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Abstract— We investigate decentralised decision-making, in
which a robot swarm is tasked with selecting the best-quality
option among a set of alternatives. Individual robots are sim-
plistic as they only perform diffusive search, make local noisy
estimates of the options’ quality, and exchange information
with near neighbours. We propose a decentralised algorithm,
inspired by house-hunting honeybees, to efficiently aggregate
noisy estimations. Individual robots, by varying over time a
single decentralised parameter that modulates the interaction
strength, balance exploration and agreement. In this way, the
swarm first identifies the options under consideration, then
rapidly converges on the best available option, even when
outnumbered by lower quality options. We present stochastic
analyses and swarm robotics simulations to compare the novel
strategy with previous methods and to quantify the performance
improvement. The proposed strategy limits the spreading of
errors within the population and allows swarms of simple noisy
units with minimal communication capabilities to make highly
accurate collective decisions in predictable time.

I. INTRODUCTION

Decision making is a key ability for any living organism
or artificial system. Robot swarms are systems composed of
a large number of simple and autonomous robots, and such
systems are frequently required to make collective decisions
in which all robots agree on one option among several
available alternatives. Agreeing on a unique option allows
the swarm to operate in unison and to express a coordinated
response to external stimuli. For example, when the swarm
needs to allocate all its resources to a single task which is
localised in space, the swarm has first to decide at which
location to perform the task, among the candidate spots.
Consensus would guarantee an effective usage of the swarm’s
resources, while splitting would dilute the swarm’s power
and may hinder success.

While certain applications only require to reach a consen-
sus for any option [1], [2], [3], in this study we ask the swarm
to decide for the best quality option among n alternatives.
This problem is known in the literature as the best-of-n
decision problem [4], [5], [6], [7], [8], [9], [10]. In this
work, we solve the best-of-n problem through a decentralised
strategy inspired by house-hunting honeybees [11] and later
adapted to artificial swarm systems [6], [12]. This study
employs multi-scale modelling [13] to predict the system
dynamics and tests the predictions through physics-based
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simulations. Previous swarm robotics studies relied on multi-
scale modelling [14], [15], [16], [17], [18] and we believe
that it is a powerful tool to engineer robot swarms. Most
collective decision studies in swarm robotics limited their
analysis to the binary case of n = 2 options [10], however
it has been shown that decision models may qualitatively
change their dynamics for n > 2, [19]. For this reason, here
we investigate collective decisions with larger n.

The proposed strategy shows a considerable improvement
of the decision accuracy and a constant decision speed for
any tested number of options and problem difficulty. While
this study focuses on the speed-accuracy analysis, previous
research has shown that the investigated model can also be
a mechanism for value-sensitive decisions [20], [21], [19].
The most relevant advantages of value-sensitive approaches
are, in cases of equal-quality options, the ability to break or
maintain decision deadlocks as a function of their quality,
otherwise to select the uniquely best option when quality
differences become large enough [20], [22].

In this study, n options are deployed in the environment
and the robot swarm has no prior knowledge of the number,
qualities, and locations of the available options. The swarm
is tasked with searching for the options and selecting the
highest-quality one (see problem description in Sec. II).
While other methods may focus only on the exploration or
the decision aspect, the investigated strategy includes both
activities (see the robot behaviour in Sec. III). At the same
time, it keeps the individual behaviour simple and limited
to four probabilistic transitions (Sec. V). The proposed
strategy is compared with other methods (Sec. IV) through
stochastic analysis of the macroscopic model (Sec. V-C) and
robot swarm simulations (Sec. VI). Limitations and possible
extensions of the study are discussed in Sec. VII.

II. DECISION PROBLEM FORMALISATION

In this work, a swarm of S robots is required to solve
the best-of-n decision problem, i.e. to reach consensus on
the best-quality option out of n options available in the
environment. Each option i (with i ∈ {1, ...,n}) is located
in space at position χi and has a quality vi ∈ [vmin,vmax]
(vmin/vmax are the min/max quality that the robot can sense).
The decision problem is to choose the option with highest
value. The robots have no prior knowledge about the number
of options, their location, or their qualities; robots can
perceive an option only when they are in its proximity. The
robots explore the environment to find the options, estimate
their qualities, and collectively select the best-quality option.
When a robot finds an option i, it can make an individual
noisy estimate of its quality v̂i. We simulate noisy estimations



Fig. 1. Sample initial distribution of S = 200 simulated Kilobots in a
scenario with n = 6 options and decision difficulty κ = 0.5. The red circles
represent the areas (radius 25 cm) in which the options can be perceived
by the robots via ARK. The colour intensity represents the option’s quality
vi ∈ [0,10]. The swarm is tasked to select the best-quality option.

as samples from a normal distribution N (vi,σ
2) with mean

vi, variance σ2, and reassignment to boundary values for
samples out of range [vmin,vmax].

Each robot has limited memory and can only store the
location and quality of a single preferred option, which
represents its commitment. In collective decision making,
the decision is made when a quorum in favour of one option
is reached [23], [24], [25], [26]. In our study, consensus is
reached for option i when the number of robots committed
to i reaches the quorum threshold Q = 80%.

A. Experimental setup

Most studies focused on binary decision problems (n = 2)
[20], [22], [8]; here we investigate the best-of-n problem with
n≥ 2. We consider the scenario of one superior-quality op-
tion and n−1 inferior-quality distractors. This experimental
scenario has been adopted in several empirical and theoretical
studies in various domains as it allows to systematically vary
the difficulty of the decision problem without increasing the
number of experimental parameters [27], [28], [29], [30],
[19]. The superior option has quality vH while the other
(n− 1) inferior equal-quality options have quality vL (with
vH ,vL ∈ [vmin,vmax] = [0,10]). The decision difficulty can be
expressed as the ratio between inferior and superior qualities
κ = vL/vH ∈ [0,1].

In this study, we simulate a robot swarm composed of
S = 200 Kilobots [31] which are low-cost robots designed
specifically to conduct large-scale swarm robotics experi-
ments. Kilobots operate at a clock frequency of about 32 Hz
which corresponds to a clock period δc ' 31ms. Kilobots
are equipped with few sensors and actuators. They have
differential-drive vibration motors to move on a flat surface
at a speed of about 1 cm/s in straight motion and about 40 ◦/s
in rotation. Kilobots are equipped with an IR transceiver to
transmit 9-bytes messages to neighbours in a local range
of ∼10cm, Finally, Kilobots are equipped with an ambient
light sensor, and an RGB LED to display their internal
state. Despite their limited capabilities, Kilobots have been
successfully employed in several swarm robotics studies, e.g.
[32], [22], [33], [8], [34], [35]. Furthermore, Kilobot abilities
can be enhanced via ARK, a form of ‘augmented reality for
Kilobots’ [36], [37].

ARK allows Kilobots to use virtual sensors and actuators.

In this work, we employ ARK to allow Kilobots to perceive
an option i, estimate its quality v̂i, and geolocalise the option
(i.e. compute χi). Robots within the option’s sensing range
(25 cm) receive via IR an ARK message which includes the
option’s location and its quality. Similarly, upon request to
ARK, Kilobots can access to their GPS information (e.g. to
navigate to the option’s location). When a Kilobot lights up
its red LED, ARK replies with its GPS information.

The S = 200 robots are initially uniformly distributed in
a square environment 2m×2m, as illustrated in Fig. 1. The
n options are located at equal distance between each other
on the vertex of a regular polygon with n edges and radius
50 cm (see an example with n = 6 options in Fig. 1). The
superior-quality option is placed at a random vertex in each
simulation run.

III. ROBOT BEHAVIOUR

We simulated the Kilobot swarm behaviour with the
physics-based simulator ARGoS [38], which allows quick
simulation of large-scale swarms through its multi-threaded
architecture. ARGoS supports the simulation of Kilobots
through a dedicated plugin which is particularly convenient
as it offers the possibility to run the same identical control
code in simulation and on the real robots [39]. ARGoS also
supports experiments with a simulated ARK infrastructure
which allows quick conversion of ARK experiments between
simulation and reality.

We implemented a generic Kilobot behaviour to plug in
different decision strategies and test their performance. The
behaviour is composed of three concurrent actions:

1) Environment exploration: Robots have no prior knowl-
edge about the decision problem (number, location, and
quality of the options), hence robots need to explore the
environment in order to find the available options and esti-
mate their qualities. A simple and effective way to search for
options in an unknown environment is to perform a diffusive
isotropic random walk [34]. In this study, the Kilobots
alternate straight motion for approximately 10 s and rotations
in a random direction for a random number of seconds
chosen from a uniform distribution U(0,5)s. Beside allowing
environment exploration, the random walk allows robots to
encounter new peers and sample different information within
the swarm. When a Kilobot perceives an option i, it stores
the option’s location χi and estimates its quality v̂i which is
used to update the internal commitment state.

It is important to note that the robots do not resample
the same options multiple times to average qualities over
time because we are not interested in individual strategies to
attenuate the noise on individual estimates. We assume that
in any real application scenario, the robot would conduct the
necessary sampling operations to obtain the most accurate
possible quality estimate. This estimate would anyway be
subject to a certain level of noise, here modelled through a
normal distribution N (vi,σ

2). This study investigates col-
lective strategies to efficiently aggregate noisy estimations.

2) Social interactions: While exploring the environment,
robots interact with neighbours within a local range of



about 10 cm. Each robot broadcasts a message every second
with information on its commitment state and, if committed
to an option, the option’s location χi and (possibly) the
estimated option quality v̂i. The receiving robots use this
information to update their commitment state.

3) Commitment updates: Each robot r has two possible
individual commitment states {U,C}; either committed (C)
to an option i, or uncommitted (U). When committed, the
Kilobots keep record of the option’s location χi and the
estimated quality v̂i. All robots start without any prior knowl-
edge, therefore in the uncommitted state. Upon discovery
of an option or incoming messages from other robots, each
Kilobot updates its individual commitment state either by
changing state or by remaining committed and only modi-
fying the option i. We implemented and compared various
update strategies which we describe in Sec. IV and V.

IV. DIRECT COMPARISON STRATEGY

A simple and naive strategy to collectively reach con-
sensus on the best-quality option is the direct comparison
strategy (DC) [40]. The DC strategy requires the Kilobots
to share their estimated quality v̂i with each other, and
to update their commitment state as follows. An uncom-
mitted robot exposed to information of an option i (either
via independent discovery or via another robot’s message)
changes its commitment state to C and stores location χi
and estimated quality v̂i. Instead, committed robots update
their commitment to option i only when the new option j,
received from another robot, is different (i.e. i 6= j) and has
a better quality v̂ j > v̂i. If v̂ j is higher, the robot forgets
the previous option and stores the new received information
χ j and v̂ j. When the two options have equal estimated
quality v̂i = v̂ j, the robot randomly selects option i or j. This
random selection may allow the swarm to break the decision
deadlock in case of equal-quality options.

As discussed in Sec. III, robots do not perform multiple
sampling of the same option, instead performing an indi-
vidual estimate of an option and let the information spread
within the swarm. This simple strategy has the advantage
to quickly reach consensus for one option. Although, at
the same high speed, errors spread. In fact, an individual
overestimation of an option is quickly accepted by other
robots which, in turn, use it in their messages. In other
words, robots use second-hand quality estimates (received
from a neighbour) to recruit themselves other robots. The
effect of noise on this decision strategy can be appreciated
in Fig. 2(a) which shows ARGoS simulations results for a
scenario with six options. We varied the problem difficulty
κ = vL/vH ∈ [0.5,1.0] and the noise strength σ2 ∈ [0,5].
Decision accuracy quickly decreases as the problem difficulty
or noise strength increases.

V. COLLECTIVE DECISIONS THROUGH
CROSS-INHIBITION

To overcome the poor performance of DC (Fig. 2(a)), we
propose an extension of the Collective Decisions through

(a) (b)

Fig. 2. (a) 200-Kilobot swarm results (100 simulations each condition)
showing the effect of noise strength σ2 ∈ [0,5] on the decision accuracy
in the best-of-6 problem with difficulty κ = vL/vH ∈ [0.5,1] (vH = 10).
We compare the accuracy of the DC strategy of Sec. IV (bottom-left
triangles) with the accuracy of the time-varying strategy rstep (t) (with
τ0 = 50) of Sec. V-C (top-right triangles). While DC is highly sensitive to
noise, the proposed strategy shows remarkably high performance (≥ 93%)
for any tested noise level and difficulty κ up to 0.9. In case of equal-
quality options (κ = 1), the quick dynamics of DC allows to break the
symmetry within 2 hours more often than the proposed strategy with a
suboptimal parameterisation of τ0 (see more details in Fig. 5(b)). (b) The
PFSM controlling the robot’s individual decision state. Robots update their
commitment state using the probabilities Pγi and Pαi of Eq. (1) or upon
receiving a message Mi from a robot committed to i. The symbol | on
the arrow for the discovery transition indicates conditional probability on
the occurrence of the event Ei of encountering option i. The transmission
symbols indicate that a robot in state Ci sends an interaction message (for
recruitment and cross-inhibition) with probability Phi .

Cross-Inhibition strategy (CDCI) proposed in [6]. This strat-
egy has been inspired by the house-hunting process of
European honeybees [11] and been applied in a variety of
swarm robotics experiments [41], [22]. This work extends
the previous CDCI strategy by removing any need to share
quality estimates between the agents and by introducing time
varying interactions. We show through various comparisons
an improvement in both decision speed and accuracy.

A. The basic CDCI strategy

Each robot’s commitment state is controlled by the prob-
abilistic finite state machine (PFSM) shown in Fig. 2(b).
The active state of the PFSM corresponds to the individual
commitment state of the robot: the state U is active when the
robot is uncommitted while the state C is active when the
robot is committed to an option. In Fig. 2(b), the option
commitment is indicated by index i, with i ∈ {1, . . . ,n},
indicating that the robots has stored the option i’s information
(χi and v̂i) and is committed to it. As indicated in the CDCI
design pattern and explained below, changes in commitment
depend upon the local estimate of the distribution of other
agents’ commitments. Therefore, we designed an update time
δu = 50 clock cycles (i.e. ∼ 1.5s) to allow the robot to gather
a local sample of its neighbourhood. Every δu, the robot
updates its commitment state as follows. If an uncommitted
robot satisfies the condition Ei by encountering the option
i during the last δu clock cycles, it may become committed
to i (i.e. the robot discovers option i) with probability Pγi . A
robot committed to option i may spontaneously abandon its
commitment to i and become uncommitted with probability
Pαi . If an uncommitted robot satisfies the condition Mi by
receiving a message from a robot committed to option i
during the last δu clock cycles, it gets recruited and commits



to option i. If a robot committed to option i satisfies the con-
dition M j 6=i by receiving a message from a robot committed
to a different option j (with i 6= j) during the last δu clock
cycles, it gets cross-inhibited and reverts to the uncommitted
state. At each broadcast tick, a robot committed to option
i probabilistically decides either to interact with peers and
share the location χi of option i with probability Phi or to not
interact and appear as uncommitted (with probability 1−Phi ).

Following the CDCI guidelines [6], the robot makes in-
teraction transitions (recruitment and cross-inhibition) with
probability function of the distribution of commitment in
its neighbourhood. These probabilistic transitions can be
reduced to the selection at random of one message M (among
all the received) which is used to conditionally trigger
transitions (see Fig. 2(b) and [6] for more details). In this
study, the robot only keeps the last received message by
overwriting the information each time. This choice allows
the robot to minimise the memory usage and to keep the
most up-to-date information (compared to older messages).
After each commitment update, the last message is deleted.

As robots do not exchange quality estimates, after recruit-
ment, the recruited robot is required to visit the option’s
location in order to self-estimate the option’s quality. This
is similar to the behaviour observed in honeybees [42] and
ants [43] during nest-site selection. Once the robot esti-
mates the quality, it resumes interactions. While individual
estimates by each robot is a (time-consuming) necessary
component of the CDCI strategy, it can also prevent the
spreading of inaccurate estimates. In fact, from the analysis
of the DC method, we understood that the reuse of second-
hand information (i.e. the received quality) can lead to the
spreading of inaccurate estimates. We conducted analyses to
estimate the impact of self-estimates on the DC performance.
A modified DC strategy with robots sampling the quality
after each recruitment increases the performance to values
similar to CDCI for κ ≤ 0.9, although it cannot break
symmetry for κ ≈ 1 even after several hours (results not
shown). In terms of speed, the DC strategy shows quicker
dynamics than CDCI although it is important to consider that
the CDCI requires lower cognitive abilities of the individual
robots who do not need to share qualities in a common range.

To allow the swarm to converge to consensus for the best-
quality option, the individual robots modulate their behaviour
as a function of the option’s quality, exhibiting more frequent
behaviours in support of better quality options. In this study,
the probabilities of the robot’s behaviours follows the pa-
rameterisation introduced in [19] which preserves the value-
sensitive decision-making characteristics when the number
of options is greater than two:

Pγi = kv̂i∆, Pαi = kv̂−1
i ∆, Phi = hv̂i∆ , i∈ {1,2, . . . ,n} (1)

where v̂i is the estimated quality of option i, while h and
k are parameters to control the frequency at which the
robots send interaction messages and perform individual
behaviours, respectively. The ratio r = h/k represents the
relative interaction rate. Following [6], the parameter ∆ is

required to scale probabilities within the valid range [0,1]
and guarantee a match between microscopic and macroscopic
description of the process. ∆ = δuδcδs is determined by three
components: the number of Kilobot clock cycles between
two updates (δu = 50), the Kilobot clock period (δc ' 31ms)
and the temporal scaling factor δs = 0.000594 which controls
the process speed. As shown in [19], the key parameter in the
swarm decision dynamics is the relative interaction rate r.

B. Stochastic analysis of the basic CDCI strategy

We investigate the effect of the relative interaction rate
r on the decision outcome through stochastic analysis with
the goal of identifying the best r for our swarm robotics
system. The CDCI strategy can be described in the form of a
master equation [11], [6]. This description form allows us to
investigate the macroscopic system dynamics with random
fluctuations proportional to our system size S = 200. We
approximate the solution of the master equation through
1,000 runs of the stochastic simulation algorithm (SSA) [44].

For values of r ∈ [1,100] with k = 1, we investigated the
effects of varying the decision difficulty κ ∈ [0.5,1] keeping
constant the number of options n = 6 (Fig. 3(a)), and of
varying number of options n ∈ [2,12] keeping constant the
decision difficulty κ = 0.9 (Fig. 3(b)). Each run terminates
either when the maximum decision time Tmax = 10 is reached
or when a sub-population committed to a single option
reaches the decision quorum Q = 0.8 (i.e. at least 160 robots
are committed to the same option). The maximum decision
time has been selected to be safely above the average
decision time to avoid premature terminations. The results
of the analysis are shown in Fig. 3 where each coloured pie
represents a tested condition and indicates the percentage of
runs terminating in a decision deadlock (yellow), a decision
for the best quality option (green), or a decision for any of
the (n−1) inferior equal-quality options (red). The obtained
results are in agreement with previous deterministic mean-
field analyses that show the need of high positive/negative
feedback to break the decision deadlock [19], [45] and with
stochastic analyses of decision-making models of ants and
slime moulds [46], that show that a high positive feedback
reduces decision accuracy.

Figure 3(a) shows the existence of a dilemma: On the one
hand, low values of r guarantee accurate decisions when
there is a superior-quality option (vH � vL ) but lead to a
decision deadlock when all options are similar (vH ≈ vL ). On
the other hand, high values of r guarantee deadlock-breaking
but the system is very sensitive to initial random fluctuations
which lead to inaccurate decisions (i.e. the first discovered
option has higher probability to be selected even of inferior
quality). Additionally, Fig. 3(b) shows that the minimum
r necessary to break deadlock increases quadratically with
the number of options. Therefore, the interaction rate r that
maximises accuracy varies as a function of the decision
problem (number and quality of options) which is normally
unknown to the swarm. Hence any fixed value of r has
drawbacks and causes poor performance in certain scenarios.
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Fig. 3. Results of the SSA showing the influence of the interaction
ratio r = h/k with k = 1 (of Eq. (1)) for various best-of-n problems in
the case of S = 200 robots. The pie-charts indicate the percentage of
1,000 runs terminating in a decision deadlock, i.e. below quorum Q = 0.8,
after Tmax = 10 (yellow), a decision for the best-quality option vH = 10
(green), or a decision for any n− 1 inferior-quality distractor vL = κ · vH
(red). (a) Sensitivity of CDCI to the ratio r for various problem difficulties
κ ∈ [0.5,1] in case of n = 6; the minimum r necessary to break decision
deadlock grows quadratically with κ . (b) Sensitivity of CDCI to the ratio r
for various number of options n∈ [2,12] in case of κ = 0.9; the minimum r
necessary to break decision deadlock grows quadratically with n. Sufficiently
high values of interaction rate r, always lead to a decision but accuracy
rapidly decreases with increasing n or κ .

C. The time-varying CDCI strategy

To solve the previous dilemma without prior knowledge
of the decision problem (n and κ), we propose a novel
decentralised strategy which consists of beginning with low
interaction rate r (to limit initial random fluctuations) and
then increasing the interaction rate over time to reach con-
sensus. The initial low r corresponds to relatively sporadic
interactions to prevent commitment to the first discovered
options (which may have inferior quality vL ) propagating
through the swarm. The increase of interactions over time,
instead, has the function to break decision deadlocks and to
allow the swarm to build up consensus for the best discovered
option. Additionally, the robots will modulate the increase
speed of interactions as a function of the estimated quality;
that is, they will start to recruit (and cross-inhibit) earlier for
better quality options. We expect that this quality-sensitive
increase of interactions could result in improved accuracy
and decision speed compared with the standard CDCI.

We investigate two variants of the proposed time-varying
strategy: a gradual increase of the interaction rate r (function
rramp(t) in Fig. 4(a)) and a jump of the interaction rate from
low to high values (function rstep(t) in Fig. 4(b)):

rramp(t) =
hramp(t)

k
, hramp(t) =


Hmax

τ(v̂i)
t if t <τ(v̂i)

Hmax if t ≥τ(v̂i)

, (2)

rstep(t) =
hstep(t)

k
, hstep(t) =

{
0 if t <τ(v̂i)

Hmax if t ≥τ(v̂i)
, (3)

In both functions, the individual transitions strength k re-
mains constant at k = 1, while the interaction strength h(t)
increases over time until a maximum Hmax. The function

Fig. 4. (Left) Two forms for the time-varying interaction h(t): hramp(t)
of Eq. (2) in panel (a) and hstep(t) of Eq. (3) in panel (b). With the ramp
function, the robot constantly increases the interaction strength hramp(t)
with slope proportional to the estimated quality v̂i; instead, with the
step function, the robot does not interact hstep(t) = 0 until a time τ(v̂i)
that is inversely proportional to the estimated quality v̂i. (c) Results of
the SSA (1,000 runs each condition and same colour code of Fig. 3)
predicting the decision outcome of a 200-robot swarm for various best-
of-n problems (n ∈ {3,6,9,12}) and difficulty κ = 0.9. The rramp(t) and
rstep(t) from Eqs. (2)-(3) with parameters τ0 = 5 and Hmax = 100 show a
considerable improvement in accuracy (reported on each pie-chart).

τ(v̂i) = τ0vmax/v̂i describes the time at which a robot com-
mitted to option i reaches Hmax, therefore it determines
the slope of the ramp and the jumping time of the step
function. If the estimated quality is the maximum value, i.e.
v̂i = vmax, the maximum interaction strength is reached at
τ0, otherwise it happens later. The functions of Eqs. (2)-(3)
can be implemented in a decentralised fashion by asking
the robots to modify the strength of their interactions over
time, in particular by increasing the probability of sending
recruitment and cross-inhibition messages. In other words,
the robots vary the probabilities of Eq. (1) with the time-
varying term h from Eqs. (2)-(3).

We assess the performance of the proposed strategy in
its two variants through master equation analysis. The orig-
inal version of SSA proposed by Gillespie only considers
constant transition rates, therefore, to take into account
the time-varying probabilities of the individual behavioural
rules of Eq. (1), we used a modified version of SSA, as
proposed in [47]. Figure 4(c) compares the decision outcome
of time-invariant interaction rate r and the two proposed
time-varying interaction strategies for various problems with
n ∈ {3,6,9,12} and κ = 0.9. The results of each tested
condition are obtained via 1,000 SSA runs and follow the
same colour code of Fig. 3. A swarm with low time-invariant
relative interaction rate r = 1 has dynamics dominated by
the individual behaviours of discovery and abandonment,
which are not sufficient to break the deadlock between
more than three similar-quality alternatives. Using high time-
invariant r = 100, the dynamics are dictated by the interaction
behaviours of recruitment and cross-inhibition, which act
respectively as positive and negative feedbacks on the com-
mitted sub-populations. In this case, initial random fluctua-
tions quickly spread through the system and the probability
to select the inferior options is high and increases with n.
Both functions of time-varying r(t) show a considerable
performance improvement in terms of decision accuracy, in



particular rstep(t) has 100% accurate outcomes.

VI. ROBOT SWARM SIMULATIONS

We simulate through ARGoS each proposed strategy in
100 runs on a swarm of S = 200 Kilobots1. We impose
a time limit of Tmax = 2 hours within which we expect
the swarm to reach an agreement in favour of one option
(decision quorum Q = 80%). We use Tmax as a cutoff to
compute the swarm decision/indecision. Figure 5(a) shows
the decision speed and accuracy for n ∈ {3,6} options in a
difficult decision problem of κ = 0.9 (vH = 10 and vL =
9), with a quality estimation noise strength σ2 = 1. As
correctly predicted by the stochastic analysis of Sec. V-B,
low interaction rate (i.e. r = 1) gives slow dynamics and
leaves the swarm undecided, unable to break the decision
deadlock within the cutoff time. A high interaction rate (i.e.
r = 100) speeds up the convergence dynamics at the cost
of low accuracy. The time-varying strategy rramp(t) (with
τ0 = 50 min) shows an improvement in both speed and
accuracy. The accuracy performance is further improved by
the rstep(t) strategy (with τ0 = 50 min) which interestingly
also has a highly consistent and predictable decision time
at few minutes after τ0. Finally, DC has the highest speed
but a very low accuracy due to the quick spreading of noisy
quality overestimates. SSA gives a good prediction of the
expected dynamics although it does not (and is not supposed
to) give the exact same swarm dynamics because the swarm
robotics process and the master equation model are different.
The main differences are caused by the local discovery and
interactions. Discovery transitions are conditional on the
event of robots encountering the localised option in space and
Kilobots’ local communication happens only between nearby
neighbours with slow motion dynamics. Therefore, the robot
swarm is subject to correlated interactions while SSA is
computed under the assumption of uncorrelated interactions.

VII. DISCUSSION

This study investigates novel strategies for consensus-
decision making in decentralised systems in the context of
swarm robotics. Reaching an agreement among all group
members, in our case all robots, can be very challenging,
especially when candidate options have similar qualities [48].
We propose a decentralised strategy that considerably im-
proves decision accuracy and that we tested through compu-
tational analysis of master equations and swarm robotics sim-
ulations. The solution, inspired by honeybee house-hunting
behaviour [11], consists of increasing the strength of inter-
actions among robots over time and is based on principled
understanding and formal analysis of the system dynamics
from previous research [20], [6], [19]. While this work is
limited to simulation, we plan to test the proposed system
on a large-scale Kilobot swarm interfaced with ARK [36].

Most research on decision algorithms in swarm robotics
limits its analysis to binary choice experiments [10]. In the
swarm robotics literature, only a few exceptions investigated

1The robot control software is available online at https://github.
com/DiODeProject/Time-Varying-CDCI

(a) (b)

Fig. 5. (a) 200-Kilobot swarm results (100 simulations for each condition)
for different decision strategies (in each column) in case of n∈{3,6} options
with difficulty κ = 0.9 and noise strength σ2 = 1. Top pie-charts show the
decision accuracy (same colour code of Figs. 3-4(c)). Bottom boxplots show
the decision time; the horizontal red line (at 2 hours) is the cutoff time
to compute the decision outcome (e.g. indecision vs decision). We let the
simulation run a maximum of 5 hours to display the complete decision
time dynamics. Low interaction rate (r = 1) shows low convergence rate
and frequent deadlocks. High interaction rate (r = 100) shows low accuracy.
Time-varying rramp (t) shows an improvement in accuracy, which is further
improved by rstep (t) (both time-varying strategies use τ0 = 50min). The DC
(of Sec. IV) shows low accuracy due to the spreading of noisy estimates.
(b) Speed (green lines with 95% confidence shades and right y-axis) and
accuracy (red lines and left y-axis) of the swarm robotics system for varying
interaction speed τ0 ∈ [0,60]min for the rstep (t) strategy. An inaccurate
tuning of τ0 may lead to sub-optimal performance.

scenarios with more than two options, e.g. [49], [50]. How-
ever, previous theoretical analysis showed that increasing
the number of options can considerably change the swarm
dynamics [19]. We therefore performed our analyses and
experiments in a genuinely best-of-n setup. The proposed
time-varying strategy is able to consistently show remarkably
high accuracy performance and a predictable decision speed,
for any tested number of options.

The time-variant strategy with the best performance sep-
arates the collective decision into two phases: an initial
phase of environment exploration based on independent
behaviour and absence of interactions, and a second phase of
information exchange based on frequent robot interactions to
reach consensus. Similar analyses have shown how systems
of collective motion [51], [52], [53], or foraging [54], [55],
can benefit from modulating the strength of individuals’
interaction in relation to environmental features. While our
strategy shows good performance, we note that the time
to move from the exploration to the interaction phase (i.e.
τ0) should be accurately tuned to the speed of the decision
process and, likewise, to environmental features. In Fig. 5(b)
we show how speed and accuracy vary as a function of τ0
for rstep(t). These results show that inaccurate tuning of τ0
may reduce the system performance. For instance, if the
swarm starts interacting before any option is discovered it
nullifies the positive effects of the strategy; conversely a long
exploration phase could unnecessarily delay consensus and
reduce decision speed. Instead of accurately tuning this key
parameter, in future work we plan to allow individual robots
to autonomously estimate when to move from exploration
to the interaction phase. In this way, the swarm should be
able to adapt its response to the decision problem without
requiring any speed tuning.

https://github.com/DiODeProject/Time-Varying-CDCI
https://github.com/DiODeProject/Time-Varying-CDCI
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