
Continuous Value Iteration (CVI) Reinforcement Learning and
Imaginary Experience Replay (IER) for learning multi-goal, continuous

action and state space controllers

Andreas Gerken and Michael Spranger
Sony Computer Science Laboratories Inc., Tokyo, Japan

Abstract— This paper presents a novel model-free Reinforce-
ment Learning algorithm for learning behavior in continuous
action, state, and goal spaces. The algorithm approximates
optimal value functions using non-parametric estimators. It is
able to efficiently learn to reach multiple arbitrary goals in
deterministic and nondeterministic environments. To improve
generalization in the goal space, we propose a novel sample aug-
mentation technique. Using these methods, robots learn faster
and overall better controllers. We benchmark the proposed
algorithms using simulation and a real-world voltage controlled
robot that learns to maneuver in a non-observable Cartesian
task space.

I. INTRODUCTION

Learning to control one’s body is a crucial skill for any
embodied agent. A common way of framing the problem
of learning to control an agent is Reinforcement Learning
(RL). RL poses the problem in terms of actions that an agent
can perform, observed states of the world and some reward
function that pays out a treat or punishes the agent depending
on its performance. The aim of an optimal RL controller is
to maximize the collected rewards. Reinforcement Learning
has been studied widely and applied to different domains of
learning and control.

Suppose we want a robot to learn to control its movements
by direct continuous voltage control. Many of the recent
prominent RL results [1], [2] are restricted to discrete state
and discrete action spaces such as ATARI. Some newer
approaches (e.g. [3], [4], [5]) extend into continuous state
and action spaces. However, almost all recent methods rely
on huge datasets to perform well (data efficiency problem).
Such datasets are normally not available for real robots and
difficult to obtain. Another problem with current methods
is that they work well in learning to reach single goals.
For instance, often algorithms learn to reach a particular
state (e.g. position in the state space) with an end-effector.
However, robots need to learn to achieve different goals.
Approaches to obtaining more data and to apply RL to
multiple goal tasks can be a physical simulation of the robot
[6] or sample augmentation of existing data [7]. Especially
sample augmentation has seen recent advances but the state-
of-the-art methods can only produce a limited number of
augmented samples.

In this paper we try to address these issues by 1) presenting
a novel RL approach to learning behavior in continuous
state/action spaces with multiple goals called Continuous
Value Iteration (CVI) and by 2) presenting a novel data

augmentation method called Imaginary Experience Replay
(IER). We show that the combination of CVI+IER enables
robots to solve tasks efficiently with fewer training examples.
We evaluate this in simulation and on a physical voltage
controlled robot arm (Figure 1).

Fig. 1: The voltage controlled robot arm consisting of a chain
of two Dynamixel XH-430 motors (the coordinate system
shows the Cartesian task space of the robot).

II. CONTINUOUS STATE AND ACTION MDP WITH GOALS

We frame the problem of learning behavior as a Reinforce-
ment Learning problem. In particular, we assume a standard
continuous action, continuous state Markov Decision Process
(MDP) that describes the world and the (possibly stochastic)
effect of actions. We extend the standard RL MDP formu-
lation through a reward function conditioned on goals. We
assume an environment E = (S ,A, T,G, R) with
• S - states S ⊆ Rn

• A - actions A ⊆ Rm

• T - transition dynamics T : S × A × S → R with
T(s, a, s′) := P(st+1 = s′|st = s, at = a) because of
the Markov property.

• G - goals G ⊆ Rk

• Reward Rg(st, at, st+1) → R with st, st+1 ∈ S, a ∈ A
and g ∈ G

• Policy π : S × G → A for choosing actions
• Discount factor γ

The robot interacts with the environment by choosing actions
and observing states over time. Each trajectory takes the form
τ = [..., (st, at, rt, st+1, g), ..]. The goal for an agent is to
choose actions from A so as to maximize the cumulative
discounted reward R = ∑tmax

t=0 γtrt. MDPs can be solved
by learning a value function V : S × G → R that maps
states to a utility value describing the value of the state for
achieving the maximum reward for a given goal g. V is

ar
X

iv
:1

90
8.

10
25

5v
1

 [
cs

.A
I]

 2
7

A
ug

 2
01

9

typically described by the Bellmann Equation [8]

V(s, g) = maxa∈A

∫
s′

T(s, a, s′)(Rg(s, a, s′)+

γV(T(s, a, s′), g))ds′
(1)

which iteratively sets the value of s given g to the maxi-
mum over the instant reward and the expected discounted
value of the future state when choosing a optimally and
acting optimally thereafter. Another function similar to V
which is often used in value function approaches is Q :
S × G ×A → R that measures the value of action a given
state s and goal g.

III. RELATED WORK

Lots of recent work in RL deals with discrete action and
discrete state spaces using Deep Neural Network such as
DQN [9], Double DQN[10], and the dueling architecture
[11]. In discrete state and action spaces, the integral and the
maxa∈A of Equation 1 can be calculated easily. However,
these methods are not directly applicable to robotics because
they require discretization of state and action spaces. Other
algorithms address continuous state spaces but discrete ac-
tion spaces environments. Examples of such algorithms are
Fitted Value Iteration (FVI) [12] and Kernel-Based methods
[13] which use a model to estimate the distribution of future
states and so the integral in Equation 1. However, such
algorithms do not tackle continuous action spaces where the
term maxa∈A is not applicable since there is an unlimited
amount of actions possible. Similar in problem setting to
our work are all RL algorithms dealing with continuous state
and continuous action spaces such as CACLA [14], NFQCA
[15], DPG [16] and DDPG [3]. DDPG and variants are actor-
critic algorithms that estimate a policy (actor) for choosing
actions using the reward signal estimated by a (neural) value
function estimator (critic) [17].

In our approach, we solve the MDP without having to
iterate over states or actions (discrete state/actions) nor do
we explicitly learn a transition model T as model-based
RL. Our approach (CVI) is a value function approxima-
tion approach and therefore related to DQN and similar
algorithms. However, we deal with continuous state/action
spaces using simple generalizations in the state and action
space through regression. CVI is dealing with continuous
state/action spaces which are dominated by actor-critic mod-
els. From actor-critic, we differ by not using policy gradients
for some actor network. CVI does rely on estimating both
V and Q function and faster updates of V vs Q - in
that sense, there is some similarity with target network
DQN approaches. Against the current trends, CVI (although
in principle agnostic to regressor choice) is described and
implemented in this paper using a simple non-parametric
estimator.

Another line of similarity/difference with recent methods
is the problem of multi goal learning. Within RL there is
some work on multiple goal learning like [18] or UVFA
[19]. Latter proposes to use a single function approximator
to estimate the value function of a factored goal and state

spaces. Results show that it is possible to generalize over
multiple goals if there is a structure in the goal space [20].
The main differences between our work and UVFA and
similar approaches [21] is that they work with discrete state
and action spaces. They also do not investigate the impact
of sample augmentation. For example, [22] extends DDPG
with continuous action and state spaces to multiple goals but
require them to be discrete and limited.

Outside of RL, controllers for robots without prior knowl-
edge are estimated using self-exploration. In motor babbling
[23], random actions are performed and through the resulting
observations, a forward model is trained. In goal babbling
[24], goals are set in the task space and during exploration,
an inverse model is trained. The placement of the goals can
be controlled by intrinsic motivation [25] for more efficient
exploration of the task space. Similarities of our work
and goal babbling are the random placement of goals and
the random exploration at the beginning of an experiment.
However, CVI does not train an explicit forward or inverse
model.

IV. CONTINUOUS VALUE ITERATION (CVI)

We propose Continuous Value Iteration (CVI) for learning
near optimal controllers in continuous state and continuous
action space MDPs. CVI’s core is the estimation of the
value function V and its subsequent use to approximate Q.
Past experiences of the robot in the form of trajectories
τ – i.e. states, actions, rewards, and goals are stored in a
replay buffer B that consists of tuples (st, at, rt, st+1, g). We
perform Value-Iteration to propagate the values through the
state and goal space. Since both spaces are continuous, we
have to achieve generalization using a function approximator.
A regressor is used to learn estimates of V and when it has
converged, it is used to estimate Q.

In this paper, we use k nearest neighbor (KNN) regression
[26] with an Euclidean distance function, however, in princi-
ple, other regressors could be used. KNN is a non-parametric
method that generalizes well locally. The advantage in this
task of KNN over other regressors is its simplicity and
that it estimates the values conservatively in regions without
training data.

The algorithm (see also Algorithm 1) has 4 Steps (a) action
selection and data collection, (b) sample augmentation, (c)
V learning, (d) Q learning.

a) Action selection and data collection: In each itera-
tion the robot chooses and performs an action and collects
data. This leads to observed trajectories τ and observed
tuples τt. We store observed tuples in the replay buffer B.
For training, actions are chosen with an ε-greedy action
selection policy, where a random action is chosen with the
probability of ε and the best action is chosen otherwise.
This helps the algorithm to exploit existing knowledge during
exploration. When using and validating the policy, a greedy
policy following the most valuable action is used.

b) Sample augmentation: Data in the replay buffer B
can be augmented using various techniques. We employ
three strategies: 1) None: the buffer stays as is, 2) Hindsight

Algorithm 1 Continuous Value Iteration

1: Given: Function approximators V(s, g), Q(s, g, a)
2: Given: Parameters ν, β, γ (and k for KNN)
3: Initialize V0(s, g) = 0 and Q0(s, g, a) = 0; ∀s ∈
S , ∀g ∈ G, ∀a ∈ A

4: Initialize B = ∅
5: loop
6: // (a) Action selection and data collection
7: for Episode e = 1,E do
8: Choose g ∈ G
9: for Timestep t = 1, N do

10: Observe st, choose and execute at according
to π, receive reward rt

11: Save (st−1, at−1, rt, st, g) in B
12: Stop when rt = 1
13: // (b) Sample augmentation
14: HER, IER
15: // (c) V Iteration
16: for Iteration i = 1, I do
17: for all (s, a, r, s′, g) in B do
18: Vi+1 ← [s, g, max(r, γVi(s′, g), βVi(s, g))]
19: Stop loop when V converges.
20: // (d) Q learning
21: for all (s, a, r, s′, g) in B do
22: Q← [s, g, a, VI(s′, g)]

A=B'

A' (r = 1) B C C'

Fig. 2: Two trajectories with three transitions in the point
environment and a red goal region with a reward of 1

experience replay (HER), 3) Imaginary Experience Replay
(IER). HER and IER add τt tuples to the replay buffer B
using different strategies. More technical detail will follow
in Sections V-A and V-B.

c) V iteration: We compute new estimates of V using
the replay buffer B as input. The algorithm iterates I times
over the entire replay buffer B and computes training data
for the KNN regressor.

Vi+1 ← [s, g, max(r, γVi(s′, g), βVi(s, g)] (2)

Training data for s, g pairs is computed by taking the
maximum value of the following three sources. We explain
the sources referring to Figure 2.
• Reward r: The reward is an immediate source of value

if a goal state was reached. For examples, this term
is chosen for point A (Figure 2), because the action
directly leads to a reward.

• Discounted predicted value γVi(s′, g): This value is
the same as the Bellmann backup except here it is
predicted by the regressor. This term spreads value
along successful observed trajectories. For example, this

term is chosen for point B (Figure 2), when the future
state (B′ = A) has a value. The hyper-parameter γ is
the typical discount factor in MDPs. We use γ = 0.99.

• The estimated value of the current state βVi(s, g):
This allows the algorithm to spread values through the
state and goal space. The term implicitly replaces the
search for the best action in Equation 1 (maxa∈A). For
example, this term is chosen for point C (Figure 2), if
the neighboring state B has a high value. The cooling
factor β counteracts overestimations from previous V.
With an ε-greedy agent, areas with an overestimated
value are explored more in future episodes, so that errors
are quickly fixed.

V. SAMPLE AUGMENTATION:
Robots can only gain limited experience from the envi-

ronment constrained by the real-time movements and the
sampling rates of sensors and actuators. To enhance the
training data it can be enhanced by additional samples, which
can be inferred without additional knowledge like physics
simulations. In this paper, we propose a new approach (IER)
and compare it to an existing approach (HER).

A. Hindsight Experience Replay (HER)

HER [7] is a recent example of sample augmentation
where experiences (samples) are added to the buffer for
additional goals. HER assumes that states can be goals and
therefore states later in a trajectory/episode can be assigned
as goals to samples earlier in the trajectory thereby creating
new samples. The new data is added to the replay buffer
B. The newly created samples are limited to have goals
which are previously seen states. The maximum amount
of samples HER can create for a trajectory of length n
is n(n+1)

2 . Importantly, HER assumes that goal and state
space are equal, i.e. that goals are states in the state space.
Therefore, HER cannot be applied to domains, where the
goal and state spaces are separate.

B. Imaginary Experience Replay (IER)

We address the main limitations of HER in this paper
by proposing Imaginary Experience Replay (IER). IER is
able to 1) produce infinite amounts of samples from finite
experiences B and 2) deal with separate goal and state
space domains. IER does this by extending experienced
transitions with imaginary goals. The algorithm (see also
Algorithm 2) samples any number S of additional samples
from B. For all additional samples, a new random goal
ĝ ∈ G is sampled and the reward is changed according
to Rĝ(st, at, st+1). IER applied to CVI helps in spreading
discounted rewards through the V (and Q) landscape and
therefore aids generalizations across different goals. Samples
created by IER can serve as the glue between experienced
trajectories with different goals.

VI. EXPERIMENT I: SIMULATED POINT ENVIRONMENT

We validate CVI and IER using two types of environments.
The first environment is a simulation of a moving two-
dimensional point on a plane. We use the simulation to

Algorithm 2 Imaginary Experience Replay (IER)

1: Given:
2: Replay buffer B with transitions (s, a, r, s′, g)
3: Goal space G and a way to sample from G
4: Reward function Rg(s, a, s′)
5: for Sample s = 1, S do
6: Sample imaginary goal ĝ from G (using any distri-

bution, we use uniform)
7: Sample transition (s, a, r, s′, g) from replay buffer B
8: Store (s, a, Rĝ(s, a, s′), s′, ĝ) in replay buffer B

explore the impact of design choices and compare our
method with existing state-of-the-art methods.

A. Experimental Setup

a) State space S ⊆ R2: with s = [x, y] agent position.
b) Actions A ⊆ R2: with a = [dx, dy] agent velocity.
c) Transition function T(s, a, s′) := P(st+1 = s′|st =

s, at = a):
d) Goals G = S: with a fixed margin w that deter-

mines if a goal has been reached. We study two types of
experiments:

• one goal - goal is the same for the duration of a
particular experiment (training and evaluation).

• random goal - new goals are chosen randomly from G
when a goal has been reached.

e) Reward function Rg: The reward function is binary:
a state s is considered a goal state iff |s− g| < w and the
reward for goal states is one. For all other states reward is
zero.

Rg(s, a, s′) =

{
1, iff |s′ − g| < w
0, otherwise

(3)

f) Training: For each training episode, the agent’s
position is set to a random location. In each episode, a
maximum of 200 transitions (timesteps) can be performed.
The agent position is set randomly and the agent gets 30
timesteps to reach the goal. The agent’s position is reset
randomly if the agent reaches the goal or 30 timesteps are
up. If 200 timesteps are up, the training episode is finished.
The agent can reach a variable number of goals within a
training iteration.

g) Evaluation: We evaluate the controller after each
training episode. The maximum length of an evaluation
episode is 2000 timesteps. The agent is randomly set (and
in random goal tasks a goal is randomly chosen). For each
trial the agent then has a maximum of 30 timesteps to reach
the goal. The agent’s position is reset when reaching the
goal or after 30 timesteps. The performance of the controller
is quantified by comparing the agent’s trajectory with the
analytically calculated optimal trajectory. Suppose the agent
took m steps to reach the goal with opt being the shortest
possible number of steps to reach the goal, then the optimal

control score is

score(m) =

{
1− m−opt

30−opt , iff agent reaches goal

0, otherwise
(4)

with score(m) = 1 if the agent takes as many timesteps to
the goal as the optimal trajectory would and 0 if the goal
is never reached. The average score of all trials is the final
score.

h) Benchmarking: We evaluated various systems to
understand the performance of CVI and the effect of sample
augmentation. We benchmark our own sample augmentation
technique (IER) against the state of the art (HER). We
execute the same experiment 10 times for each of the
following systems.

• CVI: vanilla CVI without augmentation
• CVI+HER: CVI with HER sample augmentation
• CVI+IER: CVI with IER sample augmentation. The

number of samples added is equal to the number of
samples HER can produce for the given replay buffer
B.

• CVI+IER 3X: CVI with IER sample augmentation. The
number of samples is the same that HER can produce
times 3.

• CVI+IER 10X: CVI with IER sample augmentation.
The max number of samples is the same that HER can
produce times 10.

B. Results I: CVI learns to solve continuous state and action
space tasks

We first evaluate CVI’s ability to solve one goal tasks.
Figure 3a shows that CVI (even without any sample augmen-
tation strategies) is able to quickly solve one goal tasks in
the point environment. We see convergence reliably after 10
training iterations (2000 timesteps). Figure 3a also compares
the performance of different sample augmentation strategies.
It is clear that for the one goal tasks in a point environment
sample augmentation is not necessary to achieve a good
performance.

Figure 4 shows the learned reward value V for states in
the state space (one goal). We measure this by sampling a
collection of states s and plotting their Vi(s, g) (with fixed
g and i ∈ [1, 12, 100]). We can see that after few iterations
(12) (Figure 4b) the value function approximates the true
underlying discounted reward value landscape (optimal V∗)
shown in Figure 4d. This explains why the agent is able
to collect rewards quickly. Notice that basically the task is
solved after 10-12 iterations. After that, the V estimates
become even more accurate, however, this is not strictly
necessary for good task performance. All it takes is for
the landscape of V(s, g) to have similar local derivatives
as V∗(s).

We did similar experiments in an environment with an
obstacle (a virtual wall). Results are omitted here due to
space limitations, but CVI solved that environment equally
quickly.

0 10 20 30 40 50
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
O

p
ti

m
a
l
co

n
tr

o
l

(a) One goal

CVI
CVI +HER
CVI +IER
CVI +IER 3X
CVI +IER 10X

0 10 20 30 40 50
Iterations

0.2

0.4

0.6

0.8

O
p
ti

m
a
l
co

n
tr

o
l

(b) Random goals

CVI
CVI +HER
CVI +IER
CVI +IER 3X
CVI +IER 10X

Fig. 3: Performance of CVI with various sample augmen-
tation strategies in one goal (a) and random goal (b) tasks
in the point environment. The y-axis shows, how close the
agent is to optimal control (see Section VI-A). For each
configuration, 10 independent runs were performed and the
averages with their bands of ±σ are shown. The KNNs use
k=5 neighbors.

C. Results II: CVI + IER learn to solve tasks with different
goals

We evaluated CVI’s ability to solve random goal tasks.
Figure 3b shows that CVI is able to solve random goal
tasks in the point environment. However, here sample aug-
mentation strategies clearly improve the performance of the
system significantly. CVI alone is learning to solve the task,
however, adding sample augmentation strategies aids early
convergence. We see convergence starting from 10 training
iterations (2000 samples) in the best case. This is comparable
to the one goal environment with almost no loss in learning
speed.

Figure 3b also compares the performance of different
sample augmentation strategies. We can see that IER out-
performs HER, even with the same amount of additional
samples. The main reason for this is that IER allows for more
generalization in the goal space through much more samples
with varying goals. Importantly, adding more goals does not
significantly slow learning when using IER. Convergence
is slower, but adding infinitely many goals to the task has
almost negligible effects compared to the increased difficulty.

D. Results III: CVI vs DDPG

We compared CVI with the current continuous action/state
space state-of-the-art algorithm DDPG. DDPG uses a replay
buffer to directly optimize a policy. We used the DDPG
implementation of OpenAI1 on the point environment and

1https://github.com/openai/baselines/tree/master/baselines/ddpg

(a) Predicted values it = 1 (b) Predicted values it = 12

(c) Predicted value it = 100 (d) Actual Value of states

Fig. 4: Value function in the point environment with fixed
goal at g = (1, 1) (dmax = 0.2 and w = 0.2). (a - c)
prediction over time with CVI (γ = 0.85 and β = 0.99);
(d) analytically calculated.

I

A
ve

ra
ge

 R
et

ur
n

Fig. 5: Comparison of CVI and DDPG in the point environ-
ment (dmax = 0.05, w = 0.1). The KNNs use k=5. In the
x-axis, algorithm iterations are shown where one iteration
includes 200 state transitions in the environment and in the
y-axis, the average return per test episode with ±σ is shown
where 1 means that the goal is reached in all episodes.

optimized DDPG hyper-parameters with full grid search. We
show the results of the best configuration.

Figure 5 shows that DDPG does not solve the environment
whereas CVI quickly learns a near optimal controller. Further
experiments showed that the main reason for DDPGs failure
is the sparse reward structure of the task. In contrast to
CVI, DDPG does not seem to be able to handle very sparse
rewards. Notice that these experiments were done in the one
goal point environment. Since DDPG was unable to solve
this task we did not extend evaluation to random goals. Also,
we omitted sample augmentation since HER, IER and other
goal sample augmentation techniques have no effect in this
setting.

VII. EXPERIMENT II: ROBOT ARM

We use a robot attached to a table to show that CVI
can learn continuous controllers in the real-world. The robot
consists of a kinematic chain of Dynamixel motors (see
Figure 1, page 1). We use this experimental setup to validate
CVI in two ways. First, we are interested in direct voltage
motor control in the real-world. Second, we evaluate whether
the system learns to reach coordinates in an absolute Carte-
sian space (task space) without directly providing observable
access to the Cartesian space. In other words, the robot’s state
representation does not include the task space. The robot has
to learn to control task space through sparse reward feedback
only.

A. Experimental Setup

a) State space S: The state space of the robot is the
joint space and joint velocity of the two actuators s =
[r1, r2, ṙ1, ṙ2]. The state is directly measured by hardware
sensors.

b) Actions A: The motors are directly controlled by
setting voltages a = [v1, v2]. The Dynamixel uses PWM to
control average supply voltage to the motor based on a and
thereby controls the torque applied to the motor. The Motors
are backdrivable and the robot is not statically stable. The
robot just falls down, when the voltage is zero. Similarly, the
robot requires some control signal to overcome joint friction.

c) Goal space G: Goals are positions in the Cartesian
space (x, y). The Cartesian space is centered in the middle
of the first joint and fixed along the axis of the table (see
Figure 1). I.e. the goal space is relative to the table and does
not rotate with the robot. Notice that state and goal space are
completely separate spaces. Goals are not part of the state
space and only indirectly accessible to the robot via sparse
reward signals.

d) Reward R: The reward function is the same as
in the point environment. We measure the position of the
end effector in goal space using internal readouts of the
motor rotations and prior knowledge of the forward model
to calculate the absolute position in space with respect to
the Cartesian coordinate system. This is used exclusively in
the reward function. The robot does not have access to the
forward model.

e) Training: We train the system for 60 minutes (∼
20k experienced state transitions at 5 fps). The robot starts
in a random position. A goal is chosen and the robot has 100
timesteps (20 sec) to reach the goal. If it reaches the goal or
time is up, the goal is reset randomly. Notice that in contrast
to the point environment, the robot position is never reset.
Also, this is effectively a random goal environment.

f) Evaluation: We test the system for 10 minutes (3000
timesteps at 5fps) with a similar setup as in training. We
choose a random goal and the robot has a maximum of 100
timesteps (20 seconds) to reach that goal. The goal is reset
if the robot reaches the goal or time is up. We measure how
many rewards the robot was able to collect in 10 minutes
(cumulative reward).

The experiments are repeated 10 times each to obtain
statistical data.

R andom C VI C V I + HE R C V I + IE R 3X C V I + HE R + IE R 3X

20

40

60

80

R
ew

ar
ds

 in
 3

00
0

tim
e

st
ep

s
(1

0
m

in
ut

es
)

Fig. 6: Average cumulative reward in 3000 timesteps (10
minutes) of test data on the robot arm for various algorithms

B. Results and Discussion
Figure 6 shows the performance of various strategies

of CVI with and without augmentation on the real robot
with voltage control action space and Cartesian goal space.
CVI significantly outperforms the random control policy.
The results also show that sample augmentation signifi-
cantly helps CVI. HER gives some improvement but maybe
not statistically significant. However, IER and especially
IER+HER make the system perform very well. If we check
the performance of CVI+HER+IER we can see that in 10
minutes it reaches an average of 80 goals. That directly
translates into reaching a new goal on average every 7.5
seconds.

In our view, the performance of the system is remarkable.
CVI (HER+IER) learns to perform actions directly in the
real-world. Here, CVI does not use stable position control
but directly manipulates the voltage of the motors and has
to deal with physical effects such as gravity, friction without
receiving lots of sensory information (only joint position and
velocity). Moreover, the robot learns to control a task space
to which it has no direct access. It can only indirectly access
information about this space via the reward function. Reward
though is binary and is only experienced when reaching a
goal. This shows that CVI can efficiently solve continuous
action and state space RL problems with sparse rewards.

VIII. CONCLUSION

We have presented two novel methods for Reinforcement
Learning in continuous state, goal and action spaces. Firstly,
Continuous Value Iteration (CVI) enables the efficient es-
timation of utility functions V and Q. We see that these
methods generalize well in continuous state, action, and
goal spaces. Second, Imaginary Experience Replay (IER)
significantly enhances the performance of CVI by adding
potentially unlimited amounts of samples for better general-
ization. We have shown in two environments that the pro-
posed methods perform well. Importantly, CVI+IER enable
a voltage controlled real robot to quickly learn to move in
the real-world without explicitly learning forward or inverse
models.

REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[2] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van
Den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam,
M. Lanctot, et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, pp. 484–489,
2016.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” CoRR, vol. abs/1509.02971, 2015.

[4] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and
N. de Freitas, “Sample efficient actor-critic with experience replay,”
arXiv preprint arXiv:1611.01224, 2016.

[5] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[6] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel,
“Domain randomization for transferring deep neural networks from
simulation to the real world,” CoRR, vol. abs/1703.06907, 2017.

[7] M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welin-
der, B. McGrew, J. Tobin, P. Abbeel, and W. Zaremba, “Hindsight
experience replay,” CoRR, vol. abs/1707.01495, 2017.

[8] R. Bellman, Dynamic Programming. Princeton, NJ, USA: Princeton
University Press, 1 ed., 1957.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep rein-
forcement learning,” CoRR, vol. abs/1312.5602, 2013.

[10] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in AAAI, 2016.

[11] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot, and N. Freitas,
“Dueling network architectures for deep reinforcement learning,” in
International Conference on Machine Learning, pp. 1995–2003, 2016.

[12] J. A. Boyan and A. W. Moore, “Generalization in reinforcement
learning: Safely approximating the value function,” in Advances in
neural information processing systems, pp. 369–376, 1995.

[13] D. Ormoneit and S. Sen, “Kernel-based reinforcement learning,”
Machine Learning, vol. 49, pp. 161–178, 2002.

[14] H. van Hasselt and M. A. Wiering, “Reinforcement learning in
continuous action spaces,” in 2007 IEEE International Symposium
on Approximate Dynamic Programming and Reinforcement Learning,
pp. 272–279, April 2007.

[15] R. Hafner and M. Riedmiller, “Neural reinforcement learning con-
trollers for a real robot application,” in Robotics and Automation, 2007
IEEE International Conference on, pp. 2098–2103, IEEE, 2007.

[16] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” ICML, 2014.

[17] V. R. Konda and J. N. Tsitsiklis, “Actor-critic algorithms,” in Advances
in neural information processing systems, pp. 1008–1014, 2000.

[18] D. Precup, R. S. Sutton, and S. Dasgupta, “Off-policy temporal-
difference learning with function approximation,” in ICML, pp. 417–
424, 2001.

[19] T. Schaul, D. Horgan, K. Gregor, and D. Silver, “Universal value
function approximators,” in Proceedings of the 32nd International
Conference on Machine Learning (F. Bach and D. Blei, eds.),
vol. 37 of Proceedings of Machine Learning Research, (Lille, France),
pp. 1312–1320, PMLR, 07–09 Jul 2015.

[20] D. Foster and P. Dayan, “Structure in the space of value functions,”
Machine Learning, vol. 49, pp. 325–346, Nov 2002.

[21] R. S. Sutton, J. Modayil, M. Delp, T. Degris, P. M. Pilarski,
A. White, and D. Precup, “Horde: A scalable real-time architecture
for learning knowledge from unsupervised sensorimotor interaction,”
in The 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, pp. 761–768, International Foundation
for Autonomous Agents and Multiagent Systems, 2011.

[22] Z. Yang, K. Merrick, H. Abbass, and L. Jin, “Multi-task deep re-
inforcement learning for continuous action control,” in Proceedings
of the 26th International Joint Conference on Artificial Intelligence,
IJCAI’17, pp. 3301–3307, AAAI Press, 2017.

[23] Y. Demiris and A. Dearden, “From motor babbling to hierarchical
learning by imitation: a robot developmental pathway,” 2005.

[24] M. Rolf, “Goal babbling for an efficient bootstrapping of inverse
models in high dimensions,” 2012.

[25] A. Baranes and P.-Y. Oudeyer, “Active learning of inverse models
with intrinsically motivated goal exploration in robots,” Robotics and
Autonomous Systems, vol. 61, no. 1, pp. 49–73, 2013.

[26] N. S. Altman, “An introduction to kernel and nearest-neighbor non-
parametric regression,” The American Statistician, vol. 46, no. 3,
pp. 175–185, 1992.

	I Introduction
	II Continuous state and action MDP with goals
	III Related Work
	IV Continuous Value Iteration (CVI)
	V Sample Augmentation:
	V-A Hindsight Experience Replay (HER)
	V-B Imaginary Experience Replay (IER)

	VI Experiment I: Simulated point environment
	VI-A Experimental Setup
	VI-B Results I: CVI learns to solve continuous state and action space tasks
	VI-C Results II: CVI + IER learn to solve tasks with different goals
	VI-D Results III: CVI vs DDPG

	VII Experiment II: Robot arm
	VII-A Experimental Setup
	VII-B Results and Discussion

	VIII Conclusion
	References

