
Using Local Experiences for Global Motion Planning

Constantinos Chamzas1, Anshumali Shrivastava1, Lydia E. Kavraki1

Abstract— Sampling-based planners are effective in many
real-world applications such as robotics manipulation, naviga-
tion, and even protein modeling. However, it is often challenging
to generate a collision-free path in environments where key
areas are hard to sample. In the absence of any prior informa-
tion, sampling-based planners are forced to explore uniformly
or heuristically, which can lead to degraded performance. One
way to improve performance is to use prior knowledge of envi-
ronments to adapt the sampling strategy to the problem at hand.
In this work, we decompose the workspace into local primitives,
memorizing local experiences by these primitives in the form of
local samplers, and store them in a database. We synthesize an
efficient global sampler by retrieving local experiences relevant
to the given situation. Our method transfers knowledge effec-
tively between diverse environments that share local primitives
and speeds up the performance dramatically. Our results show,
in terms of solution time, an improvement of multiple orders
of magnitude in two traditionally challenging high-dimensional
problems compared to state-of-the-art approaches.

I. INTRODUCTION

Motion planning is an integral part of many areas of
robotics. Robots operating autonomously need to generate
many different motion plans in complex environments. This is
true especially in the context of task and motion planning [1].
Even a single task, such as stacking blocks, might require
querying a motion planner thousands of times. Humans can
execute motions instantaneously that robots currently struggle
with. To achieve human-level behavior, fast online motion
planning is essential.

The widespread success of sampling-based planners lies
in their ability to approximate the connectivity of high-
dimensional spaces with a small number of samples [2].
However, in many cases regions necessary for connectivity
are unlikely to be sampled by an uninformed sampler. This
is known as the narrow passages problem [3], [4], [5] and
greatly limits the performance of sampling-based planners in
many scenarios.

Among the possible approaches to solving problems
that involve narrow passages is the emerging field of
experience-based planning [6], [7], [8]. It is common
for robots during their operation to come across similar
workspaces resulting in similar motion plans. Such a case
can be seen in Fig. 1 where a robot needs to grasp the
red can and put it on the top shelf. In this case, prior
knowledge about similar scenarios could expedite the motion
planning process. By biasing sampling towards interesting
regions [7] or by retrieving and reusing old solutions [6],

*This work has been supported in part by NSF 1718478 and Rice
University Funds.

1 Department of Computer Science, Rice University, Houston TX, USA
{chamzas, anshumali, kavraki}@rice.edu

Fig. 1: The task of grasping the red can without removing the green cans is
very challenging for traditional methods. The proposed approach efficiently
solves it by using prior experiences to guide the search.

experience-based methods try to transfer knowledge obtained
from similar problems to others. Unfortunately, small changes
in the workspace can drastically affect the possible solutions,
in several cases, thus making generalization difficult [9], [10].

This paper presents a sampling strategy for sampling-based
planners that aids in discovering the connectivity of the
configuration space even for pathological cases. This sampling
strategy utilizes a decomposition of the workspace into local
primitives. The main insight of our method is that learning to
generate important samples in the configuration spaces defined
by the robot and the primitives helps approximate the con-
figuration space of the global workspace. This approach can
generalize to new environments that contain the workspace
primitives used earlier or primitives very similar to them.
In this work, we focus on problems with simple geometric
features, yet manage to solve a class of problems that were
practically unsolvable by modern sampling-based motion
planners. Also, we raise the question of whether the notion
of decomposition applies in unstructured environments with
complex geometries, tackling problems that were previously
beyond the reach of sampling-based motion planners.

The contributions of this paper are threefold. First, we
propose the decomposition of the workspace into local
primitives, and we solve motion planning problems in
workspaces that contain only the local primitives. The result
of this step is the estimation of local samplers that produce
samples in the difficult regions of the configuration spaces of
the local primitives. The parameters of these local samplers
are stored in a database. Second, we show how to synthesize a
global sampling strategy based on these local samplers. Third,
we show the effectiveness of our approach in two challenging
environments where it achieves significant improvement over
existing methods.

ar
X

iv
:1

90
3.

08
69

3v
1

 [
cs

.R
O

]
 2

0
M

ar
 2

01
9

II. BACKGROUND

Sampling-based planners have been widely adopted in
robotics due to their ability to scale to high-dimensional prob-
lems. The two main categories are graph-based approaches
(e.g, PRM [11]) for multi-query problems and tree-based (e.g,
RRT [12], EST [13]) for single-query problems. Although
in general motion planning is PSPACE-complete [14], [15],
sampling-algorithms perform remarkably well. However,
in challenging environments (e.g., instances with narrow
passages), sampling plays an increasingly important role in the
planning performance. It is theoretically understood, however,
that using non-uniform samplers to generate more samples
in low-expansiveness areas [13] can alleviate this problem.

Many approaches use rejection sampling, where the sample
is accepted only if it passes a specific geometric test such
as Bridge-Sampling [3] or Gaussian-Sampling [16]. Other
approaches try to guess difficult areas, such as Medial-Axis
sampling [17] or Obstacle-Based Sampling [5]. Although
these approaches ultimately generate samples near or inside
narrow passages, they still consider the entire configuration
space which is computationally expensive. Nevertheless,
the resulting graph is typically much smaller than the one
produced by uniform sampling.

Recent approaches similar to our method try to leverage
acquired information about the problem, to bias the sampling.
Reinforcement learning was used by [18] to infer important
areas of the workspace that were transformed to configuration
samples. The authors of [7] utilize a generative model, called
Conditional Variational Auto-Encoder (CVAE), that learns
to produce samples that lie in “interesting” areas given a
workspace description. Sampling-biasing methods have the
advantage that they can be used with many sampling-based
planners without any modification. However, both of these
methods rely on a model that uses workspace features to
infer important samples in the configuration space. In [18],
a discrete workspace cell was mapped to a configuration
through the inverse kinematics of the end-effector. In [7],
a neural network was used to infer these samples. Our
experiments showed that in complex configuration spaces
these models do not consistently produce samples in the
important areas of the configuration space.

Online-adaptive sampling methods use collision checking
information to infer which areas of the configuration space are
important at runtime. Utility-guided sampling [19] chooses
samples with the maximum information gain based on the
entropy of the roadmap. The authors of [20] formulate
the sampling problem as a classification between free and
in-collision samples. Toggle-PRM [21] creates two roadmaps,
one in the configuration space and one in the obstacle
space, and tries to infer samples in the narrow passages.
These methods adapt the sampling online, based on the
state the motion planning algorithm, but do not transfer
this knowledge between different planning queries. On the
contrary, the proposed method biases the sampler based on
previous planning queries. Thus, online-adaptive sampling
can be used in parallel with the proposed sampling biasing.

Orthogonal to these methods are database approaches. In-
stead of modifying sampling, these methods leverage previous
experiences by storing discrete paths or graphs in a database.
This information is later retrieved and repaired/transformed
to satisfy the new kinematic constraints. These methods can
be thought of as hard-coded experiences compared to biasing
the sampling.

The authors of [22] used a library of paths that was queried
based on the proximity of start-goal configurations of the
entry and the query. If a valid path could not be retrieved
based on these heuristics, BIRRT [12] was used to repair the
invalid parts. This idea was expanded in [6] where a graph
was used to store the paths removing redundancy. Although
improving the execution time by orders of magnitude, the
mentioned approaches do not adapt well to changes and
yield improved results mainly in invariant environments. This
happens because they do not explicitly include the workspace
in their experience representation.

Database approaches that explicitly use workspace informa-
tion include [23] which creates a small database of obstacle
road-maps smartly decomposing the configuration space in
obstacle-maps. The trajectory prediction proposed by [24]
saves the generated paths in task-space and during execution
transforms them back to the configuration space by optimizing
the cost of the trajectory while using IK. Although these
methods can deal with different environments [23] works
only for free-flying robots and [24] works with trajectory
optimization planners that lack the probabilistic guarantees
of sampling-based planners.

In this work, we combine the best of both worlds by
integrating a biased-sampler with a database. This is achieved
by decomposing the workspace in local primitives and storing
in a database the parameters of an efficient local sampler for
each local primitive. The biased-sampler uses prior knowledge
in a “soft way” avoiding the hard-commitment to complete
paths, induced by databases methods, which may need costly
repairing when there are significant changes in the workspace.
On the other hand, the database-scheme enables the instant
mapping of local samplers to local primitives avoiding
the need for a complex parametric model. Additionally,
a database has the inherent capability of incrementally
improving its experiences by simply adding new entries. The
aforementioned sampling-biasing approaches would need to
be retrained.

III. METHOD OVERVIEW

In this work, we modify the sampling step that produces
configuration samples, which is at the core of all sampling-
based planners as shown in Algorithm 1. Similar to [7]
we generate λN samples from the global sampler (line 3)
and (1 − λ)N from the uniform sampler (line 5). λ is a
hyperparameter that is determined by the application. The data
structure G and the update() function (line 7) differentiates the
sampling-based planners. For example in a PRM-like setting,
G is a roadmap, and new samples are added to expand the
roadmap which captures the connectivity of the C-Space in
a variety of ways [11], [21]. In an RRT-like setting, G is a

Global Workspace Local Samplers Global SamplerLocal Primitives

Fixed Base

Start

Goal

Fig. 2: An illustration of our proposed method. In this example, the workspace contains circular obstacles and a planar arm with a fixed base. In our
approach, the workspace is decomposed to local primitives. During the offline phase, the local samplers are computed and saved in the database. During the
online phase, each local primitive is mapped to its corresponding local sampler through the database. Finally, the local samplers are synthesized to a global
sampler.

tree, and the sample is used to expand the tree in different
ways [12], [21]. However, as stated above, regardless of the
planner details, the performance can be improved by using
informed sampling.

Algorithm 1: Modified Sampling Procedure
Input : Number of iterations N
Output : Graph structure G

1 while i ≤ N or solutionFound() do
2 if rand(0,1) ≤ λ then
3 x ∼ GL-Sampler()
4 else
5 x ∼ Uniform()
6 end
7 update(G, x)
8 end
9 return G

The proposed sampling strategy is based on local primitives
of the workspace. The key insight of our approach is that
different regions of the workspace often create relatively
uncorrelated narrow passages in the configuration space. For
example, the top and bottom shelf of a bookcase will create
two different challenging regions that the robot arm will
need to traverse when moving from one shelf to the other.
This means that we can bind an effective local sampling
distribution to each shelf (local primitive) dealing with the
two problems independently. By combining the local samplers,
we can synthesize a global sampler that informatively guides
the planners. Our experiments showed that even in highly
correlated cases, our approach is still effective.

We will introduce some notation, before describing
the main algorithm. Since our method relies on a
workspace description, we will denote the workspace as
W = {wo1, . . . , woM} where each woi is a workspace
obstacle. Also we denote the set of local primitives as
LW = {lw1, . . . , lwN}, such that

⋃i=N
i=1 lwi ⊆W . Note that

the local primitives do not have to be mutually exclusive.
For example, pairs of workspace obstacles lwi = {woj , wok}
could be a valid set of local primitives. The global target

distribution is denoted as p(x|W). Local samplers that are
used to approximate it are denoted as pi(x|lwi).

The main steps of the Global-Local Sampler (GL-Sampler)
are outlined in Algorithm 2. The first step (line 1) is
to decompose the workspace W by identifying its local
primitives LW . In general, this could be a highly sophisti-
cated function; however, in the context of this work, the
local primitives are always pairs of workspace obstacles
lwi = {woj , wok}. For each of the local primitives, we try
to retrieve their corresponding samplers (line 4) based on a
similarity function k (line 3). If no similar local primitive
exist in the database, then the parameters of the local sampler
are calculated (line 6) and stored in the database (line 7).
Note that the database can also be computed offline if the
possible local primitives are known before-hand which is
often the case. The local samplers are combined to synthesize
the global sampler (line 10). The GL-Sampler is created only
at the beginning of the motion planning query.

Algorithm 2: Create GL-Sampler
Input : workspace W , database D, threshold d
Output : GL-Sampler()

1 Decompose W to LW = {lw1 . . . lwN}
2 foreach lwi ∈ LW do
3 if ∃lwj ∈ D s.t. k(lwj , lwi) < d then
4 Retrieve pi(x|lwi) from D(lwi)
5 else
6 Create pi(x|lwi)
7 Insert lwi : pi(x|lwi) in D
8 end
9 end

10 Synthesize p̂(x|W) from pi(x|lwi)
11 return p̂(x|W)

Fig. 2 shows an illustrating example of the algorithm
where it is applied on a fixed-base, 8-link planar manipulator
(non-intersecting) in an environment of circular obstacles.
The local primitives in this case are pairs of circles and
are described as lwi = {xa, ya, ra, xb, yb, rb}, where x, y, r
denote the position and radius of each circle. In the following

sections, the creation of the database, retrieval of local sampler
and composition of the global sampler are described.

A. Creating the Database of Local Samplers

Each local sampler pi(x|lwi) must produce samples that
quickly capture the local primitive’s configuration space.
For example, each local sampler should produce samples
in narrow passages of the corresponding C-Space. First, we
generate such samples and later fit the local sampler to them.
Such samples are created by solving motion planning queries
that likely traverse difficult regions of the configuration
space of the local primitives. For every local primitive we
pre-specify a set of such motion planning queries. For the
local primitives (pairs of circles) in Fig. 2, a path that starts
with the robot between the circles and ends with the robot
entirely out of them likely traverses a narrow passage. A
standard sampling planner e.g., RRT, BIRRT [12] is used to
solve these queries quickly. Additionally, it is imperative that
multiple paths for the same query are generated to be robust
to obstacles that are part of the global workspace but not the
local primitive. This is clear in Fig. 2 where several samples
which were valid for the local primitives are invalid for the
global problem. To deal with this we run the chosen planner
multiple times, creating different paths due to its randomness.
Also by using shortcutting techniques [25], most of the
redundant samples can be removed to increase the ratio of
the useful samples.

Due to the complexity of the needed distribution and
its natural multi-modality, we choose a Gaussian Mixture
Model (GMM) as the local sampler similar to [10]. However,
contrary to [10] we do not use the traditional expectation-
maximization algorithm to calculate the parameters of the
GMM. There is no good way to choose the number of mixtures,
and more importantly, the distance between configurations
does not necessarily relate to C-Space connectivity which
is what sampling-based algorithms need to capture. Instead,
for the local sampler i we choose to place one mixture to
each produced configuration qi1, . . . , qiM and use a fixed
covariance Σi = σI where σ is a hyperparameter and I is
the identity matrix. This might create an unnecessarily large
amount of mixtures, but we present a way to reduce them
while respecting the connectivity in section IV-B. The local
sampler will be:

pi(x|lwi) = GMM(µ,Σ) =
1

Mi

Mi∑
j=1

N (qij ,Σij) (1)

Mi is the number of mixtures. We choose a uniform vector
for the weights making all the mixtures equiprobable. In the
database, we save the parameters of this distribution and its
corresponding local primitive.

B. Retrieving Local Samplers

To retrieve the local samplers from the database, we need a
similarity function k(lwi, lwk) to compare the local primitives
between them. General workspace descriptors and possible
similarity functions have been described by [24]. In our case

where the primitives are simple geometric descriptions the
negative squared Euclidean distance is used:

k(lwi, lwj) = −(lwi − lwj)
T (lpi − lwj)

We retrieve all the parameters of local samplers that are
above a certain threshold d of this similarity. Since the local
samplers retrieved will not correspond to the exact local
primitives a similarity error is introduced.

C. Synthesizing the Global Sampler

Now we will describe how the local samplers approximate
the global sampler. Given an arbitrary partition of the config-
uration space

⋃N
i=1Xi = X , Xi

⋂
Xj = ∅, ∀i, j, i 6= j,

the global sampler can be expressed as a sum of other
distributions using the law of total probability:

p(x|W) =

N∑
i=1

p(x|W,Xi)p(Xi) =

N∑
i=1

p?i (x|W)ai (2)

In the last equation we rewrote p(Xi) as ai and p(x|W,Xi)
as p?i (x|W). Note that the support of p?i (x|W) is Xi. We
approximate it in the following way:

p?i (x|W) ≈ pi(x|W) ≈ pi(x|lw1, . . . , lwN) ≈ pi(x|lwi)
(3)

Three approximations are used in the derivation above. The
first is one is that pi(x|W) has its support on X instead of
Xi. This induces only a small error because pi(x|lwi) is a
distribution that has values close to zero outside Xi. The sec-
ond one is that most of the information in W is incorporated
in the set of local primitives {lw1, . . . lwN} which is true if
the local primitives are responsible for most of the difficult
regions of the configuration space. The final approximation
is that the local primitives independently affect only one
local distribution. pi(x|lw1, lw2, . . . , lwN) ≈ pi(x|lwi). This
is not true in general especially in cases where the local
primitives are close together. This is the reason why multiple
paths are created for each local primitive in section III-A. We
refer to this as the decomposition error. In the experiments
section, we show empirically that even when this error is large
our sampling method is much more effective than uniform
random sampling. Finally combining Eq. 1, Eq. 2 and Eq. 3
the global sampler is:

p(x|W) ≈
N∑
i=1

ai
Mi

Mi∑
j=1

N (qij ,Σij) =

N∑
i=1

1

N

Mi∑
j=1

N (qij ,Σij)

We set ai = Mi

N which means that the weight of each local
sampler is proportional to the number of its mixtures.

IV. REDUCING THE DATABASE

Since querying the database happens online, it is crucial to
keep its size at a minimum for fast retrieval. We propose two
such reductions. One is removing mixtures from the database
by merging cliques, and the other is transforming the local
experiences to account for multiple local primitives.

(a) (b) (c)

Fig. 3: (a) Un-merged Cliques, 53 mixtures needed (b) Merged Cliques, 23
mixtures needed, (c) Transforming the local sampler of the black primitive
to apply to they grey primitive.

A. Merging Cliques

This step can be executed after the generation of the
useful configurations in section III-A. Using the extracted
configurations qi1, . . . , qiM for a specific local primitive lwi

we create a graph by connecting two configurations with an
edge if there is a collision-free straight line between them.
From this graph, we identify the fully connected subgraphs,
also known as cliques. The cliques essentially represent
groups of configurations that can be accurately approximated
with one mixture model. We are not interested in finding the
optimal number of cliques which is an NP-HARD problem,
and for that reason, we are using a greedy algorithm that finds
them sequentially. After finding the cliques, we calculate the
mean and the covariance (if enough samples exist) of each
one and use them as a parameter to the GMM as in Eq. 1. Our
experiments showed that the time performance was similar
when using the merged or the un-merged cliques. An example
before merging the cliques can be seen in Fig. 3a where the
GMM model would have 53 mixtures, after merging Fig. 3b
shows the GMM would have 23 mixtures which save a lot of
space in the database.

B. Transforming the Local Experiences

To reduce the size of the database, we employ a trans-
formation scheme similar to [23] that takes advantage of
the inherent symmetries of the robot. This allows a local
sampler pi(x|lwi) to be transformed to p′i(x|lw′

i) where lw′
i

is a transformed local primitive. Essentially the inherent
symmetries of a robot are changes in the configuration of the
robot that counter transformations of the local primitives
like rotation or translation. Although this is not true in
the general case, the majority of robots such as mobile
manipulators, drones, and robotic arms have such symmetries.
In the kinematic chain scenario Fig. 2, the inherent symmetry
is its rotational invariance around its fixed base. This is
illustrated in Fig. 3c where the grey local primitive is
the rotated version of the black local primitive around the
fixed base lwgrey = lwblack ∗Rot(θ). Applying this simple
transformation to the first joint in the means of the GMM
µj1
grey = µj1

black + θ the local distribution applies to the new
local primitive.

This simple transformation significantly reduces storage
requirements. In the studied example the dimensionality of
lwi = {xa, ya, ra, xb, yb, rb} is 6D and the database must
store representative local primitives/local sampler from this
6D space. However, by using the mentioned transformation,

Timeout

Fig. 4: Scenario with low decomposition and similarity error.

this space effectively becomes 5D, since we have rotational
invariance of the local primitives around the fixed base.

V. EXPERIMENTS

In the following experiments, we compared different meth-
ods for the sampling part of three of the most representative
sampling based planners, RRT, BIRRT [12], and PRM [11]. We
benchmarked against uniform sampling, and the Conditional
Variational Auto-Encoder (CVAE) proposed by [7]. The CVAE
method is a neural network that is trained to produce samples
that lie on the optimal path given a workspace description. To
make the benchmarking fair we trained the CVAE using the
same dataset that was used for the estimation of the GMMs.
We used the OMPL [26] benchmarking tools [27] in their
default settings, and run on an Intel i7 Linux machine with 4
4GHz cores and 16GB of RAM. Each query was repeated 20
times, and the timeout was set at 200 seconds. In the figures
where RRT is not shown it did timeout in all queries. Also,
the uniform to biased ratio was chosen to be λ = 0.5, and
the variance parameter was chosen to be σ = 0.1.

A. 8-link Kinematic Chain

Similar to [18] we used a fixed-based planer arm in
an environment where obstacles are of varying sizes to
demonstrate the strength of our approach. The kinematic
chain had 8 links of variable lengths from 1 to 2 units and
the circles variable radiuses from 1 to 2 units as well. The gap
between most of the circles was less than 1 unit making it a
very difficult problem. As local primitives, we consider only
pairs of circles that are close together. Examples of such local
primitives can be seen inside the colored rectangles of Fig. 2.
We pre-computed the database such that any local primitive
could be queried with a similarity error less than 3. Utilizing
the transformation described in section IV-B only 800 pairs
of obstacles were needed resulting in a small database and a
very fast retrieval time (a few milliseconds). The total time
for computing the database was around 10 minutes. We tested
our method in three scenarios of scaling difficulty. The start
configuration is noted with blue, and the goal configuration
is noted with red. Note that we use log-scale for the time
axis in all figures except Fig. 6.

1) Scenario1: The first scenario Fig. 4, contains only one
local primitive thus having a decomposition error of zero and
a low similarity error making it ideal for our method which
found all the solutions in a fraction of a second. However, the
trained CVAE did not succeed in approximating an efficient

Timeout

Fig. 5: Scenario with large decomposition error.

Timeout

Fig. 6: Scenario with large decomposition and similarity error.

local sampler requiring an order of magnitude more time for
the same problems. Finally, it can be seen that both PRM and
BIRRT with uniform sampling did not solve any problems
within 200s.

2) Scenario2: The second scenario Fig. 5, has a large
decomposition error due to the proximity of the local
primitives. Each local sampler is trained only on a pair of
circles, and thus the majority of the samples produced are
invalid when other local primitives are nearby. However, it can
be seen that our method still significantly outperformed the
other ones. Most notably BIRRT, with our method, found
solutions in 1s while the CVAE needed around 20s and
the Uniform around 200s. Note also that Uniform-PRM and
CVAE-PRM timed-out in all cases. This scenario shows that
the proposed method is very robust to approximation errors
and can potentially work on very complicated environments
that are decomposed into circles.

3) Scenario3: This scenario Fig. 6, is similar to the one
used in [18] but much more difficult due to the closeness of
the obstacles and the relatively large size of the robot. Both
the decomposition error as well as the similarity error are
large. In Fig. 2 the different local primitives and their local
samplers which were used to create the global sampler are
visible. Note that one circle is not part of any local primitive
because it is not close to any other circle. Also in this scenario,
our method outperformed the others with PRM succeeding
only when using our method and BIRRT needing more than
10 minutes to find a solution with uniform sampling.

B. 8-DOF Robot

We also experimented on a simulated Fetch Robot [28]
performing an object manipulation task. The robot has a
7-DOF arm and a moving torso resulting in an 8-DOF
C-Space. The Fetch Robot tries to place its arm between
the cylinders with start and goal shown in Fig. 7a, which is
a difficult problem as it requires reaching into a deep shelf.

(a) Start Configuration (Left), Goal Configuration (Right).

Timeout

(b) Thin cylinders scenario.

Timeout

(c) Thick cylinders scenario.

Fig. 7: Challenging motion planning problem and results for the Fetch Robot.

To demonstrate the practicality of this approach, we
constructed a small database using only the local primitives
that were present in the test scene. These local primitives
were 3 pairs, each with one of the cylinders and the bookcase.
Note that since each local primitive contains only 1 cylinder,
it is significantly easier to solve than the full problem. We
tested the proposed method on 2 scenarios. The first scenario
has the same local primitives that existed in the database thus
a similarity error of zero but a high decomposition error. The
second scenario has thicker cylinders with a double radius
which introduces a similarity error.

We only benchmarked against uniform sampling since there
was not a rich dataset to train the CVAE. In the results, the
increased difficulty of the second scenario is clearly visible.
Both planners had zero or low success rate with uniform
sampling while our approach succeeded in all of them.

VI. CONCLUSIONS

In this work, we proposed a new sampling-biasing frame-
work that is based on a decomposition of the workspace. We
only considered simple geometric primitives, yet we solved
problems that were either not possible to solve with the
methods we considered or not efficiently solved. Although
we consider our results preliminary, we believe that this
work paves a new way to apply experience in motion
planning problems. Future work could include the use of more
complicated primitives that are general and can effectively
decompose any workspace. Finally, as the database grows in
size efficient real-time retrieving algorithms should be used.

ACKNOWLEDGMENTS

The authors thank B. Willey, J. Hernandez, J. Abella, and
M. Moll for their valuable and interesting conversations. The
authors especially thank Z. Kingston for the visualization and
benchmarking tools that made the Fetch experiment possible.

REFERENCES

[1] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki, “An
incremental constraint-based framework for task and motion planning,”
The International Journal of Robotics Research (IJRR), vol. 37, no. 10,
pp. 1134–1151, 2018.

[2] H. M. Choset, S. Hutchinson, K. M. Lynch, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,
Algorithms, and Implementation. MIT press, 2005.

[3] D. Hsu, T. Jiang, J. Reif, and Z. Sun, “The bridge test for sampling nar-
row passages with probabilistic roadmap planners,” IEEE International
Conference on Robotics and Automation (ICRA), vol. 3, pp. 4420–4426,
2003.

[4] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, S. Sorkin, et al.,
“On finding narrow passages with probabilistic roadmap planners,” in
Robotics: The Algorithmic Perspective: Workshop on the Algorithmic
Foundations of Robotics, pp. 141–154, 1998.

[5] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“OBPRM: An Obstacle-Based PRM for 3D Workspaces,” in Third
Workshop on the Algorithmic Foundations of Robotics on Robotics:
The Algorithmic Perspective, pp. 155–168, 1998.

[6] D. Coleman, I. A. Sucan, M. Moll, K. Okada, and N. Correll,
“Experience-based planning with sparse roadmap spanners,” in IEEE
International Conference on Robotics and Automation (ICRA), pp. 900–
905, June 2015.

[7] B. Ichter, J. Harrison, and M. Pavone, “Learning Sampling Distributions
for Robot Motion Planning,” in IEEE International Conference on
Robotics and Automation (ICRA), pp. 7087–7094, May 2018.

[8] M. Phillips, B. J. Cohen, S. Chitta, and M. Likhachev, “E-graphs:
Bootstrapping planning with experience graphs,” in Robotics Science
and Systems (RSS), July 2012.

[9] B. Kim, L. P. Kaelbling, and T. Lozano-Perez, “Learning to guide
task and motion planning using score-space representation,” in IEEE
International Conference on Robotics and Automation (ICRA), pp. 2810–
2817, 2017.

[10] P. Lehner and A. Albu-Schaffer, “The Repetition Roadmap for Repet-
itive Constrained Motion Planning,” IEEE Robotics and Automation
Letters (RAL), vol. 3, no. 3, pp. 3884 – 3891, 2018.

[11] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic
roadmaps for path planning in high-dimensional configuration spaces,”
IEEE Transactions on Robotics and Automation (TRA), vol. 12, no. 4,
pp. 566 – 580, 1996.

[12] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” IEEE International Conference on
Robotics and Automation (ICRA): Millennium Conference, vol. 2,
pp. 995–1001, 2000.

[13] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” in International Conference on Robotics and
Automation (ICRA), vol. 3, pp. 2719–2726, 1997.

[14] J. Canny, The Complexity of Robot Motion Planning. MIT press, 1988.
[15] J. Canny, “Some algebraic and geometric computations in PSPACE,” in

Annual ACM symposium on Theory of computing (STOC), pp. 460–467,
1988.

[16] V. Boor, M. H. Overmars, and a. V. D. Stappen, “The Gaussian sampling
strategy for probabilistic roadmap planners,” in IEEE International
Conference on Robotics and Automation (ICRA), vol. 2, pp. 1018–1023,
May 1999.

[17] O. Brock, “Adapting the sampling distribution in PRM planners based
on an approximated medial axis,” in IEEE International Conference on
Robotics and Automation (ICRA), vol. 5, pp. 4405–4410, April 2004.

[18] M. Zucker, J. Kuffner, and J. A. Bagnell, “Adaptive workspace
biasing for sampling-based planners,” IEEE International Conference
on Robotics and Automation (ICRA), pp. 3757–3762, 2008.

[19] B. Burns and O. Brock, “Toward optimal configuration space sampling,”
in Robotics Science and Systems (RSS), pp. 105–112, 2005.

[20] O. Arslan and P. Tsiotras, “Machine learning guided exploration for
sampling-based motion planning algorithms,” International Conference
on Intelligent Robots and Systems (IROS), pp. 2646–2652, December
2015.

[21] J. Denny and N. M. Amato, “Toggle PRM: A coordinated mapping
of C-free and C-obstacle in arbitrary dimension,” Springer Tracts in
Advanced Robotics, vol. 86, pp. 297–312, 2013.

[22] D. Berenson, P. Abbeel, and K. Goldberg, “A robot path planning
framework that learns from experience,” International Conference on
Robotics and Automation (ICRA), pp. 3671–3678, 2012.

[23] J.-M. Lien and Y. Lu, “Planning motion in environments with similar
obstacles.,” Robotics Science and Systems (RSS), 2009.

[24] N. Jetchev and M. Toussaint, “Fast motion planning from experi-
ence: trajectory prediction for speeding up movement generation,”
Autonomous Robots, vol. 34, no. 2, pp. 111–127, 2013.

[25] R. Geraerts and M. H. Overmars, “Creating high-quality paths for
motion planning,” International Journal of Robotics Research (IJRR),
vol. 26, no. 8, pp. 845–863, 2007.

[26] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, pp. 72–82,
December 2012.

[27] M. Moll, I. A. Şucan, and L. E. Kavraki, “Benchmarking motion
planning algorithms: An extensible infrastructure for analysis and
visualization,” IEEE Robotics & Automation Magazine, vol. 22, pp. 96–
102, September 2015.

[28] M. Wise, M. Ferguson, D. King, E. Diehr, and D. Dymesich, “Fetch and
freight: Standard platforms for service robot applications,” in Workshop
on Autonomous Mobile Service Robots, 2016.

	I INTRODUCTION
	II BACKGROUND
	III METHOD OVERVIEW
	III-A Creating the Database of Local Samplers
	III-B Retrieving Local Samplers
	III-C Synthesizing the Global Sampler

	IV Reducing the Database
	IV-A Merging Cliques
	IV-B Transforming the Local Experiences

	V EXPERIMENTS
	V-A 8-link Kinematic Chain
	V-A.1 Scenario1
	V-A.2 Scenario2
	V-A.3 Scenario3

	V-B 8-DOF Robot

	VI CONCLUSIONS
	References

