
Real-Time Planning with Multi-Fidelity Models for Agile Flights in
Unknown Environments

Jesus Tordesillas1, Brett T. Lopez1, John Carter2, John Ware2 and Jonathan P. How1

Abstract— Autonomous navigation through unknown envi-
ronments is a challenging task that entails real-time localization,
perception, planning, and control. UAVs with this capability
have begun to emerge in the literature with advances in
lightweight sensing and computing. Although the planning
methodologies vary from platform to platform, many algo-
rithms adopt a hierarchical planning architecture where a
slow, low-fidelity global planner guides a fast, high-fidelity local
planner. However, in unknown environments, this approach can
lead to erratic or unstable behavior due to the interaction
between the global planner, whose solution is changing con-
stantly, and the local planner; a consequence of not capturing
higher-order dynamics in the global plan. This work proposes a
planning framework in which multi-fidelity models are used to
reduce the discrepancy between the local and global planner.
Our approach uses high-, medium-, and low-fidelity models
to compose a path that captures higher-order dynamics while
remaining computationally tractable. In addition, we address
the interaction between a fast planner and a slower mapper
by considering the sensor data not yet fused into the map
during the collision check. This novel mapping and planning
framework for agile flights is validated in simulation and
hardware experiments, showing replanning times of 5-40 ms
in cluttered environments.

I. INTRODUCTION

UAV autonomous navigation in unknown environments
has received special interest in the last few years because of
its unlimited applications, ranging from aerial surveying and
inspection to search and rescue. However, these applications
are often reduced to low-speed flights due to the current
limitations and low rates of the state-of-the-art mappers and
planners. The inherent non-convexity of the path planning
optimization problem, together with the high mapping and
planning rate needed for agile flights make this problem espe-
cially hard. This work presents a novel framework to perform
high-rate mapping and planning in unknown environments
suitable for agile maneuvers, addressing the fundamental
problem between the interaction of a global planner and a
local planner.

Computational tractability of the planning problem leads
to the use of a low-fidelity global planner that computes a
cost-to-go (CTG) needed by the high-fidelity local planner.
However, the fact that the global planner does not account
for the dynamics results in erratic behaviors when the world
model is changing rapidly. There is therefore a need of an
accurate CTG calculation that captures both the global envi-
ronment and the dynamic feasibility, maintaining relatively

1J. Tordesillas, B. Lopez, J. How are with the Aerospace Controls Lab-
oratory, MIT, 77 Massachusetts Ave., Cambridge, MA, USA {jtorde,
btlopez, jhow}@mit.edu
2 J. Carter and J. Ware are with the MIT Robust Robotics Group.
{jakeware, jcarter}@csail.mit.edu

Fig. 1: Global optimum and our method. When the map is com-
pletely known, the optimal trajectory computed using the approach
of [1] is shown in blue (). The red trajectory () is the solution
found by our method, where the world is not known and it is being
discovered as the UAV flies forward. The grid is 1m ×1m, and the
sensing range is 10 m.

low computation times at the same time.
Moreover, the choice of the representation of the envi-

ronment and the size of the “global” map (larger scale than
the sensor FOV and the local representation, but typically
does not contain all information observed to reduce effort)
have a significant impact on the computational cost, but for
most systems updates of these models cannot be done at the
sensor frame rates (∼30 Hz) and updates are typically slower
than the re-plan rate. Thus a second design challenge is
how to combine the global knowledge (available at a slower
rate) with the high-rate local information in the planner
representation of the environment. Finally, the state-of-the-art
mappers and planners run onboard at ∼5 Hz, so the the third
key challenge is how to optimize the planning and mapping
algorithms to achieve higher rates, suitable for aggressive
flights.

This work addresses these challenges with the following
contributions:

• A novel formulation of the planning problem that takes
into account the dynamics of the vehicle in the cost-
to-go calculation to solve the negative interaction that
usually occurs between the global and local planners
when operating in unknown environments.

• A lightweight fused-based mapping framework using a
sliding map to reduce the estimation error influence that
runs onboard fusing a depth image in 50 ms.

• An integration of a high-rate planner with a slower-rate
mapper, with a collision check algorithm that accounts
for both the most recent fused information and the

ar
X

iv
:1

81
0.

01
03

5v
2

 [
cs

.R
O

]
 1

5
Ju

n
20

19

available sensed data not included in that map.
• Simulation and hardware experiments showing agile

flights in completely unknown cluttered environments,
achieving replanning times of 5-40 ms.

II. RELATED WORK

Different methods have been proposed in the literature for
planning, mapping, and the integration of this two.

For planning, most of the current state-of-the-art methods
exploit the differential flatness of the quadrotors, and solve
the planning problem minimizing the squared norm of a
derivative of the position [2], [3] to find a dynamically
feasible smooth trajectory [4]. On the one hand, there are
approaches where the obstacle constraints, and sometimes
also input constraints, are checked after solving the optimiza-
tion problem: Some of them use stitched polynomial trajec-
tories that pass through several waypoints obtained running
RRT-based methods [2], [4], [5]. Others use Pontryagin’s
Minimum Principle to find closed-form solutions [6]. These
closed-form solutions are also used to search over the state
space [7], [1]. Alternatively, there are works that use the cost
function to penalize the distance to the obstacles [8], [9],
requiring usually computationally expensive distance fields
representations. Finally, there are also approaches that add
the obstacle constraints in the optimization problem, like
Mixed-Integer Programming (MIP) [10], convex decompo-
sitions [11], [12], [13] and Successive Convexification [14],
[15], [16].

Most of the approaches described above either assume
that the global map is known, and the optimization is done
using the global map. Others assume that there is a global
planner (RRT or exploration based planners) that gives the
waypoints to the local planner. In agile flights, this leads to
oscillatory behaviors, since the world is being discovered and
the solution of the global planner changes constantly.

Moreover, two main categories can be highlighted in the
mapping methods proposed in the literature: memory-less
and fused-based methods. The first category includes the
approaches that rely only on instantaneous sensing data,
using only the last measurement, or weighting the data [17],
[18]. These approaches are in general unable to reason about
obstacles observed in the past [19], [20]. The second category
is the fusion-based approach, in which the sensing data are
fused into a map, usually in the form of an occupancy grid or
distance fields [21], [22]. Two drawbacks of these approaches
are the influence of the estimation error, and the fusion time
(which means that the planner usually uses an out-of-date
fused map).

Finally, several approaches have been proposed for the
integration between the planner and the mapper: reactive
and map-based planners. Reactive planners often use a
memory-less representation of the environment, and closed-
form primitives are usually chosen for planning [19] and
[20]. These approaches often fail in complex cluttered sce-
narios. On the other hand, map-based planners usually use
occupancy grids or distance fields to represent the envi-
ronment. These planners either plan all the trajectory at
once or implement a Receding Horizon Planning Framework,

optimizing trajectories locally and based on a global planner.
Moreover, when unknown space is also taken into consider-
ation, several approaches are possible: [23] and [24] used
optimistic planners (considering unknown space as free),
while in [8] and [9], an optimistic global planner is used
combined with a conservative local planner.

III. PROBLEM FORMULATION

A. Planning

Computing a dynamically feasible trajectory from the start
to the goal is typically intractable, which is the standard
argument for the distinction between the global and local
planners. The global planner gives the local planner a notion
of cost-to-go (CTG) or traversability in certain directions;
while the local planner deviates around the nearby obstacles
and chooses the terminal point accordingly. Key to this CTG
calculation is the trade-off between accuracy and computa-
tion time. Issues include the sophistication of the dynamics
used in the calculation and the number of points at which
the CTG is computed.

In our proposed framework, Jump Point Search (JPS) is
used as a global planner to find the shortest path from the
current position to the goal. JPS was chosen instead of A*
because it runs an order of magnitude faster, while still
guaranteeing completeness and optimality [25], [12]. The
only assumption of JPS is a uniform grid, which holds in
our case. JPS is only done for position (not velocity or
acceleration) to reduce the computational burden.

Our local planner monitors the JPS solution for drastic
changes between each replan. If a large change is detected,
a new path, composed of a high, medium, and low fidelity
model (where the model order is reduced farther away from
the vehicle) is created for the current and last JPS solution.
This procedure is able to capture a subset of the dynamics
while maintaining computational tractability. The resulting
multi-fidelity paths are compared and the path with lowest
cost is selected for execution. This hierarchical trajectory
consists of a jerk-controlled part, a velocity-controlled part,
and a geometric part.

The jerk-controlled primitive is the part of the trajectory
nearest to the current position, and it is the one that will
be actually executed. The quadrotor is modeled using triple
integrator dynamics with state xT =

[
xT ẋT ẍT

]
=[

xT vT aT
]

and control input u =
...
x = j (where x, v, a,

and j are the vehicle’s position, velocity, acceleration, and
jerk, respectively), and the following convex optimization
problem is solved using CVXGEN [26] to find this trajectory:

min
u0:N−1

N−1∑
i=0

‖ui‖2 + (xN − xf)
TQ(xN − xf) (1)

subject to x0 = xinit

xk+1 =M1xk +M2uk ∀k = 0 : N − 1

‖vk‖∞ ≤ vmax ∀k = 1 : N

‖ak‖∞ ≤ amax ∀k = 1 : N

‖uk‖∞ ≤ jmax ∀k = 0 : N − 1.

Fig. 2: Sliding map and goal projection. The sliding map M has
occupied space O, unknown space Umap and free space F . Total
unknown space is U = Umap ∪ Uout map. Q is the projection into
the map of the terminal goal Gterm in the direction of

−−−−−→
AGterm.

The closest free or unknown frontier point to Q (G in the figure)
is selected as the goal.

In this problem, the number of discretization steps N is fixed.
The time step dt (embedded in M1 and M2) is computed as

dt = max{Tvx , Tvy , Tvz , Tax , Tay , Taz , Tjx , Tjy , Tjz}/N

where Tvi , Tai
and Tji are the solution for each axis i =

{x, y, z} of the constant-velocity, constant-acceleration and
constant-jerk motion equations applying vmax, amax and
jmax respectively. This dt is a tight lower bound that is
increased in each iteration until the problem converges.

The second key part of the trajectory is a velocity-
controlled primitive. It is a trade-off between the sophisti-
cation of the dynamic model (lower order than jerk input
model), but sufficiently accurate to capture the UAV CTG
(more accurate than the distance-based cost). Moreover, it
ensures that the computation times are maintained in the
order of 300 µs, four times faster than the ones required
when the input is higher. The final part of the trajectory is
the part of the JPS solution that goes from the end of the
velocity-controlled primitive to the goal. This provides an
indication of how to avoid traps and avoid obstacles, but there
is little attempt to capture to vehicle dynamics at that distance
away – that is done when the receding horizon controller gets
closer.

B. Mapping

A sliding map, which moves with the UAV, is used to
represent the world. This is a compromise between storing
the whole world and relying only on local maps. It also tries
to minimize the accumulated estimation error. This map M
contains free space F , (known) obstacles O and unknown
space Umap (see Fig. 2). In this way,

R3 = O ∪ F ∪ Umap ∪ UOut map =M∪UOut map

Using this map, the collision check for each of the three
primitives presented above is done as follows: the jerk-
controlled trajectory is considered collision-free if it does not
intersect O ∪ U . The velocity-controlled primitive is forced
to pass through the waypoints of the JPS solution. Finally,
the JPS path is guaranteed not to hit O. In this way, and

Fig. 3: Illustration of the Alg. 1. The radii ra and rb define the
spherical surfaces Sa and Sb. JPS is used to compute the paths
JPS1 and JPS2. The UAV chooses the jerk-controlled primitive
Primji that has lowest cost, considering the cost of that primitive,
the velocity-controlled primitive Primvi and the distance from Ci

to G following JPSi. Unknown space U is shown in blue. Note
that the figure is in 2D for visualization purposes, but the planning
is in 3D.

Fig. 4: Iteration k in the Alg. 1. JPS2 is the modified version of
JPS{k−1}, that avoids the new obstacles detected. The algorithm
chooses the jerk-controlled primitive Primji that has the lowest
associated cost-to-go Ji. The terms in green are only computed if
∠B′

1AB′
{k−1} is greater than α0.

similar to [9], JPS is an optimistic global planner, while the
local planner is conservative.

IV. ALGORITHM

Let us introduce some notation first (see also Fig. 3):
Let A be the state taken (in the previous planned tra-
jectory) some steps ahead of the current position of the
UAV. Let Sa and Sb be two concentric spheres with center
in A, and with radius ra and rb respectively. JPS will
denote the shortest piece-wise linear path found by running
JPS between A and the goal G. For this path, define
the tuples JPSwp := (q1, q2, . . . , qn) and JPSpath :=
(q1q2, . . . , qn−1qn), where JPSwp has the n waypoints
qi ∈ R3 of the solution of JPS (being q1 the start and qn

the goal) and JPSpath contains the segments between these
waypoints.

Define the point B′ := ∩f (Sa, JPSpath), where
∩f (S, JPSpath) is a function that computes the first in-
tersection between the spherical surface S and the path
JPSpath. Similarly, C := ∩l(Sb, JPSpath) will be the last
intersection. In an analogous way, ∩int(Sa,Sb, JPSwp) will
denote all the elements of JPSwp that are intermediate
between B′ and C. Hence, JPSwp can be written as:

JPSwp = (q1, ...qr−1, qr, . . . , qs−1︸ ︷︷ ︸
∩int(Sa,Sb,JPSwp)

, qs, . . . , qn)

where qr is the first point outside the sphere Sa and qs−1

is the last point inside the sphere Sb. The subindex {·} will
indicate the iteration number. Finally, the subindex 1 in JPS
will denote the JPS solution of the current iteration, while
2 will be the modified (i.e not intersecting any obstacles)
version of JPS{k−1} (chosen in the previous iteration).
Same applies to B′ and C. The concept of modified is
explained later on.

In our algorithm, the whole trajectory planned is divided
into three primitives: Primj ∪ Primv ∪ Primd, which are
defined as follows:

1) Primj is a jerk-controlled primitive that has A as
initial state and a final stop condition in the point B,
which is defined as the point in the sphere Sa near to
B′ that guarantees that Primj ∩ (O ∪ U) = ∅.

2) Primv is defined as the composition of several
velocity-controlled primitives between each pair of
consecutive points of (B, qr, . . . , qs−1,C).

3) Finally, Primd is the part of JPS that goes from C
to the goal G, and therefore Primd ∩ O = ∅.

The time-normalized costs associated with each one of these
primitives are:

JPrimj =
N · dt
j2max

·
N−1∑
i=0

‖ji‖22

JPrimv =

s−r∑
k=0

(
N · dtk
v2max

·
N−1∑
i=0

‖vki‖
2
2

)

JPrimd
=
‖qs −C‖2
vmax

+

n−1∑
k=s

(
‖qk+1 − qk‖2

vmax

)
The total cost of the planned trajectory is then J := JPrimj

+
JPrimv

+ JPrimd
. In this total cost we combine a high-

fidelity model near the UAV, a medium-fidelity model in the
medium part, and model without dynamics for the farthest
part of the trajectory. This cost is an approximation of the
total cost of the jerk-controlled trajectory that goes from A
to G, but it is much faster to compute. Also, it is more
accurate than relying only on jerk for the first part, and
distance in the JPS path for the rest, since an intermediate
velocity-controlled primitive is included.

The proposed approach is shown in Alg. 1 and Fig. 3.
For iteration k, it proceeds as follows — first (line 3), the
terminal goal Gterm is projected intoM in the direction of−−−−−−→
AGterm to obtain Q (see Fig. 2). The nearest unknown or
free point to Q is selected as the (intermediate) goal G, and
JPS is run from the actual position A to G to obtain JPS1.
The intersection of JPS1 with the inner sphere Sa defines
the point B′

1. This point indicates the direction towards
which the jerk-controlled planner should optimize. As a jerk-
controlled primitive from A to B′

1 is not guaranteed to
be collision free, we sample ≈ 30 points in the sphere
Sa around B′1 to obtain a final position that makes this
primitive collision-free, storing them in the priority queue
K (line 19). We prioritize points near to B′ that have at the
same time a high probability of the primitive being collision-
free. As the geometry of JPS encodes where the obstacles
are, we sample these points in the following way (Fig. 5):
First, the points q2,. . . ,qr−1 are projected onto Sa to obtain

Algorithm 1: Replan
Data: A, Gterm, O, F , U , α0 > 0, Rb > Ra,max > Ra,min > 0

1 Function Replan():
2 k ← k + 1 , J1 ← 0 and J2 ←∞
3 G← Project Terminal Goal Gterm

4 JPS1 ← Run JPS A→ G

5 ra ← min(saturate
Ra,max

Ra,min
(‖
−−→
Aq2‖2), ‖

−→
AG‖2)

6 rb ← min(Rb, ‖
−→
AG‖2)

7 Primj1 ← GetPrimj(1)
8 if ∠B′1AB

′
{k−1} > α0 then

9 JPS2 ← JPS{k−1}
10 if JPS{k−1} ∩ O 6= ∅ then
11 JPS2 ← Run JPS A→ I1 → I2 → G

12 Primj2 ← GetPrimj(2)
13 J1 ← GetCost(1) and J2 ← GetCost(2)

14 Choose i with lowest cost Ji
15 JPS{k} ← JPSi and B′{k} ← B′i
16 return Primji

17 Function GetPrimj(i):
18 B′i ← ∩f (Sa, JPSi,path)
19 K ← SamplePoints(B′i)
20 for Size(K) times do
21 Bi ← Pop(K)
22 Primji ← Compute Jerk Primitive A→ Bi

23 return Primji if Primji ∩ (O ∪ U) = ∅

24 Function GetCost(i):
25 Ci ← ∩l(Sb, JPSi,path)
26 WP ← ∩int(Sa,Sb, JPSi,wp)
27 Primvi ← Compute Vel. Primitives Bi →WP → Ci

28 return JPrimji
+ JPrimvi

+ JPrimdi

P q2
,. . . ,P qr−1

. Then we sample from B′ to P qr−1
, from

P qr−1
to P qr−2

, and so on. Finally, we append to this
priority queue some samples taken in concentric circles to
B′, to increase the probability of finding a feasible final
condition.

Then we iterate over each point in K (setting it as the
final position in the optimization problem 1) and stop when
a collision free primitive (i.e that does not intersect O∪U) is
found (lines 20-23). At this point, the algorithm computes the
angle ∠B′

1AB′
{k−1}, where B′

{k−1} is the intersection of
Sa with JPS{k−1}. This angle gives a measure of how much
the JPS solution has changed from the iteration k−1. A small
angle indicates that JPS1 and JPS{k−1} are very similar (at
least within the sphere Sa), and that therefore the local plan
will not differ much from the iteration k − 1. Hence, if this
angle is smaller than a threshold α0 (typically ≈ 15◦), the
algorithm finishes, and Primj1 is returned. If it is bigger,
the algorithm needs to decide whether obtaining the local
plan using JPS1, or relying on the previous path JPS{k−1}.
To do this, in lines 10-11 first we modify JPS{k−1} by
obtaining I1 and I2 (first and last intersections of JPS{k−1}
with O) and run JPS three times to obtain the paths A→ I1,
I1 → I2, and I2 → G. The union of these paths is JPS2.
Once JPS2 is obtained, a very similar process as explained
before is done, but with JPS2 in this case, to obtain Primj2

(line 12).
The decision between Primj1 or Primj2 is made (lines

14-16) choosing the one that has the lowest cost Ji :=
JPrimji + JPrimvi + JPrimdi

, i = {1, 2}.

Fig. 5: Priority queue K. Given JPS (), the priority queue K
returned by SamplePoints(B′) contains points in this order: First
samples along the spherical arc B′ → P q3

. Then along the arc
from P q3

to the next projection, and so on. After that, several
samples are taken from concentric circumferences to B′.

Fig. 6: Instantaneous sensing data and occupancy grid pipeline.
Sensing data from the depth sensor () is received at fsensor . New
point clouds are fused into the Occupancy Grid (). Collision check
at t1 is done using an array of k-d trees that contains the k-d tree of
the last map fused (), and the k-d trees of some of the last point
clouds received that are not included in the map ().

A. Mapping and Planning Integration

We fuse a depth map into the occupancy grid using the 3D
Bresenham’s line algorithm for ray-tracing [27]. However, as
discussed earlier, the mapper update rate is slower than the
sensor frame rate, and problems can arise when the local
planner only relies on this (out-of-date) map to generate a
primitive. This issue is addressed here by storing the k-d
trees of the point clouds that have arrived since the most
recent map was published (see Fig. 6). Collision checks are
then done using the occupancy grid and some of the saved
k-d trees of the instantaneous point clouds. This combination
ensures that the local planner relies both on the most recent
fused map with global knowledge of the world, and on up-
to-date point clouds that contain the instantaneous sensing
data.

V. EXPERIMENTAL RESULTS

A. Simulation

We evaluate the performance of the proposed algorithm
in different simulated scenarios. The simulator uses C++
custom code for the dynamics engine, and Gazebo [28] to

10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40
0

5

10

15

20

25

30

35

40

45

50

55

60

Fig. 7: Timing breakdown for different voxel sizes in the forest
simulation. The replan function takes less than 10 ms when the
voxel size is bigger than 15 cm. The sliding map is 20m×20m.

simulate perception data (in the form of a depth map and a
point cloud). In all these simulations, the depth camera has
a horizontal FOV of 90◦, and a sensing range of 10 m.

We first compare our method against six different methods:
Incremental approach (no goal selection), random goal selec-
tion, optimistic RRT? (unknown space = free), conservative
RRT? (unknown space=occupied), “next-best-view” planner
(NBVP) [29], and Safe Local Exploration [9]. These six
methods are described deeper in [9]. The scenario setting
is a random cluttered forest with an obstacle density of
0.1 obstacles/m2 (see Fig. 8) and a sliding map size of
20m×20m, with a voxel size of 10 cm. The results for ten
different random forests are shown in Table I. Our method
succeeds in all 10 simulations and obtains a path that is in
average 19–47 % shorter than the other methods.

The map and voxel size chosen have a strong impact on
the computation times and performance. For a given map,
a small voxel size provides a more accurate solution, at the
expense of more computation time running JPS and collision
check. For a map size of 20m×20m, the timing breakdown of
the replan function in the forest simulation for different map
voxel sizes is shown in Fig. 7. The replan function takes 37
ms in average when the voxel size is 10 cm, and is reduced to
less than 10 ms when the voxel size is bigger than 15 cm. JPS
takes ≈ 80% of the total replanning time when the voxel size
is low, and ≈ 15% when the voxel size is higher. This is due
to the fact that the computation time of JPS depends on the
number of cells, which is reduced by the cube of the voxel
size. Note that the values of Cvxjerk and Cvxvel indicate
the total computation time for all the jerk-controlled and
velocity-controlled primitives computed in each replanning
step. The mean time per primitive is 1.3 ms for jerk and 0.3
ms for velocity. The distances of these primitives range from
0.5 to 4 m and from 2 to 5.5 m (depending on the geometry of
the obstacles) for the jerk-controlled and velocity-controlled
primitives respectively.

TABLE I: Distances obtained by seven different methods in the
cluttered forest simulation. The distance values are computed for
the cases that reach the goal. The improvement percentages are
computed for the minimum and the maximum of each column.
The results for the other planners were provided by the authors of
[9].

Method Number of Distance (m)
Successes Avg Std Max Min

Incremental 0 - - - -
Rand. Goals 10 138.0 32.0 210.5 105.6
Opt. RRT? 9 105.3 10.3 126.4 95.5
Cons. RRT? 9 155.8 52.6 267.9 106.2
NBVP [29] 6 159.3 45.6 246.9 123.6
SL Expl. [9] 8 103.8 21.6 148.3 86.6
Ours 10 84.5 11.7 109.4 73.2

Min/Max improvement (%) 19/47 -14/78 13/59 16/41

To compare the trajectory found by our approach (in which
the map is discovered as the UAV proceeds) with the optimal
trajectory when the map is completely known, we use two
simulation environments: a bugtrap scenario (Fig. 1) and a
cluttered office scenario (Fig. 9). In the bugtrap scenario,
our method produces a trajectory of 56.8 m, approximately
the same length as the optimal trajectory (56.3 m). In the
office simulation, the total length with our approach is 41.5
m (optimal trajectory is 35.9 m). In this simulation, the
UAV enters two rooms, but when it detects that there is
no exit, turns back and finds another path to the goal. In
both simulations, the optimal trajectory has been obtained
using the approach proposed in [1], which is optimal in the
discretized space. As in our approach the world is being
discovered gradually, our solution is not globally optimal,
and it requires more control effort than the optimal one.
However, the similarity between these two paths reflects the
performance of our algorithm, able to obtain a near-optimal
path even when the world is discovered gradually.

B. Hardware Experiments

The UAV used for the hardware experiments is shown
in Fig. 10. All the perception, planning and control runs
onboard, and the position, velocity, attitude, and IMU biases
are estimated by fusing propagated IMU measurements with
an external motion capture system via a Kalman filter. The
mapping fusion times achieved onboard are 50ms and 80ms
for depth image resolutions of 480 × 270 and 640 × 480
respectively. All these experiments are available in https:
//www.youtube.com/watch?v=E4V2_B8x-UI.

VI. CONCLUSIONS

This work presented a novel planning a mapping frame-
work suitable for agile flights in unknown environments. The
key properties of this framework is its ability to solve the
interaction between the global planner and the local planner
considering the dynamics of the vehicle, and its ability to
address efficiently the integration between a fast planner
and a slower mapper. The replanning and mapping rates are
several times faster than the state of the art.

The Gazebo worlds and the code for the optimizer are
available at https://github.com/jtorde/.

Fig. 8: Forest simulation. The UAV must fly from A to Gterm in
a 50m×50m forest with an obstacle density of 0.1 obstacles/m2.

Fig. 9: Office simulation. The UAV must fly from A to Gterm in
an office environment. The optimal trajectory is shown in blue ().
The red trajectory () is the solution found by our method.

Fig. 10: UAV used in the experiments. It is equipped with a
Qualcomm R© SnapDragon Flight, an Nvidia R© Jetson TX2 and an
Intel R© RealSense Depth Camera D435.

ACKNOWLEDGMENT

Thanks to Boeing Research & Technology for support
of the hardware, to Helen Oleynikova (ASL-ETH) for the
data of the forest simulation, and to Pablo Tordesillas
(ETSAM-UPM) for his help with some figures of this paper.
Supported in part by Defense Advanced Research Projects
Agency (DARPA) as part of the Fast Lightweight Autonomy
(FLA) program, HR0011-15-C-0110. Views expressed here
are those of the authors, and do not reflect the official views
or policies of the Dept. of Defense or the U.S. Government.

https://www.youtube.com/watch?v=E4V2_B8x-UI
https://www.youtube.com/watch?v=E4V2_B8x-UI
https://github.com/jtorde/

REFERENCES

[1] Sikang Liu, Kartik Mohta, Nikolay Atanasov, and Vijay Kumar.
Search-based motion planning for aggressive flight in se (3). IEEE
Robotics and Automation Letters, 3(3):2439–2446, 2018.

[2] Daniel Mellinger and Vijay Kumar. Minimum snap trajectory genera-
tion and control for quadrotors. In Robotics and Automation (ICRA),
2011 IEEE International Conference on, pages 2520–2525. IEEE,
2011.

[3] Michiel J Van Nieuwstadt and Richard M Murray. Real-time trajectory
generation for differentially flat systems. International Journal of
Robust and Nonlinear Control: IFAC-Affiliated Journal, 8(11):995–
1020, 1998.

[4] Charles Richter, Adam Bry, and Nicholas Roy. Polynomial trajectory
planning for aggressive quadrotor flight in dense indoor environments.
In Robotics Research, pages 649–666. Springer, 2016.

[5] Giuseppe Loianno, Chris Brunner, Gary McGrath, and Vijay Kumar.
Estimation, control, and planning for aggressive flight with a small
quadrotor with a single camera and imu. IEEE Robotics and Automa-
tion Letters, 2(2):404–411, 2017.

[6] Mark W Mueller, Markus Hehn, and Raffaello D’Andrea. A com-
putationally efficient motion primitive for quadrocopter trajectory
generation. IEEE Transactions on Robotics, 31(6):1294–1310, 2015.

[7] Sikang Liu, Nikolay Atanasov, Kartik Mohta, and Vijay Kumar.
Search-based motion planning for quadrotors using linear quadratic
minimum time control. In Intelligent Robots and Systems (IROS),
2017 IEEE/RSJ International Conference on, pages 2872–2879. IEEE,
2017.

[8] Helen Oleynikova, Michael Burri, Zachary Taylor, Juan Nieto, Roland
Siegwart, and Enric Galceran. Continuous-time trajectory optimization
for online uav replanning. In Intelligent Robots and Systems (IROS),
2016 IEEE/RSJ International Conference on, pages 5332–5339. IEEE,
2016.

[9] Helen Oleynikova, Zachary Taylor, Roland Siegwart, and Juan Nieto.
Safe local exploration for replanning in cluttered unknown environ-
ments for microaerial vehicles. IEEE Robotics and Automation Letters,
3(3):1474–1481, 2018.

[10] Arthur Richards and Jonathan P How. Aircraft trajectory planning
with collision avoidance using mixed integer linear programming.
In American Control Conference, 2002. Proceedings of the 2002,
volume 3, pages 1936–1941. IEEE, 2002.

[11] Changliu Liu, Chung-Yen Lin, and Masayoshi Tomizuka. The convex
feasible set algorithm for real time optimization in motion planning.
SIAM Journal on Control and Optimization, 56(4):2712–2733, 2018.

[12] Sikang Liu, Michael Watterson, Kartik Mohta, Ke Sun, Subhrajit Bhat-
tacharya, Camillo J Taylor, and Vijay Kumar. Planning dynamically
feasible trajectories for quadrotors using safe flight corridors in 3-
d complex environments. IEEE Robotics and Automation Letters,
2(3):1688–1695, 2017.

[13] Michael Watterson, Sikang Liu, Ke Sun, Trey Smith, and Vijay Kumar.
Trajectory optimization on manifolds with applications to so (3) and
r 3× s2. Robotics: Science and Systems (RSS), 2018.

[14] Yuanqi Mao, Michael Szmuk, and Behcet Acikmese. Successive
convexification: A superlinearly convergent algorithm for non-convex
optimal control problems. arXiv preprint arXiv:1804.06539, 2018.

[15] Federico Augugliaro, Angela P Schoellig, and Raffaello D’Andrea.
Generation of collision-free trajectories for a quadrocopter fleet: A
sequential convex programming approach. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Conference on, pages
1917–1922. IEEE, 2012.

[16] John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal,
Henry Bradlow, Jia Pan, Sachin Patil, Ken Goldberg, and Pieter
Abbeel. Motion planning with sequential convex optimization and
convex collision checking. The International Journal of Robotics
Research, 33(9):1251–1270, 2014.

[17] Debadeepta Dey, Kumar Shaurya Shankar, Sam Zeng, Rupesh Mehta,
M Talha Agcayazi, Christopher Eriksen, Shreyansh Daftry, Martial
Hebert, and J Andrew Bagnell. Vision and learning for deliberative
monocular cluttered flight. In Field and Service Robotics, pages 391–
409. Springer, 2016.

[18] Peter R Florence, John Carter, Jake Ware, and Russ Tedrake.
Nanomap: Fast, uncertainty-aware proximity queries with lazy search
over local 3d data. arXiv preprint arXiv:1802.09076, 2018.

[19] Brett T Lopez and Jonathan P How. Aggressive 3-D collision
avoidance for high-speed navigation. In Robotics and Automation
(ICRA), 2017 IEEE International Conference on, pages 5759–5765.
IEEE, 2017.

[20] Brett T Lopez and Jonathan P How. Aggressive collision avoidance
with limited field-of-view sensing. In Intelligent Robots and Systems
(IROS), 2017 IEEE/RSJ International Conference on, pages 1358–
1365. IEEE, 2017.

[21] Boris Lau, Christoph Sprunk, and Wolfram Burgard. Improved updat-
ing of euclidean distance maps and voronoi diagrams. In Intelligent
Robots and Systems (IROS), 2010 IEEE/RSJ International Conference
on, pages 281–286. IEEE, 2010.

[22] Helen Oleynikova, Zachary Taylor, Marius Fehr, Roland Siegwart, and
Juan Nieto. Voxblox: Incremental 3d euclidean signed distance fields
for on-board mav planning. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2017.

[23] Mihail Pivtoraiko, Daniel Mellinger, and Vijay Kumar. Incremental
micro-uav motion replanning for exploring unknown environments. In
Robotics and Automation (ICRA), 2013 IEEE International Conference
on, pages 2452–2458. IEEE, 2013.

[24] Jing Chen, Tianbo Liu, and Shaojie Shen. Online generation of
collision-free trajectories for quadrotor flight in unknown cluttered
environments. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pages 1476–1483. IEEE, 2016.

[25] Daniel Damir Harabor, Alban Grastien, et al. Online graph pruning
for pathfinding on grid maps. In AAAI, 2011.

[26] Jacob Mattingley and Stephen Boyd. Cvxgen: A code generator
for embedded convex optimization. Optimization and Engineering,
13(1):1–27, 2012.

[27] Jack E Bresenham. Algorithm for computer control of a digital plotter.
IBM Systems journal, 4(1):25–30, 1965.

[28] Nathan P Koenig and Andrew Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In IROS, volume 4,
pages 2149–2154. Citeseer, 2004.

[29] Andreas Bircher, Mina Kamel, Kostas Alexis, Helen Oleynikova, and
Roland Siegwart. Receding horizon” next-best-view” planner for
3d exploration. In Robotics and Automation (ICRA), 2016 IEEE
International Conference on, pages 1462–1468. IEEE, 2016.

	I INTRODUCTION
	II RELATED WORK
	III PROBLEM FORMULATION
	III-A Planning
	III-B Mapping

	IV ALGORITHM
	IV-A Mapping and Planning Integration

	V EXPERIMENTAL RESULTS
	V-A Simulation
	V-B Hardware Experiments

	VI CONCLUSIONS
	References

