) between
pedestrians ¢ and j will never be too close for the robot
to cross. When there is only one solution, a critical moment
exists when the robot can be just safe enough to cross. When
there are two solutions, denoting ¢; and to with t; < to, it
is required that t g4 € ([—00,t1] U [t2, +00]) N[0, +o0] for
safe passage as shown in Fig.

C. Timed A* Search

A* algorithm has been used for searching for shortest
paths in the triangulation space [24], [26]. Care needs to be
taken for computing the g and & values. [27] proposes the
“target attractive principle” to determine the placements of
nodes when building the dual graph on constrained Delaunay
Triangulation. Here we adopt the rule-based method as in
[27] to determine the graph nodes. Note that in our work,
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Fig. 3: (a) A gate formed by pedestrians p; and p;. A path 7 is planned
through the gate. (b) The distance between two pedestrians changes with
time as a parabola. t1 and t2 show the moments when the gate is wide
enough (above the threshold Dyp.-cspn) for safe passage.

the constraints are introduced by non-crossable edges that
will lead to potential collision rather than static obstacles.
For compactness, the detailed discussion on node placement
is not given here.

Here, we extend the A* algorithm by incorporating robot
and pedestrian dynamics. Within the triangulation frame-
work, we focus on the interaction between connected pedes-
trian pairs. Thus the dynamics of the robot and pedestrians
can be studied by projecting them along the edges in the
triangulation. In particular, we compute the g and h-value
with a lookahead time period. While searching, the velocity
of a node representing a triangle can be determined by
interpolating the velocities of three endpoints, which gives
g(7),h(7). We then compute T4 to determine g(7gTa4)
and h(7g74). Similar to the estimate of g value in a regular
A* algorithm, we track path history while searching. For
each node, the current path to the node is time parameter-
ized by taking into account the kinematics and dynamics
of the robot and curvature of the path. Note that due to
the approximated node placements at searching time as in
[27] and the linear model assumption, Tgr4 can only be
approximated accurately in a finite time horizon. Due to the
time-variant g(7) and h(7) value, our planner will seek a
candidate shortest path. For instance, when passing a walking
pedestrian, our planner will passing behind rather than in
front of, even though in front of is currently a shorter path.

D. Path Optimization

The output from our Timed A* algorithm is a path on 7*
consisting of a series of triangles that form a channel. We
find the shortest path in the channel that ensures sufficient
clearance. Funnel algorithm [37], [38], [39] can be used
for computing a shortest path within a simple triangulated
polygon connecting the start and goal points. To account for
non-zero radius obstacles, [26] proposed a modified funnel
algorithm by inserting conceptual circles at each vertex of
the channel. The resulting path is composed of alternating
straight-line segments and arcs. In our work, we further
extend this method to account for the pedestrian dynamics.
Given a pedestrian p], we project the velocity v] onto the
vector e;; = p; — p;, Where p; is the other end of the edge
in the channel. If the projection v, > 0, the path will pass by
p; in the front, potentially blocking p]’s moving direction.



Fig. 4: Within a channel the shortest path is determined by our funnel
algorithm. Clearance radius is determined by whether the pedestrian is
“threatening” or “enlarging” the channel. Larger radius is assigned for the
former (p;) while smaller radius is assigned to the latter (p;, pg).

In this case, we assign a circle with the radius r = k||v}||
around p; to create clearance, where k is a tunable parameter.
Similarly, if v, < 0, the path will pass from behind. Figure
provides an illustration, where pedestrians p;, p; and py, are
assigned different sized circles based on their velocities.
Most of the collision avoidance effort described above
is implicitly done by enforcing timely traversal. However,
when obstacles move faster than the robot simply following
the path cannot guarantee collision-free navigation. In such
cases, a low-level robot-specific controller is needed to
perform maneuvers for the robot to avoid collision. In a
Delaunay Triangulation, the circumcircle of any triangle will
not include other points inside. Thanks to this property, a
collision-free circular area can be identified in the robot’s
vicinity, which can be used for local maneuvers when
needed. Furthermore, if no paths are found by the Timed
A* algorithm, other behavioral strategies can be employed to
utilizes the local collision-free area. For example, the robot
can follow the people walking in the goal direction while
maintaining a proper clearance to others as in [31].

III. EXPERIMENTAL EVALUATION

We demonstrate the advantage of our planner by testing on a
large number of navigation tasks in simulated environments
based on public human-trajectory datasets. We compare suc-
cess rate, efficiency of traversal, and time complexity of our
algorithm against two other planning methods. Finally, we
empirically study the effect of observability on our algorithm.

A. Experiment Settings

1) Datasets: For experiments, we implemented our plan-
ning framework to control a car-like robot navigating in
simulated environments. In particular, we use the pure-
pursuit algorithm [40] to track a path output from our
planner. For benchmarking, in our simulation we replay the
human-trajectories from two public datasets: ETH [41] and
UCY [42]. There are five subsets in total recorded in dif-
ferent scenarios, denoted as eth_hotel, eth_univ, ucy_univ,
ucy_zara0l and ucy_zara02.

For each dataset, the trajectory data are first interpolated
and then re-projected back to the world coordinate using

(b)

Fig. 5: Experiment Settings. (a) shows a frame from the ETH dataset. (b)
shows the pedestrian positions extracted from the frame. Red circles with
arrows show the starting positions of the robot in the experiments.

the homography matrices provided. We define a rectangular
region as the workspace which is bounded by extreme values
of the pedestrian positions of each dataset. For the navigation
task, the robot starts at four mid-points of the workspace
boundaries and moves to the antipodal goal position as shown
in fig [ In the experiments, only pedestrians are considered
to be obstacles and all free space is assumed traversable for
the robot. Fig. [5b] shows an example testing configuration,
where pedestrians are shown as yellow circles with black
arrows indicating velocity. The starting positions are shown
as red circles with arrows. The velocities of pedestrians
are approximated by the position differences between two
consecutive frames divided by the sampling period.

Trials begin at a sequence of starting times at intervals of
3s, which results in 1520, 1148, 184, 148, and 120 trials for
each dataset respectively. All experiments were run on a 2.6
GHz CPU/15.5 GB memory computer.

2) Generalized Velocity Obstacle Planner: For compar-
ison, we implemented a planning algorithm based on the
Generalized Velocity Obstacle (GVO, [43]) to control the
same car-like robot. The algorithm first randomly samples
a control input u from a feasible set. Then a trajectory
is simulated within a time horizon for the input, which
takes into account the robot dynamics. The trajectory is then
checked for collision with GVO prediction on each moving
agent. Finally, among all collision-free control inputs, the one
closest to the preferred control u* is chosen. As suggested in
the paper, we choose the preferred control to be the one driv-
ing the robot directly to the goal as if there is no obstacles.
However, we do not explicitly solve the optimization problem
for ¢* that results in minimum distance between the robot
trajectory and obstacles. Instead, we discretize the trajectory
and check collision at 10Hz. Only in this manner can we
run the algorithm efficiently enough for the benchmarking.
The other parameters used were time_horizon = 3.5s,
wheelbase = 1m and sampling_per_timestep = 40.

3) "Wait-and-go” Planner: We designed the simplest
possible crowd navigation strategy, “wait-and-go”, as a base-
line: the robot drives in a straight-line towards the goal.
When the robot comes too close to pedestrians or there is a



0.8 mmm Ours
_ mm GVO
206 = Baseline
@
g
9 0.4
a
(]
5
»n 0.2
eth_hoteleth_univucy univucy z01 ucy z02
(a) Success Rate
250 HN Ours
% 200 == GVO _
@ I Baseline
E
E 150
& 100
g
© 50
'_
. P

eth_HoteI eth_'uni\ar ucy_'uni\-r ucy_lzﬁl ucy_'202
(b) Efficiency

Fig. 6: Experiment Results. Comparison of: (a) the success rate of navigation
tasks in each dataset. (b) The average traveling time of the robot in each
dataset. Vertical line segments show the variance by a standard deviation.

potential collision determined by Velocity Obstacle, the robot
stops (wait) and resumes moving (go) when possible.

B. Comparing success rate, efficiency and time complexity

For each trial, the first frame is concatenated to the last one
to form a cycle. We run each trial until the robot reaches the
goal position or all the frames have run out. If the distance
between the robot and any pedestrian is less than 1m, a
collision is reported and the trial is failed. We also calculated
running time to compare efficiency of the three approaches.
Note that when a trial fails, the timer will not stop until the
trial is finished. The robot has a speed limit of 1.2m /s which
is slightly slower than the average human walking speed.

1) Success Rate: From the result shown in Fig. [6a] our
planner has the highest success rates in all five datasets,
while GVO ranks second and the baseline planner performs
last. For the challenging dataset ucy_univ, where the crowd
density reaches 30 pedestrians per frame, our planner signif-
icantly outperforms the baselines. Anecdotally, most of the
failure cases are due to sudden pedestrian appearance and
nonlinear pedestrian movement.

2) Traveling Efficiency: For traversal efficiency, as shown
in Fig. [6b] our planner is more efficient than “wait-and-go,”
while GVO exhibits much longer times with much larger
variance. This is because GVO tends to passively dodge
approaching pedestrians (resulting more evasive strategies),
while our planner actively looks for open spaces and a long-
term shortest route.
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Fig. 7: Experiment Results. Comparison of: (a) the average planning time
of a frame for each dataset. (b) The average number of pedestrians in each
dataset. Vertical line segments show the variance by a standard deviation.

3) Computational Complexity: For computational com-
plexity ([7a), both our approach and GVO sees an increase in
computation as more pedestrians enter the scene. However,
our method is significantly more time efficient than GVO.

Qualitatively, Fig. [§] shows a sequence of the robot navi-
gating in the eth_hotel dataset. At the beginning, the robot
plans to pass by the pedestrians from the right. Between
t = 7.25 and ¢ = 11.25, there suddenly appears a group of
people on the right side. Our planner is able to adapt to this
and steer the robot to the left for a safe-pass.

C. Observability Effects

We also study observability effects by testing our planner
on a larger simulated scene with limited sensor ranges. The
simulated pedestrians are generated as follows. For every
5s, 2 pedestrians are spawned from the two sides of the
workspace. Each pedestrian is assigned with a random goal
position at the other side and a random linear velocity
towards the goal. While traveling to the goal the pedestrians
will randomly change their goal and speeds every 3s. The
observation range of the robot is tested from 1m to 30m,
with the interval being 1m when under 10m and 5m when
above 10m. We also run trials without sensor range limit
for comparison. Beyond the sensing range, only the goal
position is known, so the robot has no information about
pedestrians outside the field of view. In each trial, the robot
navigates from the lower right corner to the upper left corner
or reversely. For each sensing range, 100 trials are performed.
Fig. 0] shows an example scene when the robot navigates in
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Fig. 8: The path found by our planner in the eth_univ dataset. Green areas
show dynamic channel. Cyan line shows trajectory. Blue line segments show
valid gates to cross; red ones show unsafe gates. The robot (red filled circle)
attempts to navigate from bottom to top. Four static pedestrians inhabit the
four corners of the workspace, allowing robot to travel to the crowd’s side.

the synthetic crowd with the sensing range limited to 30m.

Results are presented in Fig. In Fig. [10a) and Fig.
[TOb] we observe that the sensor range does not make a big
difference for the success rate and traveling time beyond 3m.
Medium ranges (3 to 9m) are only slightly better than long
ranges (10 to without limit). This is because the longer the
channel, the less accurate the 714 will be, and thus the
guarantee for safe-passage for later portions of the channel
are less likely to be valid. A practical solution to this problem
is to set a time horizon for the planner. Whenever the
estimated Tgr4 is longer than the horizon, we release the
safety check. For the time complexity in Fig. we see
that the time needed for a planning cycle increases rapidly
with the increasing number of pedestrians per frame as in
Fig. [[0d] However, our algorithm is still efficient in such
crowded environments. It can be seen from the figure that
for pedestrian number over 50, our method re-plans at 50Hz
and with less than 30 pedestrians our method re-plans at
100Hz.

IV. CONCLUSIONS AND FUTURE WORK

We introduced a geometry-based planning framework for
crowd navigation. Our primary contribution is efficient global
planning while accounting for obstacle dynamics; a proof
of completeness and optimality is provided. Empirically,

20

Fig. 9: Path found by our planner in a synthetic dataset with a limited sensor
range, denoted by the red circle. Pedestrians outside the sensor range are
not included in the triangulation thus not observed by the planner.
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Fig. 10: Experiment Results on the effect of observability. Comparison
of: (a) average navigation success rates, (b) average traveling time, (c)
average planning time and (d) average number of pedestrians seen by the
planner with different sensing ranges. Vertical line segments show standard
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dynamic channels improved success rate by up to a factor of
six in the most crowded environments, task completion by
up to a factor of three, and decreased computational burden
by a factor of two. However, our framework has limitations.
First, the method assumes perfect measurements. Second, we
assume linear pedestrian motion models; even though our
method was evaluated on real world pedestrian datasets with
extended periods of nonlinear motion, further experiments
are needed to validate robustness in interactive crowds.
Future work will integrate dynamic channels with low-level
planners to increase this robustness. Additionally, we will
extend our architecture for multi-robot navigation, crowd
simulation, and the handling of both dynamic and static
obstacles with arbitrary shapes and movement uncertainty.



V. ON THE COMPLETENESS OF PATHFINDING IN
TRIANGULATION

We present a detailed discussion on the completeness of
pathfinding in triangulation. Let the crowd positions at time
7 be denoted as P, = {p] | pT € R%,i =1,...,n;}, where
n. is the number of pedestrians, the robot starting point be
s € R2, and the robot ending point be t € R? (¢ # s).
The task is to plan homotopically distinct paths through the
crowd. Without loss of generality, we assume that s and ¢ are
outside of the convex hull of P,. We provide the following
important definitions.

Definition 1 (Path): A path is a continuous mapping f :
[0,1] — R? with £f(0) = s and (1) = ¢.

Definition 2 (Path homotopy with respect to P.): Two
paths f; and f; are path homotopic with respect to P, if
one can be continuously deformed into the other without
intersecting any points in P,.

Lemma 5.1: Given a partition of a finite P, = (P}, P.),
there exists a curve parameterized by f(x,y) = 0 such that
f(xp,yp) > 0 for all (z,,y,) € P and f(z4,y,) < 0 for
all (zq,9q) € P-.

Proof: Let ||Pf|| = M and ||P-|| = N. Then
the conditions f(xp,y,) > 0 for all (z,,y,) € P} and
f(zq,yq) <0 for all (zq,y,) € Py give M + N constraints
in total. A polynomial with degree larger than M + N
exists that satisfies these conditions since this forms an
undetermined linear system. [ ]

Fig. 11: Illustration of a partition of Pr by f(z,y) = 0.

Proposition 5.2: The homotopy class of a path f with
respect to P, uniquely determines a partition of P, and vice
versa. Namely, (a) if two paths are homotopic, then they give
the same partition of P,, and (b) if two paths give the same
partition of P, then they are homotopic.

Proof: Proof of (a): Prove by contradiction. Recall
that two paths f; and f; with the same starting and ending
points are homotopic if and only if one can be continuously
deformed into the other without intersecting any points from
P-. Let homotopic paths f; and f be parameterized by
curves f1(z,y) = 0 and fo(x,y) = 0, which partition
P, into (BT, B~) and (C*,C ™) respectively. Assume that
Bt # C*t and B~ # C~, there exists a point p = (2, yp)
such that p € B* and p ¢ C™T, which implies p € BT
and p € C~. Therefore, fi(xp,yp) > 0 and fo(zp,yp) < 0.
Since f1 and f, are homotopic, let H be a continuous map
from f; to fo H :R? x [0,1] — R, such that

H(l‘,y,O) - fl(xay)

H(z,y,1) = fa(z,y)
for all z, y in the domain of f; and f,. Then at x = z,, and
Y = Yp,

4)

H(xp,yp,0) = f1(zp,yp) >0
H(xpaypa 1) = fQ(Ivap) <0

Because H is continuous, there exists some T € [0, 1], such
that H(zp,yp,T) = 0. Thus contradiction occurs.

&)

Proof of (b): We will prove the contrapositive. Consider
two homotopically distinct paths f; and f;, one cannot
continuously deform into the other without intersecting P-.
Then for any continuous map H from f; to f,, there exists
a point p = (zp,yp) € Pr and T € [0, 1] such that

H(x;my;mT) =0 6)
and
H(xp,yp,O)H(a:p,yp,l) <0 @)

Otherwise, f; can continuously deform to fo without in-
tersecting p. Therefore, fi(zp,yp)fo(@p,yp) < 0. Let
fi(z,y) = 0 and fo(z,y) = O partition P, into (B*, B™)
and (Ct, C'™) respectively, then p cannot be both in B+ and
C™ (or B~ and C™). Thus the partition of P, by f; and f5
is different. [ ]

Definition 3 (Triangulation T of P;): A triangulated
graph 7 = (V, E), where V = P, and E gives a maximal
set of non-crossing edges between points of P,

Fig. shows an example of the triangulation 7 = (V, E)
of P,, where V and E are shown as grey filled circles and
line segments, respectively.

Definition 4 (A cut/cut-set of T): Acutof T = (V, E) is
a partition of V' into two disjoint subsets. A cut-set is the set
of edges that have one endpoint in each subset.

Fig. [I2b] gives an example of cut of 7. Vertices of 7 are
partitioned into two disjoint subsets distinguished by red and
blue circles. Edges in the cut-set are shown by the dashed
line segments.

a b

Proposition 5.3.(' )A cut of T uniquel; éetermines a homo-
topy class of a path through P..

Proof: Let a cut of T partition P, into two disjoint
subsets A and B. Let P = A and P; = B, according to
Lemma we can find a curve parameterized by f(z,y) =
0 that gives the partition P, = (P;, P ). Because of
proposition [5.2] the partition is equivalent to a homotopy
class of paths. Therefore, a cut of 7 uniquely determines a
homotopy class. u

Definition 5 (Face of T): A face of T is any region
bounded by edges, as illustrated in Fig. [124]

Definition 6 (Dual graph T* on T): The dual graph
T* = (V*, E*) has a vertex for each face of T and an edge
connecting two vertices if the faces in 7 are adjacent. Note
that there is a vertex v, representing the outer face of the
convex hull of P,.

Fig. gives an example of a dual graph 7* on 7, where
V* and E* are shown in red circles and line segments. The
blue circle shows the v,,¢. Note s and ¢ are in the outer face
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Fig. 12: (a) Dual graph in red. (b) A loopy walk through 7*. (c) A channel
(interior of blue lines).

represented by v, since they are outside of the convex hull
of P-.

Definition 7 (A walk w on T*): Given T* = (V* E*), a
walk w on an 7* is a finite alternating sequence of vertices
and edges.

Definition 8 (s-t cycle on T*): An s-t cycle on T* is a
walk w on T* with the starting and ending vertex v,y
representing the outer face. Note that there is no repeated
vertices on the walk except for the starting and ending vertex.

Fig.[12b] gives an example of s-¢t on 7* starting and ending
at Voyt-

Definition 9 (Channel): A channel is a series of triangles
uniquely determined by a loopless walk on 7*.

Fig. gives an example of a channel determined by a
walk on 7*. Note that the starting and ending triangles are
both represented by vy.

Proposition 5.4: An s-t cycle T* uniquely determines a
homotopy class of a path through P..

Proof: Because of the duality, a cycle in 7* corre-
sponds to a cut in 7 and vice versa. According to Proposition
B3l an s-t cycle on 7* uniquely determines a homotopy
class of paths through P, . [ |

Theorem 5.5: A channel on 7 uniquely determines a
homotopy class of a path through P,.

Proof: By Definition 9] and Proposition [5.4] [

Theorem 5.6: Every path through P, uniquely determines
a walk on T*

Proof: Let f : [0,1] — R? be a path intersecting the
edges of T at intersection points {ig,%1,...,%, . Let I, =
{43,941, --,%i+m—1} be m consecutive intersecting points
with the same edge e; (see Fig.|13a). Given ||I.,|| = m, I,
can be reduced to I/ , where ||I/ || = m mod 2 without
changing the homotopy class of f. Namely, if m is odd,
then I, can be reduced to I} = {i;y;},j € [0,m — 1]
and if m is even, I, can be reduced to I/, = (). This is
because that for any two consecutive intersection points i
and 4;4; with the same edge, the line segment e;, iy
and path segment fiiﬂl—n‘j forms a loop that contains no
vertices from P, inside, otherwise intersections with other
edges will occur between i; and i;4; because vertices are
all connected. Therefore, a path f with the set of intersection
points given by I¢ is homotopically equivalent to f’ with
Iy = Ir — {ij,ij41}. Thus the reduction of every I,
described above is legitimate. An example is illustrated by
Fig. [[3] In Fig. [T3a when m is even, the path is equivalent
to never intersecting with edge e,. In Fig. [[3b} when m is
odd, the path is equivalent to only intersecting with edge e;

once.

As shown above, a path f can be reduced to f such that
every two consecutive intersections of f’ are with distinct
edges of 7. For each intersection points i; € If, an
edge in 7* can be uniquely determined. For every two
consecutive intersection points %;,7;11 € Ig, the triangle
that both edges belong to (a vertex in 7*) can be uniquely
determined. Therefore, consecutive edges of 7* given by I¢
are connected with each other, which forms unique a walk
on T*. [ |

(a) m is even.

(b) m is odd.
Fig. 13: Illustration for Theorem
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