Abstract:
This paper aims to develop an optimal controller that can automatically provide personalized control of robotic knee prosthesis in order to best support gait of individua...Show MoreMetadata
Abstract:
This paper aims to develop an optimal controller that can automatically provide personalized control of robotic knee prosthesis in order to best support gait of individual prosthesis wearers. We introduced a new reinforcement learning (RL) controller for this purpose based on the promising ability of RL controllers to solve optimal control problems through interactions with the environment without requiring an explicit system model. However, collecting data from a human-prosthesis system is expensive and thus the design of a RL controller has to take into account data and time efficiency. We therefore propose an offline policy iteration based reinforcement learning approach. Our solution is built on the finite state machine (FSM) impedance control framework, which is the most used prosthesis control method in commercial and prototypic robotic prosthesis. Under such a framework, we designed an approximate policy iteration algorithm to devise impedance parameter update rules for 12 prosthesis control parameters in order to meet individual users' needs. The goal of the reinforcement learning-based control was to reproduce near-normal knee kinematics during gait. We tested the RL controller obtained from offline learning in real time experiment involving the same able-bodied human subject wearing a robotic lower limb prosthesis. Our results showed that the RL control resulted in good convergent behavior in kinematic states, and the offline learning control policy successfully adjusted the prosthesis control parameters to produce near-normal knee kinematics in 10 updates of the impedance control parameters.
Date of Conference: 20-24 May 2019
Date Added to IEEE Xplore: 12 August 2019
ISBN Information: