arXiv:1905.00842v1 [cs.RO] 2 May 2019

Shear-invariant Sliding Contact Perception with a Soft Tactile Sensor

Kirsty Aquilina, David A. W. Barton and Nathan F. Lepora

Abstract— Manipulation tasks often require robots to be
continuously in contact with an object. Therefore tactile per-
ception systems need to handle continuous contact data. Shear
deformation causes the tactile sensor to output path-dependent
readings in contrast to discrete contact readings. As such, in
some continuous-contact tasks, sliding can be regarded as a
disturbance over the sensor signal. Here we present a shear-
invariant perception method based on principal component
analysis (PCA) which outputs the required information about
the environment despite sliding motion. A compliant tactile sen-
sor (the TacTip) is used to investigate continuous tactile contact.
First, we evaluate the method offline using test data collected
whilst the sensor slides over an edge. Then, the method is used
within a contour-following task applied to 6 objects with varying
curvatures; all contours are successfully traced. The method
demonstrates generalisation capabilities and could underlie a
more sophisticated controller for challenging manipulation or
exploration tasks in unstructured environments.

I. INTRODUCTION

Continuous contact sensing is crucial for robot manipu-
lation or tactile exploration as these activities usually re-
quire the robot to be in continuous contact with objects.
Furthermore, it is frequently desirable to use compliant touch
sensors, which make the perception more challenging due to
motion dependency caused by their sensitivity to shear [1].
Shear deforms the sensor (Fig. 1) depending on the sliding
direction, thus making sensor readings history dependent.

The novelty of this work is to verify the hypothesis that
features found in independent tactile readings (taps) can also
be extracted from data perturbed by sliding motion. Sliding
motion causes the sensor skin to deform, and so sensor
readings would depend on both the tactile features of the
object and the shear direction. Thus, while discrete tap data
is similar for the same tactile features, with sliding motion
those features can produce completely different readings
(Fig. 2). This paper finds a link between discrete tactile data
(taps) and movement dependent data by showing that a linear
transform can extract features of interest despite the sliding.

For validation, we apply a simple perception method
trained on discrete contact data (taps) to continuous contact
data collected offline and to continuous contact data for
contour-following whilst sliding. The perception method uses
principal component analysis (PCA) to extract features from
tactile data which are then mapped to the sensor pose using
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Fig. 1: (a) The experimental setup showing four 3D-printed objects, a natural
object (a tape measure) and a laser-cut spiral used for contour-following.
The TacTip is the end effector of a 6 axis ABB robot (IRB120). (b) Close-up
of the TacTip sensor. (c) The image captured by the TacTip at no contact.

nonlinear regression. We also exploit PCA to visualise the
output of a soft biomimetic tactile sensor (the TacTip [2],
[3], shown in Fig. 1) and show that the data are strongly
influenced by the sliding direction of the sensor (Fig. 2). This
shear-invariant perception method extends previous tactile
exploration studies [4], [5] that used tapping movements
(independent tactile data) by demonstrating reliable sliding
contact tactile exploration (contour-following) of various
objects (Fig. 1a) despite being trained using discrete contacts
on a straight edge.

II. BACKGROUND

Sliding motion influences tactile sensing both in humans
[6], [7], where the direction of motion results in different
responses, and in artificial touch sensors, where shear de-
forms their outer soft layer. For example, sliding displaces
the internal markers of the GelSight sensor [8], [9] and intro-
duces higher inaccuracies in a force/torque sensor embedded
in a rubber-covered fingertip [10]. Continuous tactile sensing
during sliding can thus be a challenging task.

Tactile exploration is a commonly studied task which
usually involves executing a sequence of discrete contacts
on an object [4], [5], [11]-[13]. Some have addressed this
by using a Gaussian process (GP) model of the surface
and exploring the most uncertain regions [11], [12], or by
combining the uncertainty with the cost of travel [13]. Others
used the perceived edge orientation to perform contour-
following of a flat object [4], [5].

Other studies perform continuous tactile exploration where
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Fig. 2: The effect of sliding motion on the tactile data. (a) The black trace
shows the pin motion of the sensor when tapping across a straight edge
at different lateral positions without sliding. The coloured traces depict the
sensor moving the same amount across the edge as the black trace whilst
sliding in different directions (from 0° to 315°). (b) Zoomed in version of
(a) over the central pin marked by the central rectangle. Notice the difference
between statically collected points (black) and those collected whilst sliding
(coloured), showing that sliding influences the tactile sense.

the sensor is constantly in contact. Some of these studies
perform tactile exploration by using a tactile servoing ap-
proach [14], [15], whilst others explore along the tangential
plane of the surface [10], [16], [17]. Typically these use
either flat tactile sensor arrays [14], [15], which provide
limited tactile feedback through tactile images, or force-
torque measurements only [10], [16], [17]. There is thus
a need for more studies that address continuous tactile
exploration using tactile sensors with complex outputs (such
as biomimetic sensors) that provide more information but
that at the same time require a more complex perception
system. In this work we show that sliding contact tactile
exploration can be achieved using a complex touch sensor
with an adequate perception system.

Previous work with the TacTip mostly involved discrete
contacts (taps) with a surface for localization [18], tactile
exploration [4] or performed a rolling motion [19], [20] or
slip detection [21]. This study takes a different approach from
[4], [18]-[20] by using unsupervised and supervised learning
to perform sliding motion over an edge stimulus.

III. METHODS

A. Experimental Setup

1) Hardware: The setup consists of a 6 axis robot arm
(ABB IRB120) with a biomimetic optical tactile sensor (the
TacTip [2]) as an end effector (Fig. 1a). The TacTip is a
multi-material 3D-printed sensor with a 40 mm rubber-like
dome with 127 white internal pins placed in a hexagonal
arrangement (Figs. 1b, c). The dome is filled with a gel that
makes it soft and compliant. A USB camera tracks each
individual pin in each recorded frame using image processing
techniques [3], thus the sensor outputs the 2D pixel positions
of each pin for each frame; refer to [3] for further details.

The stimuli used in the experiment are four 3D-printed
plastic objects, one natural object (a tape measure) and one
laser-cut acrylic spiral [4]. The 3D-printed shapes are a
rectangle, two differently sized circles and a 5-petal flower-
like shape. The objects are rigidly fixed in front of the robot.
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Fig. 3: Training performed on a straight edge. At each orientation the sensor
moves forward along the arrow without touching the object until it reaches
the required position, then the sensor descends to touch the object (tap). The
horizontal lines show the lateral training positions. Position 0 mm aligns the
middle of the sensor with the edge.

2) Training set experimental procedure: We collected a
training set by tapping the sensor over the rectangular stimu-
lus edge at different lateral positions, depths and orientations
(Fig. 1a). During a tap, the robot reaches the required sensor
lateral position and orientation and then moves down onto the
object to the required depth. The collected dataset comprises
288 poses (18 orientations x 8 lateral positions x 2 depths),
with 1 frame recorded at each sensor pose.

The sensor rotates in 20° increments from -160° to 180°.
At each sensor orientation 6; (i € {1,...,18}), the sensor
moves to 8 different lateral positions I; with i € {1,...,8}
(Fig. 3); namely, 9.9 mm and 6 mm to -6 mm in -2 mm steps.
The middle of the sensor is in contact with the edge of the
object at the O mm position, while at the 9.9 mm position
the sensor is not touching anything. At each lateral position,
the sensor moves to two different depths: 2 mm and 4 mm
into the object. Data were collected at different depths to
ensure the perception method would still generalise in case
the stimuli are not perfectly aligned. The perception label w;
refers to either the [; label or 6; label.

B. Algorithms

1) Data Representation: The data recorded by the TacTip
consists of the x and y pixel positions of the 127 internal
pins, as observed in each camera frame. The data is a column
vector of these positions:

z = [517""8Ndims]T (1)

where s is a pixel position value, k is the dimension index
and Ngims is the total number of sensor dimensions (here
254). The training data is stored as a data matrix, D =
[zl, ey ZN]T, where N is the total number of collected
frames during the experiment with N = 288 (the total
number of sensor poses).

2) Principal Component Analysis and Data Transforma-
tion: Aquilina et al. [22] showed that when the taxels
(sensing elements) of a touch sensor are correlated to each
other, linear dimension reduction (PCA) can uncover useful
structure in the data. This applies to the TacTip [22], which
motivates the use of PCA in this work and where we extend
it by showing that features found in tap data can also be used
for sliding contact data.
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Fig. 4: Multi-directional data collection procedure. The sensor slides along
different directions at 45° increments. Along each direction the sensor pose
varies as seen in Fig. 3, so the same colour bar applies here. The cross
markers indicate the starting position of the sensor’s midpoint and the arrow
indicates the sliding direction. Here a 90° motion means that the sensor
slides westward along the edge.

PCA is performed on the data matrix D and the first 3
principal components (PCs), are used in the rest of this study.
These PCs, which are the projections of D, cumulatively
describe 88.3% of the signal variance in D. Each frame z
is projected into vector p using p=(e; ey 63)T (z—2)
where p is a 3D column vector, Z is the mean of each column
in D, and ey, ez and ez are the column eigenvectors.

Motivated by the correlation between sensor orienta-
tion and the angle of p in the 2™ and 3" PC plane
[22], we transform each vector p into modified spheri-
cal coordinates v. The vector v consists of p, Opcys and
¢ where p?>=PC1?4+PC22+PC3?, Opcy3 =atan2(PC3, PC2)
and ¢ =atan2((PC22+PC3%)z,PC1). The operator atan2 is
the four quadrant inverse tangent operator which considers
the full 360° range and PCN is the N PC. The first no
contact point collected is set as the origin, unless there are
multiple depths in the training set in which case the origin
used to compute p and ¢ is shifted in the PC2-PC3 plane for
each 0pcos so that the same lateral positions in the middle
of the collected range for different depths have the same ¢.

3) Training Data Pruning: Data pruning is the elimina-
tion of noisy or mislabelled data from the training set to
improve the performance of the learning algorithm [23]-
[25]. Points collected at no contact during the training
procedure have different physical quantity labels but are
in reality indistinguishable. These points would introduce a
discontinuity in a regression-based algorithm, therefore we
remove them from the training set.

We use the sensitivity measure S introduced in Aquilina
et al. [22] to remove the indistinguishable data points. The
sensitivity is defined by

_ lIAp]

2
where ||Ap|| is the change in the projected vector p and
|Aw;| is the change in label values (either orientation or
lateral position). A large sensitivity .S denotes a large change
in sensor measurements ||[Ap|| for a fixed change in the
physical quantity of interest |Aw;|, thus poses with a small
S are the most difficult to perceive. Using the sensitivity
measure S of each training point we eliminate outlying data
from the training set by comparing it to a decision criteria.
Following Hoaglin et al. [26], the Tukey outlier detection rule
(boxplot) is used to remove outliers that have a large S—!,
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Fig. 5: Flowchart of the overall contour-following system. The perception
block consists of a PCA module which projects the sensor data into a 3D
vector p, this is transformed Ainto Spherical coordinates v which are the
input of the GPs that output 6 and /. The control policy block shows the
dependencies of the control variable w on the estimated orientation 6 and
the P controller used to reach a desired lateral position 1.

thus keeping only the easily distinguishable observations. An
upper limit is used for the lateral position training set to
ensure that at least 90% of the data is always kept.

4) Nonlinear Regression: We use nonlinear regression to
map between the sensor data and the physical quantities
of interest (the sensor lateral position and orientation). We
use Gaussian Process Regression [27] with a Matérn 5/2
covariance function and a constant mean function. The GP
is implemented using [28] and the hyperparameters are
found by optimising the log marginal likelihood [27] using
a constrained optimiser (MATLAB optimisation toolbox).

Three independent GPs are used for regression: two to
predict the sensor orientation, encoding the cosine (referred
to as GP.,s) and sine (referred to as GPgj,) of the sensor
orientation and a third for the sensor lateral position (referred
to as GPjy). The predicted sensor orientation is computed
by using 0 = atan2(fung, feosd), Where fung is the mean
prediction of GPg;, and fws@ is the mean prediction of
GP.os. GPiy outputs the predicted lateral position [. The
spherical coordinates v are the inputs of the GPs and the
outputs are 6 and I.

We constructed baseline GPs to have a comparison method
that does not use PCA. The baseline GPs perform regression
using the raw sensor measurements directly using only one
hyperparameter for all the pin positions. We use the baseline
GPs to quantify the increase in perception accuracy obtained
by including the PCA transform.

C. Offline Testing data collection

The offline test dataset is referred to as a multi-directional
dataset as we collected the data over different sliding di-
rections. We use the multi-directional set to evaluate the
generalisation performance of the perception method which
is trained using data recorded while performing taps.

The multi-directional data collection consists of recording
the tactile data whilst the sensor slides against the edge of
a rectangular object (Fig. 4). The dataset comprises 1152
points (18 orientations x 8 sliding directions x 8 lateral
positions), with 1 frame recorded at each sensor pose.

At each sensor orientation (see Sec. III-A.2) the robot
slides in different directions in 45° increments (Fig. 4). The
starting position of each sliding movement is depicted by a
black cross (Fig. 4). For each sliding direction, the sensor
moves to 8 lateral positions in steps (refer to Sec. III-A),
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Fig. 6: The PCs obtained by projecting the multi-directional test set onto the PCA eigenvectors of the multi-directional test set. The top row shows the
projections obtained using the 1% and 2" eigenvectors of the multi-directional set. The bottom row shows the projections obtained using the 4" and 5™
eigenvectors of the multi-directional set. The colour of each point shows the true sensor orientation (same colour bar as Fig. 3).
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Fig. 7: The PCs obtained by projecting the multi-directional test set onto the 2" and 3" PCA eigenvectors of the training set (Fig. 3) . The colour of each

point shows the true sensor orientation (same colour bar as Fig. 3).

starting at position -6 mm (on the surface) for motions from
90°-270°, and at position 9.9 mm (off the surface) otherwise.
The sensor spends approximately the same amount of
time in contact with the surface irrespective of the sliding
direction. Therefore the sensor is only fully in contact with
the surface for a length of 6 mm along the sliding direction,
except for the 90° and 270° motions where the sensor is in
contact with the edge during all the lateral positions.

D. Task: Contour Following

We achieve tactile exploration by combining the percep-
tion method with a simple controller (Fig. 5). The control
policy [5] moves the sensor to the robot position u with Aw
composed of: 1) 3 mm linear exploratory movement e along
the perceived edge orientation and 2) a lateral correction
movement perpendicular to the perceived edge orientation.
We assume that the position of one point on the contour is
known. The sensor orientation is fixed during the task and
a proportional (P) controller with a hand tuned gain K of
0.35 is used for the correction movement. The control policy

(Fig. 5) is thus
du=10) (5 )

3)

where R(6) is the rotation matrix that aligns e with the edge
and [ is a constant representing the desired lateral position.

IV. RESULTS
A. Multi-directional Continuous Tactile Contact

Here we examine the response of the sensor when sliding
along the edge of a rigid object. We visualise the data using
PCA to understand the sensor’s response. Subsequently, the
projections obtained using the tap training set are presented
and lastly the accuracy of the perception method is evaluated.

1) Multi-directional test data visualisation: PCA pro-
jections provide a low-dimensional vector representing the
vector of tactile measurements z. We plot this projection in
3D (see [22]) to gain a better understanding of the underlying
behaviour of the sensor with respect to the environment.
We visualise the multi-directional set in Fig. 6 to examine
the effects of sliding motion; the colour shows the true
sensor orientation.

The 1% and 2" PCs of the multi-directional set do not
show a correlation between the sensor orientation and the
PC1-PC2 angle (fpc12), but instead, show a correlation to the
sliding direction. This is shown in the first row of Fig. 6 by
the location of the individual colours varying from panel to



panel (left to right). Additionally, the magnitude of the vector
comprising PC1 and PC2 is correlated to the magnitude of
the shear, with a small magnitude for measurements which
were recorded before the sensor started sliding. When the
sensor slides along an object, shear force effects dominate
the movement of the pins, which explains why sliding is
represented in the first two PCs.

Higher PCs obtained from the multi-directional set rep-
resent sensor orientation features that are independent of
the sliding direction. There is a large correlation between
the angle of the projections in the PC4-PC5 plane and
the true sensor orientation which is mostly invariant to the
shear direction (bottom row of Fig. 6). The 3™ PC is not
shown as it does not contain any information related to
sensor orientation.

2) Multi-directional projections using the training set:
The PCA-based perception algorithm uses a small training
set (288 data frames) collected during discrete contacts with
the object to infer orientation features in the continuous con-
tact tactile dataset (1152 data frames). In Fig. 6 we visualised
the multi-directional set using eigenvectors of sliding data.
Here, we discuss a shear-invariant transformation, obtained
by projecting the multi-directional dataset (Fig. 7) onto the
eigenvectors of the taps training set.

PC1 is correlated with the sensor pins expan-
sion/compression which relates to the lateral position
and not with the orientation features we are discussing here.

PC2 and PC3 are correlated with the true sensor orienta-
tion (Fig. 7). Thus, irrespective of the sliding direction, the
tactile orientation features are still visible in the PC2-PC3
angle (Opca3).

The same tactile features can be captured by using PCA
eigenvectors of a discrete contact set without the need of
a larger multi-directional set as shown by the similarity
between the projections obtained using either set (compare
the bottom row of Fig. 6 to Fig. 7). The eigenvectors of the
multi-directional set (1152 data frames) capture orientation
features better than the eigenvectors of the training set.
This is expected since the dominant eigenvectors of the
multi-directional set capture sliding; thus, the higher PCs
are orthogonal to that sliding component. Nonetheless, the
projections obtained using the eigenvectors of the training
set are sufficiently good to represent a shear-invariant space
with the advantage of a using much smaller dataset collected
without sliding movements.

3) Multi-directional offline test: Here we quantitatively
analyse the effects of sliding motion on the sensor response
to complement the qualitative analysis described above. The
full perception method is considered in this section including

the nonlinear regression that maps between the visualisations
seen in Fig. 7 to the sensor pose. The increase in performance
obtained by using PCA prior to regression is evaluated by
using the baseline GP model.

The root mean square (RMS) errors of the perceived
sensor orientation (6) are partitioned depending on the sliding
direction and are further divided into two groups for each
motion: “On” denoting the middle of the sensor is on the
object; “Off” denoting that the middle of the sensor is off
the object. For the 90° and 270° motions, only the “On”
group is available since the middle of the sensor is always
on the object surface.

Overall, the errors obtained for the “Off” category are
smaller than the “On” category for both models (Table I).
During the “Off” motion the magnitude of the shear distur-
bance is smaller compared with the “On” category explaining
this result. This also agrees with the visualisations seen in
Fig. 7 and the bottom row of Fig. 6 where the correlation
of the orientation feature is weaker in the centre of the plots
where the magnitude of the shear disturbance is larger.

The errors obtained for the PCA-based perception algo-
rithm are in most cases smaller than the baseline method.
Importantly, the proposed model obtains a far better (7-15x)
accuracy for the 90° and 270° motion, which is crucial as this
is the main sliding direction used during contour-following.
Therefore the projection performed by the PCA provides a
good shear-invariant transform for this sliding direction.

Otherwise, for sliding motions starting from the outside
of the object edge (direction 0°, 45° and 315°) the baseline
model produces better results for the “On” groups. In these
directions, the main perturbation experienced by the sensor
pins is a change in magnitude rather than direction thus
enabling the baseline model to obtain the least errors in these
directions. The PCA performs a transformation of the data
which attenuates the influence of shear in some directions
more than in others but which overall gives better accuracy
in the majority of the sliding directions. This thus validates
the use of PCA eigenvectors to project the pins into a low
dimensional space less influenced by shear.

B. Online Contour Following

Finally, we present the online results for a tactile explo-
ration task, specifically contour-following where the sensor
continuously slides along the edge of various shapes.

We use four 3D-printed shapes, an acrylic laser-cut spiral
shape, and a tape measure (Fig. 1a) for this task. The shapes
were chosen to test the limits of the method. The rectangle
has zero curvature and corners. The two circles have different
constant curvatures. The flower-like shape has both negative

TABLE I: Summary of results. Each column shows the RMS error obtained for each sliding direction which in turn is divided into “On” and “Off” category.
“On” means the middle of the sensor is on the object surface and “Off” means the middle of the sensor is off the surface.

Direction 0°

Direction 45° Direction 90° Direction 135°

Direction 180°  Direction 225° Direction 270° Direction 315°

On Off On Off On On Off On Oft On Off On On Off
GP baseline |26.01° 16.59° | 2.94° 8.02° 50.68° 92.37° 99.59° | 127.18° 145.27° | 141.56° 153.39° 90.32° 50.10° 31.97°
PCA + GP |49.41° 10.17° |24.17° 8.24° 3.27° 22.74° 10.82° | 46.74° 14.61° | 52.67° 11.98° 12.66° 51.87° 12.77°




(a) Rectangle (b) Large Circle (0 Small Circle (d) Flower
E o
=
o
8 50
o
>
3
S -100 Sensor trajectory
@ Perceived orientation

-50 0 50 -50 0 50 -50 0 50 -50 0 50

sensor x-position (mm) sensor x-position (mm)

sensor x-position (mm) sensor x-position (mm)

Fig. 8: (a) The trajectory (blue trace) performed by the robot when following the contour of a: (a) rectangle, (b) large circle, (c) small circle and (d)
flower-like shape. The grey lines show the normal to the object edge as perceived by the sensor.
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Fig. 9: Natural object (tape measure) and spiral contour-following. The same
colour coding of Fig. 8 is used here.

and positive curvatures. The tape measure is a natural object
and has different curvature values and a corner. Finally, the
spiral shape has negative and positive curvatures, contains
corners and has closely spaced features.

Our approach successfully traced all contours (Fig. 8 and
Fig. 9) by using the perception algorithm which consist of a
PCA dimension reduction step (Sec. III-B.2) and nonlinear
regression (Sec. III-B.4) along with a simple control policy
(Sec. III-D). The RMS orientation errors are similar for
all shapes with an average value of 12.2° which agrees
with the errors obtained in Sec. IV-A.3 for the 270° sliding
direction. The perception algorithm handles corners (Fig. 8a
and Fig. 9) by gradually perceiving a varying angle which
changes smoothly over the corner. This was not a trained
behaviour but emerged from the algorithm. The algorithm
thus generalises to different curvatures.

The algorithm generalises from discrete contact tactile
data collected on a zero curvature edge to data recorded
whilst performing sliding motion over edges having varying
curvature properties. The perception is not influenced by
changes in curvature magnitude as shown by the two circles
(Figs. 8b, c) or by whether the curvature is positive or nega-
tive as demonstrated by the flower-like shape (Fig. 8d). The
method also performed contour-following of a natural object
(Fig. 9a). The robustness of the perception is demonstrated
with the spiral task (Fig. 9b) where apart from curvature
variations, a different material is used from the training set
and an upper limit on the lateral position perception error is
imposed. The perceived lateral position errors do not impact
the success of the contour-following as shown by the smooth
shape-preserving trajectories achieved.

V. DISCUSSION

The paper has demonstrated that a PCA-based perception
algorithm can infer edge features invariant of the sliding mo-
tion. We achieved successful continuous contour-following of
a wide range of shapes, thus showing that the simple features
found by PCA with a suitable discrete contact training set
are robust to sliding and to changes in curvature.

The PCA part of the algorithm also helps to visualise
the sliding data which builds upon the tactile visualisation
presented by Aquilina et al. [22]. Here we show that vi-
sualisation of the multi-directional data reveals continuous
tactile data is history dependent on the sliding direction.
However, PCA can also encode the sliding vector in each
sensor frame, which may be useful in experiments where
sliding is a quantity of interest.

Additionally, due to the simple features extracted using
PCA, the algorithm was able to generalise to various flat
objects of an unknown shape despite being trained only
on a portion of a straight edge. This is related to the
work by Luo et al. [29] where a specific data descriptor
yields rotation and translation invariance. However, the most
common approach is to obtain invariance by training on
samples which have different properties such as the shape-
invariant method presented by Yuan et al. [30]. This would
have been equivalent to using a sliding contact training set
in this work. However, in practice it may not be possible
to train for every event the system could encounter; instead
we view it desirable to have a robust system that produces
reasonable results on a wide range of scenarios.

A limitation of this work is that it only considers planar
2D objects which constrains the tactile exploration problem
considerably. However, this still demonstrates the proof of
concept. It would be instructive to test the method with
objects that do not have clear cut edges. Another limitation of
the current method is that the lateral displacement predictions
are not as accurate (overall error of 2.15 mm for the offline
task) as the orientation predictions. These limitations will be
addressed in future work.

We expect the proposed method to apply to more challeng-
ing tasks due to its generalisation capabilities. Such a method
could be combined with more complicated controllers using
predictive or adaptive control to complete demanding manip-
ulation or exploration tasks in unstructured environments.
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