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Abstract— The recent increase in the use of aerial vehicles
raises concerns about the safety and reliability of autonomous
operations. There is a growing need for methods to monitor the
status of these aircraft and report any faults and anomalies to
the safety pilot or to the autopilot to deal with the emergency
situation. In this paper, we present a real-time approach using
the Recursive Least Squares method to detect anomalies in the
behavior of an aircraft. The method models the relationship
between correlated input-output pairs online and uses the model
to detect the anomalies. The result is an easy-to-deploy anomaly
detection method that does not assume a specific aircraft model
and can detect many types of faults and anomalies in a wide
range of autonomous aircraft. The experiments on this method
show a precision of 88.23%, recall of 88.23% and 86.36%
accuracy for over 22 flight tests. The other contribution is
providing a new fault detection open dataset for autonomous
aircraft, which contains complete data and the ground truth
for 22 fixed-wing flights with eight different types of mid-flight
actuator failures to help future fault detection research for
aircraft.

I. INTRODUCTION

Technology for Autonomous Aerial Vehicles (AAVs) has
tremendously advanced in recent decades to include a wide
range of applications from security and traffic surveillance
to the management of natural risks, environment explo-
ration, agriculture, recreation, delivery, and enhancing flight
experience of the hobby and commercial pilots. Despite
the increasing use of AAVs, they do not exhibit the level
of performance and reliability required to complete most
missions autonomously, and there is still a general concern
for their safety and reliability.

To address safety concerns, the Federal Aviation Ad-
ministration (FAA) has suggested a series of regulations
(e.g., Title 14 Code of Federal Regulations) about AAV
safety requirements [1]. A standout amongst the most vital
concerns for reliability is the behavior of the system during
a breakdown, which raises the need for AAVs to have the
capacity to detect faults in the system and react accordingly.

Larger aircraft usually devise redundant hardware to ad-
dress the safety and reliability concern, which is a reliable
approach, but is more expensive, adds weight and occupies
more space. However, for smaller aircraft, including smaller
AAVs, the hardware redundancy is generally not possible
due to space and load constraints. To provide the necessary
reliability to these aircraft, a Fault Detection, Isolation and
Recovery (FDIR) is required. Fault Diagnosis is a funda-
mental piece of FDIR techniques which can be divided into
three sections: Fault Detection, Fault Isolation and Fault
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Fig. 1. An overview of the problem: in the occasion of an anomaly or a
fault occurring in the AAV system, not having knowledge about the fault
can be a great threat for the AAV safety (upper right image). However, AAV
may perform emergency reaction if the fault is immediately detected.

Estimation. Fault Detection is to recognize if a problem has
happened; Fault Isolation is to decide the area in which the
fault has occurred; Fault Estimation is to find the type of
fault and its impacts.

Our contributions include: 1) Providing an easy-to-deploy
method for detecting anomalies in the behavior of aircraft
due to sudden actuator, sensor or component faults. Our
Anomaly Detection method is simple enough to be easily
implemented and integrated into a new type of aircraft and
does not assume a specific aircraft model. It is computation-
ally low-cost and can detect many types of faults and failures
in a wide range of autonomous aircraft (e.g., large and small
single-rotor aircraft, multirotors, fixed-wings). 2) We provide
a new open dataset for autonomous aircraft fault detection.
It consists of complete data from 22 flights containing eight
types of failures of 4 different actuators on a real fixed-wing
UAV. The dataset provides the ground truth for the failures
(exact time and the type of failures) to help future research
in the fault detection area.

II. BACKGROUND

In past decades, many new Fault Detection methods were
introduced in response to the concerns for the safety of
aircraft operations. Many of these methods target only spe-
cific types of aircraft: Kuric et al. [2] and Han et al. [3]
present approaches for use in multirotors; Qi et al. [4], [5]
review different methods for Fault Diagnosis in helicopters;
Melody et al. [6] and Ansari et al. [7] describe methods
for icing detection and sensor fault detection in fixed-wings,
respectively.

A fault is defined as any undesired deviation of one or
more parameters of a system from the standard conditions
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[8]. In an aircraft, faults can be classified as actuator faults,
sensor faults and plant (or component or parameter) faults
[4]. Actuator faults include partial or total loss of an actu-
ator’s control, which can result in a constant output (e.g.,
a stuck rudder or an engine failure), change in the actuator
gains (e.g., partial loss of engine power), or drift in output
values (e.g., change in the trim of the elevator). Sensor faults
represent wrong measurement readings by the sensors, which
can result in total faults (e.g., a random output from a faulty
sensor), bias faults (e.g., bias in gyroscope reading), gain
faults (e.g., in uncalibrated range sensor) and outlier faults
(e.g., jumps in GPS reading). Plant faults include problems
that change the dynamic properties of the system (e.g., a
damaged wing) and the complete loss of communication
between the controller and a component [9].

Many of the fault detection methods are developed only to
detect a specific set of faults. For example, Melody et al. [6]
and Cristofaro et al. [10] present methods for icing detection
in fixed-wing aircraft, Kuric et al. [2] describe a method for
the detection of propulsion system faults in octorotors, and
Ducard [11] focuses on actuator fault detection.

Various types of approaches exist for the task of fault
detection [5], [12]. Analytical and model-based approaches
devise mathematical models. In many cases, the depen-
dency on the accurate prior modeling of machines with
such complexity as aircraft makes it hard to apply these
methods for other types of aircraft or faults. Another class
of methods is signal processing-based approaches. These
methods avoid the need for the aircraft model, and they
determine the faults through analysis of the signals available
in the aircraft. Knowledge-based approaches use information
related to the faults and devise the knowledge of experts to
detect different types of faults without the need to model
the aircraft accurately. However, transferring the developed
knowledge-based methods from an application to another
application or extending them to cover different types of
faults is very challenging.

Many of the available methods are a combination of
two or more classes. The authors in Melody et al. [6] use
three different methods for parameter estimation to monitor
changes in dynamics model for icing detection on fixed-wing
aircraft: Batch Least Squares method, Extended Kalman
Filter and H∞ algorithm. The tests in simulation show
that only H∞ works for the purpose, which relies on a
good model and assumes that state derivative information is
available. The algorithm presented by Birnbaum et al. [13]
compares the time spent on different segments of the flight
plan with the actual flight times to detect unplanned flight
deviations indicative of a cyber attack, sensor spoofing, or
structural failure. The method avoids the need for a good
model but depends on the availability of an accurate flight
plan that already respects the model constraints.

Recursive Least Squares (RLS) is a standard signal
processing-based technique for filtering and parameter es-
timation. The approach proposed by Kuric et al. [2] di-
agnoses propulsion system faults in multirotors using RLS
for controller parameter estimation and tests the method in

simulation on a triple motor fault scenario. The method
by Han et al. [3] uses RLS for quadrotor actuator fault
detection and devises a parity space approach to estimate
the forgetting factor for RLS. The method proposed by
Birnbaum et al. [14] applies RLS to the given model for
UAV and performs estimation and tracking of the controller
parameters. It processes the data in batches of size 500
samples and compares the parameters of different batches
to detect discrepancies indicating anomalies.

Khalastchi et al. [15] perform anomaly detection for
different types of unmanned vehicles by first learning corre-
lated input-output pairs of the system and then calculating
Mahalanobis distance between data batches resulted from a
sliding window on each stream of correlated input-output
pairs.

Other notable methods include Neural Network-based
methods used for fault diagnosis and recovery [16], [17],
a Fuzzy Inference System (FIS) decision system combined
with Particle Filter used for GPS fault detection on a hexaro-
tor [18], and methods utilizing Unscented Kalman Filter for
sensor and actuator fault detection [19], [20], [21].

The method presented in this paper is a new real-time
signal processing-based approach using the RLS method to
detect anomalies in the behavior of an aircraft. The proposed
method shares some basic ideas with [14], but in contrast
to the methods modeling the entire aircraft, we only model
the relationship between arbitrary correlated input-output
signal pairs and rather than building the model prior to the
flight, we estimate the model online. The proposed method is
independent of the type of the aircraft, is not doing any batch
processing (making it real-time) and does not assume any
specific fault models. It can detect a wide range of anomalies
in the behavior of various types of vehicles. We show the
performance of the method on real field tests consisting of
different fixed-wing actuator and engine faults.

III. PROBLEM DEFINITION
The integration of a fast and reliable fault detection

method can make a difference between a crash and a safe
emergency maneuver for landing (See Fig 1). There is a need
to develop a Fault Detection System that:

– Has minimal or no dependency on the type and model
of the aircraft,

– Can detect a wide range of anomaly types,
– Does not rely on external information (e.g., flight path),
– Works in real-time with a low computation cost,
– Is simple to implement and can easily be integrated into

a new aircraft,
– Shows high performance in practice and not just in

simulation.
Almost all the available methods for fault detection in

AAVs depend on the model of the aircraft and are not
able to easily be ported between two aircraft types. Some
methods reduce this dependency by learning the dynamics
of the aircraft from the past flights, but these methods rely
on the assumption of a constant model, which is not practical
in many applications where the dynamics can change from
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Fig. 2. The flowchart of our method. The ARX Time-Domain Transfer
Function is estimated for an input-output pair at each step using the RLS
method. The error between the estimated output from the model and the
measured output is used for both updating the model and for fault detection
by calculating its Z-score.

a flight to another (e.g., package delivery). Many of the
methods are using characteristics of one or more specific
sensors or modules to detect anomalies and faults in their
outputs and behavior. This is also limiting the approach to
detection of just specific fault types in the system. Some
other methods heavily depend on external information such
as accurate flight plans available to them. However, this
is very impractical in many autonomous operations where
trajectories change in flight to avoid collisions or to fly
in unknown or partially-known environments. Finally, most
of the proposed methods so far have never been tested in
the field and have only shown results from software and
Hardware-in-the-Loop simulations.

Our work aims to provide a solution to the fault detection
problem that has all the mentioned characteristics needed
for a Fault Detection system. The next section describes our
method, its underlying theory and the assumptions for its
reliable performance.

IV. APPROACH

Our proposed method monitors a number of given input-
output signal pairs of the aircraft. For each pair, the system
identifies the relationship between the input and output
signals and for each input signal sample, it predicts (esti-
mates) the corresponding output sample. It solves the fault
estimation problem by finding unexpected changes in the
given output value compared to this predicted output sample.
A high-level overview of the presented method is shown in
Figure 2.

This section discusses the chosen model for the relation-
ship between the input and output signals, the algorithm used
for the model estimation and the prediction of the output, the
criteria used for anomaly detection, and the assumptions for
our method.

A. The Model

The aircraft dynamics is highly nonlinear and cannot be
captured using a linear model. However, in this approach,
the goal is to model the relationship between two signals
instead of the whole aircraft dynamics. Many signal pair are
linearly related to each other; therefore we can use a linear
model to estimate the relationship between such signals.

A general time-series linear model to capture the relation-
ship (model) of the signals in a system takes the following
form [22]:

y(k) =
B(q−1)

A(q−1)F (q−1)
u(k) +

C(q−1)

A(q−1)D(q−1)
n(k) (1)

where q−1 is the lag operator (also known as time-shift
operator), A(q−1), B(q−1), C(q−1), D(q−1), and F (q−1)
are polynomials of lag operators, u(k) is the input signal
and y(k) is the output signal. White noise n(k) is assumed
to have zero mean value and constant variance.

For our purposes, we chose an Autoregressive Exogenous
(ARX) Time-Domain Transfer Function model, which is a
specific case of the general linear model described above,
where C = D = F = 1. ARX model is defined as:

y(k) =
B(q−1)

A(q−1)
u(k) +

1

A(q−1)
n(k) (2)

which can be expanded as:

akyk + ak−1yk−1 + . . .+ ak−na
yk−na

= bkuk + bk−1uk−1 + . . .+ bk−nb
uk−nb

+ nk
(3)

The ARX model captures the input-output relationship
using nb and na coefficients for past input and output
samples, respectively. In other words, to estimate (predict)
the current output yk, it is enough to have the coefficients
ai and bj , na past outputs, nb past inputs and the current
input uk. As mentioned above, the white noise term n(k) is
assumed to have zero mean value and constant variance.

B. The Estimation Algorithm

Assuming a true unknown ARX model θ for the relation-
ship of input-output signals, the estimation algorithm aims
to calculate an estimated model θ̂ which converges to θ
given enough samples. Recursive estimation methods aim
to compute a new estimate θ̂k by a simple update to θ̂k−1
when a new observation becomes available at iteration k.

Our approach uses the Recursive Least Squares (RLS)
method, which is an online optimization method (also fa-
mous as an adaptive filter algorithm) that recursively finds
the coefficients to minimize a weighted linear least squares
cost function related to the input signals [23]. This approach
is in contrast to other algorithms such as Least Mean Squares
(LMS) that aim to reduce the unweighted mean square
error offline. In the derivation of RLS, the input signals
are assumed to be deterministic, while for LMS and similar
algorithms they are considered stochastic. Compared to most
of the other methods, RLS exhibits a fast convergence
[24]. However, this benefit comes at the cost of higher



computational complexity. The algorithm can be written in
the following form:

Error term,

ê(k) = y(k)− φT (k)θ̂(k − 1) (4)

Gain matrix,

L(k) =
C(k − 1)φ(k)

1 + φT (k)C(k − 1)φ(k)
(5)

Estimated parameters,

θ̂(k) = θ̂(k − 1) + L(k)ê(k) (6)

Covariance of estimated paramerters,

C(k) = C(k − 1)− L(k)φT (k)C(k − 1) (7)

where, θ̂(k − 1) is a vector containing the stack of all
the coefficients of the estimated ARX model before being
updated with the new input; φ(k) is the vector containing all
the new and past y and u signals stacked. φT (k)θ̂(k−1) is the
prediction of the output using the new input and the model,
which is used to calculate the error between the current
output estimation and actual measured output given to the
algorithm. This error term is used further for both updating
the model itself and for fault detection (Sec. IV-C). To update
the model, first, a gain matrix L is calculated using the data
vector φ(k) and the covariance matrix C(k − 1), then this
gain is used to determine the magnitude of the update to
the model θ̂. In the end, the covariance matrix is updated
to be used for future model updates. The covariance matrix
can be seen as an indicator for uncertainty in our model:
a larger covariance means more uncertainty and results in
a higher gain and more substantial updates to the model in
each step; a smaller covariance means a less uncertainty in
the model and tends to keep the model updates small. For
initialization, the model can be set to a zero vector and the
covariance matrix can be set to an identity matrix; however,
to show a high uncertainty in the initial model and to increase
the convergence rate, the covariance matrix can be set as a
diagonal matrix with very large diagonal values.

After each step, the model is tested for stability. In
practice, if ‖L(k)ê(k)‖∞ < ε for some time (with ε set
to a small positive number), the model can be considered as
stable for fault detection.

C. Criteria for Anomaly Detection

Each step k of the estimation algorithm described in
Sec. IV-B calculates an error term ê(k) from the input
φ and the estimated model θ̂. This error term captures
the difference between the output ŷ(k) predicted by the
estimated model and the actual output y(k) measured by the
sensors. The variance of the error terms is calculated online
using Welford’s recursive method [25] shown below:

x̄n = x̄n−1 +
xn − x̄n−1

n
M2,n = M2,n−1 + (xn − x̄n−1)(xn − x̄n)

s2n =
M2,n

n− 1
, σ2

n =
M2,n

n

(8)

Fig. 3. The distribution of roll estimation error from a sample sequence
can be approximated by a zero-mean Gaussian distribution (the red curve).

Due to the Central Limit Theorem, the distribution for the
error term ê can be assumed as a Gaussian distribution. This
can also be observed in Figure 3 from the distribution of roll
estimation errors from a sample flight sequence. Therefore,
we can use the standard deviation for ê to calculate the
confidence of the new error term ê(k). Assuming that the
estimated model θ̂ can capture the relationship between the
input-output pairs of the fault detection system, a high Z-
score for ê(k) shows that the output cannot be reliably
predicted anymore, which may indicate an anomaly in the
system. The variance of error terms ê can be estimated from
the start or from when the estimated model θ̂ is already
stable (does not significantly change in each update) but new
error terms with high Z-scores are flagged as anomaly only
after variance is also stable after initial instability when the
variance significantly changes after each update.

D. Assumptions

The given approach estimates an ARX Discrete-Time
model for each stream of input-output signals. This model
assumes that the samples are available at a fixed sample rate.
However, in practice, the method has shown some degree of
robustness to small variations in the frequency of the stream
of input-output samples.

The input and output signals of the system can be chosen
as any pair with approximately a linear relationship. Un-
correlated pairs are very unlikely to allow for the model
estimation to stabilize, therefore adding uncorrelated pairs
to the system will not help with the fault detection and will
not result in false anomaly detections either. However, adding
pairs with nonlinear relationships may result in stabilization
of the estimated model and cause false detections later. The
ideal choice for the input-output signals is the instantaneous
commanded signal and its measured value for most of the
signals. For example, the instantaneous roll commanded by
the autopilot and the measured roll would be a useful pair
for anomaly detection using this method.

Finally, the method assumes abrupt failures and may not
be able to detect gradual faults. Besides, it is assumed that



Fig. 4. The Carbon-Z T-28 fixed-wing UAV platform equipped with an
onboard computer and additional modules for our tests.

the failure happens after the initialization phase when the
model and the variance prediction are already stable.

V. TESTS AND RESULTS

A. Hardware and Software

To test our proposed method, we implemented it in Linux
Ubuntu 16.04 (Xenial) using C++’11 language and Robot
Operating System (ROS) Kinetic Kame. The flight test
platform is a custom modification of Carbon Z T-28, a fixed-
wing UAV with 2 meters of wingspan and a central electric
engine. Fig. 4 shows the platform with the added sensors. In
addition to a Pixhawk autopilot, a GPS module, a Pitot Tube
airspeed sensor, and an Nvidia Jetson TX2 were added to
the base platform. Pixhawk uses Ardupilot/ArduPlane v3.9.0
flight control software modified to publish the desired data
for monitoring and to provide a direct way of imposing
a failure on actuators in an autonomous flight. For safety
purposes actuators were failing to work only until the flight
mode was changed, giving the safety pilot ability to take
control over the plane at any time that safety was going to
be compromised. The trajectory controller for autonomous
flights is a version of the controller used by Schopferer et al.
[26] to control the plane using an onboard computer vs. the
original one that was controlling it from the ground station.

B. Tests and Dataset

The trial results were gathered to experimentally verify
the capacity to recognize and detect different types of faults
in AAV systems. We have tested eight types of failure
consisting: Left/right/both ailerons stuck at zero position,
elevator stuck at zero position, engine full power loss, rudder
stuck at the left/right position, and both ailerons and rudder
stuck at zero position. These failures are all actuator failures.
We have provided the full dataset retrieved from our tests
to facilitate future research in the area of automatic fault
detection. It comprises full information containing ground
truth (the time and type of the failure) from 22 flight tests
on a fixed-wing AAV. The data from this work is further
integrated into the AIR Lab Failure and Anomaly (ALFA)
Dataset, which is presented in [27] and is available at http:
//theairlab.org/alfa-dataset.

TABLE I
TEST STATISTICS

Failure
Type

# of
tests

Flight
Time(s)

Avg.
Detection
Time(s)

Max
Detection
Time(s)

Accuracy
(%)

Engine 7 665 2.28 3.37 100
Rudder 3 171 0.21 0.25 -
Elevator 2 181 0.36 0.36 -
Aileron 4 340 3.31 5.6 -

Rudder/Aileron 1 116 3.48 3.48 -
No Failure 5 262 - - -

Total 22 1735 2.02 5.6 86.36

We modified the Ardupilot firmware to publish com-
manded roll and pitch signals, then compute roll error and
pitch error and use these four signals as input to our method.
We defined roll/pitch errors as the difference between the
commanded signal and the measured signal. For example, for
roll error, the input pair would be uroll and (yroll − uroll).
These input signals are generated with the frequency of about
25Hz, and we assume a Gaussian distribution for noise.
It can be mathematically proven that for unlimited number
of signal samples, both roll/pitch and roll/pitch errors can
capture the exact same amount of statistical information;
however, on account of the limited number of samples being
fed to the system, roll/pitch error could sometimes capture
better model and hence result in better performance. We
use Z-score of 4.5, which corresponds to the 99.99931%
confidence interval. It takes at least 8 seconds (200 samples)
for the model to become stable. In our tests, we used the
inputs from the last second (25 samples) for the estimation
of the new output.

C. Results

Table. I presents the statistics over 22 flight tests with
different types of failure. We evaluate our method by utilizing
different performance metrics. One performance metric is
the number of false detections (False Positives and False
Negatives). Our test results indicate a total number of 2
False Positive (FP) and 2 False Negative (FN) detections
out of 22 tests, where 1 FP and 1 FN happen in a single
flight (it announces anomaly but before the failure actually
happens). With the 19 correct sequences, our method results
in 86.36% accuracy, 88.23% precision and 88.23% recall
(sensitivity) over 22 flight tests. The evaluation metrics used
for our calculations are explained in more details in [27].

Figure 5 and shows how the system finds an anomaly
from Roll Error commanded/measured pairs when an engine
failure happens. After the initial stabilization phase, the Z-
score of the prediction error tends to be significantly less
than the set threshold of 4.5 for the anomaly. Figure 6 shows
the system monitoring Pitch commanded/measured pair not
being able to detect the failure at the same time despite
having a spike in the prediction error Z-score when the
failure happens. In this particular example, the Roll Error
signals are the one announcing the anomaly in the system.
The figures also show how the variance of the prediction
error stabilizes after the model stabilization.

http://theairlab.org/alfa-dataset
http://theairlab.org/alfa-dataset
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While this work and [27] provide a dataset suitable for
benchmarking different methods, to the best of our knowl-
edge, there has been no benchmark dataset available prior
to this work to enable direct comparison with the published
results of similar works like Venkataraman et al. [28] and
Bauer et al. [29]. The use of our dataset in the future will
enable the comparison of methods to the state-of-the-art.

VI. DISCUSSION AND FUTURE WORK

The proposed method provides a simple way to add
a Fault Detection System to an autonomous plane. The
method works by monitoring pairs of input-output signals
for unexpected output values for the provided input signals.
The selected pairs should have a linear relationship with each
other in order to be useful in the fault detection process;

therefore they need to be selected carefully. To simplify
this manual process, another system can automatically find
correlated input-output pairs (similar to the work done by
Khalastchi et al. [15]) and feed them to the current system
for monitoring.

The current system creates a separate single-input single-
output model for each input-output signal pair. In many
cases, output signals get influenced by two or more signals.
One idea to handle these relationships can be to find these
input-output signal sets from the model of the aircraft and
perform a multidimensional model estimation for fault de-
tection. However, this approach will make the current model-
independent method dependent on the specific aircraft type.
To avoid this dependency, it is possible to add all inputs and
all outputs to a single multidimensional model. This will be
at a much higher computational cost, and the model may
face convergence issues.

Most of the published results so far, either have not re-
ported any results on real flights or have not clearly explained
their exact way of testing. By providing our dataset, we hope
that it will save other researchers data collection time and
help them in assessing their implemented methods. We have
integrated this dataset into a larger ALFA dataset [27], and
we aim to further provide mid-air sensor and actuator failures
for different types of AAVs.

The lack of excitation in the signals may result in poor
model estimations in RLS-based methods. A possible future
improvement can be turning the model estimation off when
there is not enough excitation [30].

Finally, to capture nonlinear relationships between input-
output signal pairs, it is suggested to try using a Nonlinear
Autoregressive Exogenous (NARX) model with a nonlinear
model estimation in future developments.

VII. CONCLUSIONS

In this paper, we proposed a method for real-time fault
detection using the RLS algorithm. We implemented our
method on an autonomous fixed-wing aircraft, and our
experiments show a precision of 88.23%, recall of 88.23%
and 86.36% accuracy during 22 flight tests. Our results
show improvement of both accuracy and detection time for
fault detection in AAVs compared to the other available
approaches. The key contributions that distinguish our work
from the previous research in this area are that our method
estimates the model between correlated input-output signal
pair online and therefore does not depend on a specific
model, can detect a wide range of anomalies, and is easy
to integrate to any system. Furthermore, we have provided
our dataset with 22 tests including eight different types for
mid-air failures for public use.
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