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LvIS: Learning from Value Function Intervals for Contact-Aware
Robot Controllers
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Abstract— Guided policy search is a popular approach for
training controllers for high-dimensional systems, but it has a
number of pitfalls. Non-convex trajectory optimization has local
minima, and non-uniqueness in the optimal policy itself can
mean that independently-optimized samples do not describe a
coherent policy from which to train. We introduce LVIS, which
circumvents the issue of local minima through global mixed-
integer optimization and the issue of non-uniqueness through
learning the optimal value function (or cost-to-go) rather than
the optimal policy. To avoid the expense of solving the mixed-
integer programs to full global optimality, we instead solve them
only partially, extracting intervals containing the true cost-to-
go from early termination of the branch-and-bound algorithm.
These interval samples are used to weakly supervise the training
of a neural net which approximates the true cost-to-go. Online,
we use that learned cost-to-go as the terminal cost of a one-step
model-predictive controller, which we solve via a small mixed-
integer optimization. We demonstrate the LVIS approach on
a cart-pole system with walls and a planar humanoid robot
model and show that it can be applied to a fundamentally
hard problem in feedback control—control through contact.

I. INTRODUCTION

While there are a variety of successful approaches for
planning multi-contact behaviors (e.g. [1], [2], [3], [4]), it
has proven to be difficult to apply these techniques quickly
enough to be used in response to disturbances. Further-
more, most multi-contact trajectory optimizations are solved
via non-convex optimizations, typically through sequential
quadratic programming (e.g. [2], [3]) or differential dynamic
programming (e.g. [4], [5], [6], [7]). These techniques can
generally find locally optimal solutions, but make no guaran-
tees of global optimality. While locally optimal solutions are
often sufficient for planning purposes, they make training a
policy from examples (as in [7] and [5]) more difficult, as the
locally optimal samples may not describe a coherent global
policy.

Mixed-integer optimization offers some hope for plan-
ning globally optimal multi-contact behaviors: By explicitly
representing the discrete changes in dynamics with discrete
(i.e. integer) variables, we can create optimization problems
which are solvable to global optimality using branch-and-
bound [8]. Global optimality is possible even in the presence
of nonlinear constraints [9], [10], but for this paper we
restrict ourselves to piecewise affine models, inspired by the
long history of successful linearized dynamical models for
humanoid robots (e.g. [11]). Unfortunately, global optimality
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(a) The planar humanoid robot.

Fig. 1.

(b) The cart pole with walls.

The robot models used in this work.

comes at a cost, with typical trajectory optimizations taking
seconds or minutes to solve [1]. Furthermore, there is no
guarantee that these expensive optimizations will result in a
consistent global policy, as the optimal policy itself may not
be unique.

On the other hand, we do not necessarily need to com-
pletely solve a mixed-integer optimization to get some
useful information from it. Mixed-integer convex problems
are generally solved by branch-and-bound [8], a process
which iteratively finds better candidate solutions and tighter
bounds on the best possible solution. If we ensure that a
candidate solution always exists, then we can terminate the
branch-and-bound process at any time, retrieving the best
solution and tightest bound found so far. Although we could
attempt to train from these sub-optimal solutions, we would
again be learning to imitate a sub-optimal controller. The
bounds themselves, however, are extremely useful: In an
MPC problem, bounds on the optimal objective value are
also bounds on the optimal cost-to-gdﬂ from a given stateE]
Having a model of the cost-to-go in turn enables fast online
control by simply greedily descending that cost.

A. LVi1S: Learning from Value Interval Sampling

In this work, we introduce LVIS, a new approach for
the creation of contact-aware controllers. We model our
robot’s contact dynamics with complementarity constraints
(Sect. [IV-A). Offline, we set up a large number of trajectory
optimizations in the form of mixed-integer quadratic pro-
grams (MIQPs) from a variety of initial states. We partially
solve those optimizations, terminating early and extracting

IThe cost-to-go, which we will also refer to as the value function J(z), is
the cost which will be accumulated by the optimal controller starting from
state = [12].

2This assumes that the MPC horizon is long enough to reach a set of states
with known cost-to-go. We will violate that assumption later, but attempt
to demonstrate empirically that the objective bounds are still useful.
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concrete intervals containing the optimal cost at the given
robot state (Sect. [[V-B). From these intervals, we train a
small neural net to approximate the cost-to-go using a loss
function which penalizes predicted values outside the known
intervals (Sect.[[V-C). Online, we run a simple one-step MPC
controller to greedily descend the approximate cost-to-go as
quickly as possible subject to the robot’s dynamics (Sect.

D).
II. RELATED WORK

This work is similar to that of Zhong et al. in [5], in which
offline optimizations were also used to train an approximate
cost-to-go used as the terminal cost of a shorter-horizon
MPC problem. Zhong’s work differs from ours in its use of
iterative LQR (iLQR) to generate the cost-to-go samples. As
iLQR is a local nonlinear optimization, it can only provide
an estimate of the upper bound of the the cost-to-go (since
a lower cost might exist in a space that was not explored by
the local optimization). In our case, by constructing a mixed-
integer optimization and solving it with branch-and-bound,
we recover global upper and lower bounds on cost-to-go,
using the interval spanned by those bounds during training. In
Sect. we specifically compare LVIS with an approach
of learning only from upper bounds on the cost-to-go.

A major obstacle to solving MPC problems for system
with contacts is the potentially vast number of possible
mode sequencesﬂ If an optimal mode sequence for a given
state could be computed, then we could perform a cheap
continuous optimization to choose the precise optimal input
given that mode sequence. This is the approach taken by
Hogan in [13], in which a neural net is trained to predict
mode sequences from robot states. Marcucci takes a similar
approach in [14] by creating a library of provably feasible
stabilizing mode sequences and looking up a mode sequence
for the robot’s current state at run-time.

Alternatively, the efficient sequential linear-quadratic
methods from [6] do allow for locally optimal real-time MPC
for systems with contact, avoiding the need for offline learn-
ing. These optimizations are still subject to local minima,
but the ability to run them at real-time means that they do
not need to be used to train a global policy.

Looking more broadly, reinforcement learning offers an
alternative approach which does not require any explicit
offline planning but instead simply the ability to roll out
actions in simulation or hardware (e.g. [15], [16]). In our
approach, directly measuring the cost-to-go intervals from
a given state, rather than trying to estimate a reward based
on expected future actions, allows us to use a very simple
supervised learning architecture instead.

III. ROBOT MODELS

We demonstrate the LVIS controller on two models: a cart-
pole system balancing between two walls and a simplified
humanoid model. The cart-pole (Figure [Ib) consists of an

30ur humanoid system has 1,679, 616 modes (Sect. , SO a trajectory
optimization with a horizon of 10 steps has 167961610 ~ 1.8 x 1092
possible mode sequences, most of which are infeasible.

actuated cart which can accelerate in one dimension, and an
unactuated pole which rotates freely. We modify the system
by adding two walls on either side (contact is considered
only between the tip of the pole and the walls). The cart-pole
system has 4 continuous states, 1 input, and 7 discrete modes
(contact-free and sticking, sliding up, and sliding down for
each wall).

The simplified planar humanoid model (Figure [Ia) has
11 degrees of freedom (3 DoF for the planar translation
and rotation of the central body, and 2 DoF for the rotation
and extension of each limb in the plane). We model contact
between each limb and the fixed floor or wall, and we add
hard position limits for each of the 8 joints connecting the
limbs to the body. The humanoid has 22 continuous states
and 11 inputs. Since each of the 4 limbs has 3 states (free,
sticking, or sliding in one of 2 directions), and each of the 8
joints has 3 states (free, at its upper limit, or at its lower
limit), the system has a total of 4* x 3% = 1,679,616
discrete modes. We model these modes implicitly using
complementarity conditions (Sect. [[V-A).

IV. TECHNICAL APPROACH
A. Modeling

Following the formulation of Stewart and Trinkle in [17],
we model the dynamics of our robot in a contact-implicit
manner with complementarity conditions. In discrete time,
these dynamics take the form:

M (vl+1 — Vl) = hf',, + hC + hBu' (la)

where h is the time step, q' and v' are the system’s
generalized configuration and velocity at time step [, M
is the mass matrix, hf.;; is the external impulse due to
contact and friction, hC is the impulse caused by Coriolis,
and gravitational forces, and hBu' is the impulse caused
by the generalized inputs u. Complementarity conditions
ensure that there is no force acting at a distance and no
sliding frictional force without an accompanying velocity.
For example, we constrain the normal force of a contact
with a condition of the form:

frLo(q) 2)

where f, is the normal force and ¢(q) is the separation
between the associated contact point and the world. We
use the notation a | b to mean a > 0 and b > 0 and
a'b = 0, so condition has the effect of ensuring that
normal force is nonnegative (no pulling on the ground),
separation is nonnegative (no penetration), and contact force
can only occur when separation is zero. For the complete set
of complementarity conditions used in this work, see [17].
It is important to note that M, C, B, and ¢ all depend
on the robot’s current state (in general in a nonlinear way).
When we write down a trajectory optimization as an MIQP,
we cannot represent these nonlinear dependencies, so we
currently linearize the dynamics around the current state.
This limits our current implementation, as our results are



only valid for the particular linearization. While linearized
centroidal dynamics have been dramatically successful in
humanoid robotics (e.g. [11]), we hope to explore using the
full nonlinear dynamics in future work (see Sect. [VI).

B. Data Collection via Optimal Control

To generate a single sample, we start from some initial
0 0T LOT1 T (i :
state x* = [q°T v®T] . Given a convex quadratic cost
described by matrices Q, R, and S, we write down a
trajectory optimization:

N
minimize E [XlTQxl + ulTRul] +xVTsxV
xt. . xM ul. u?,
£V =1
subject to linearized dynamics (Ta] [Tb)

complementarity (2) .

J* =

3)

For each scalar complementarity condition z; L y; we
introduce a new binary variable z; and constrain:

r; 20, 3 >0 (4a)
zi=1 = 2;,=0 (4b)
zi=0 = y;=0. (4c)

We formulate the implication constraints in (@b} as
linear constraints using a standard big-M formulation [18].
The introduction of the binary variables z; converts our
optimization into an MIQP, i.e. a program with a quadratic
objective, linear constraints, and some variables constrained
to take integer values in {0, 1}.

1) Generating Feasible Solutions as Warm-Starts: Be-
cause the only constraints present in the optimization prob-
lem in (@) are those that encode the dynamics and com-
plementarity conditions, any desired behavior of the system
must be expressed in the cost matrices Q, R, and S. This
restricts the expressiveness of our optimization, but it also
means we can generate feasible solutions to the optimization
(3) simply by simulating the system under any controller
subject to the same physical constraints. These simulated
trajectories are used as warm-starts in the mixed-integer
optimization.

The quality of the feasible solutions we generate depends
entirely on the choice of controller used during the simula-
tion. Fortunately, since simulation is computationally cheap
compared to a full MIQP solution, we can afford to warm-
start with multiple controllers and pick whichever simulation
result happens to have lower cost. In our case, we warm-
start every optimization by simulating with both a basic LQR
controller and the LVIS controller being trained. As we train
the LVIS cost-to-go, its performance improves and it tends
to provide increasingly good warm-starts.

2) Early Termination: Solving the MIQP optimization (3]
can be extremely expensive for a robot with as many states
and modes as our planar humanoid: a trajectory with just
N = 10 steps can take thousands of seconds to solve to

near optimalityﬂ The key insight of LvIS is that we do
not need to solve all the way to optimality: We can easily
generate feasible solutions by simulation, so the process
of solving the optimization problem in (3) is a matter of
running the branch-and-bound algorithm to iteratively find
better solutions and tighter bounds on the optimal cost. At
any point, we can simply terminate the optimization and
extract the best solution and tightest bound found so far.
We label the cost of the best solution found so far (which
is an upper bound on J* as .J,;, and we label the tightest
lower bound on the optimal cost as Jp.

We somewhat arbitrarily choose to terminate the optimiza-
tion at a fixed time limit of 3 seconds to balance the sub-
optimality of each sample with the rate at which samples
can be generated (limits of 5 or 10 seconds provided similar
performance). Other time limits or termination strategies are
certainly possible but have not yet been explored.

C. Training the Neural Net

The neural net which will approximate our cost-to-go
consists of a simple fully-connected feed-forward network
with exponential linear unit (ELU) activations [19]. For the
humanoid in Fig. [Ta] we use two hidden layers with 48 units
each, while for the cart-pole in Fig. [Tb| we use two hidden
layers with 24 units each. The neural net has a number of
input dimensions equal to the number of states in the robot
and an output dimension of one. We will label the predicted
cost-to-go at a state X as J (x; ), where 0 are the trainable
parameters of the net.

1) Loss Function: We train the neural net from a set of
training samples, where each sample consists of a tuple of
(robot state x, cost-to-go lower bound Jj,, and cost-to-go
upper bound J,). We penalize the net for predicting values
outside of the range [Jjy, Jub] using a double-sided hinge loss,
defined as:

Jo—J(x;0) if J(x;0) < Jy
h(x, Jio, Jun; 0) = 4 0 if Jip < J(x;0) < Jup
Jx:0) — Ju  if J(x;60) > Jup .
(5)

The total loss is simply the sum of the hinge losses over
every sample (X, Ji, Jub)-

The use of the hinge loss provides a unique advantage: as
training proceeds, we may revisit a particular state x, and due
to a better warm-start we may come up with tighter bounds
Jip and Jy, than we previously discovered. The hinge loss
ensures that, so long as the net predicts a value J which
falls within the new, tighter bounds, the old, looser bounds
do not influence the total loss. If, instead, we were attempting
to learn J by exactly matching the upper or lower bounds
or their precise midpoint, then our older samples would tend
to pull the net’s output away from the newer samples. Fig.

4For our humanoid robot model, solving to within 1% of the optimal
cost required an average of 1160 seconds per trajectory optimization, with
some cases taking several hours each. At a nominal control rate of 100 Hz,
solving to full optimality would thus require the data collection to run at
less than 0.0008% real-time.



shows an example of a learned value function and the interval
samples which were used to train it.

00| o—oBounds from MIQP

——LQR cost-to-go
—— LVIS learned cost-to-go

Cost-to-go

25 00 25
y velocity (m/s)

Fig. 2. An example of an approximate value function learned from
interval samples, as a function of the planar humanoid’s initial y velocity.
Each connected pair of points represents the interval [J, Jyup] from a
single trajectory optimization sample. For the states in which the mixed-
integer program was solved to optimality, J;;, ~ Jyp. The prediction

J(x;0) in green lies within the interval [Jjp, Jyp] at each sample. The
sampled intervals match the LQR cost-to-go (red) for small initial velocities,
indicating that the LQR policy is nearly optimal for small disturbances.

2) Optimization: The parameters 6 are trained using a
stock ADAM optimizer, with all parameters set to the defaults
suggested in [20], and ¢? regularization was used to penalize
the neural net weights.

D. Online Control Using the Learned Cost

The result of the training process described in Sect. [[V-C]
is a neural net whose forward pass approximates the cost-to-
go of the original MPC problem. To turn this neural net into
a control policy, we construct a new MPC optimization with
only one time step (/N = 1) and set as its terminal cost a
local affine approximation of the neural net’s predicted cost-
to-go. This corresponds to a greedy gradient descent on the
cost-to-go, subject to the robot’s dynamics.

Even the one-step MPC optimization, however, still in-
volves complementarity constraints and is thus a mixed-
integer problem. The restriction to a single time step dramati-
cally reduces the number of integer variables which must be
solved, allowing near-real-time controller performance, but
solving even these smaller MIQPs at control rates is still a
challenge. For this work, we implemented a mixed-integer
controller in Julia [21] using the RigidBodyDynamics.jl
software package to model the robot’s dynamics [22], the
Parametron.jl software package to model the optimization
problem [23], and the Gurobi optimizer to solve the resulting
problems [24].

E. Choosing Initial States with DAGGER

Rather than sampling randomly across the robot’s entire
state space, we adopt the DAGGER approach from [25]. Put
simply, DAGGER relies on simulating the system using the
(initially poorly-trained) policy as its controller instead of the
expert, iteratively collecting new training samples from the
regions of state-space visited by the learned policy. Our train-
ing alternates between (a) letting the learned controller drive
the robot for 25-100 time steps while running the mixed-
integer optimization to produce new training samples and
(b) using those new samples to further train the approximate
cost-to-go.

F. Policy Net

Rather than trying to learn the value function, we could
simply attempt to train a neural net to mimic the mapping
from x to u using the same trajectory optimization samples.
We label this approach the Policy Net. As discussed in
Sect. [[V-B:2] however, the fact that the trajectory optimiza-
tions are not generally solved to optimality means that the u
samples are not generally optimal. Training a neural net to
approximate these suboptimal samples is unlikely to result in
a good approximation of the optimal policy, but we attempt
to do so in order to evaluate that claim.

V. RESULTS
A. Cart-Pole With Walls

The approximate cost-to-go for the cart pole was trained
from 3862 mixed-integer trajectory optimization samples.
Each trajectory optimization had a horizon of 20 steps and
a time step of 25ms, for a total lookahead time of 0.5s.
Trajectory optimizations were terminated after 3 seconds,
which was sufficient for 92.0% of samples to converge to
within 1% of the globally optimal cost. As a baseline policy,
a discrete-time LQR controller was constructed using the
linearization of the system about the upright configuration
of the pole. The resulting LQR cost-to-go was used as
the terminal cost during the offline mixed-integer trajectory
optimization.

Training the cart-pole cost-to-go required approximately
two hours on a single CPU, the majority of which was
spent solving mixed-integer trajectory optimizations. A total
of 500 rounds of training with the ADAM optimizer were
performed. Convergence was estimated from 20% of the
training samples held as a validation set.
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Fig. 3. Accumulated cost of the cart-pole controllers. Each cell indicates
the total accumulated cost over a 4-second simulation from the given initial
cart and pole velocities, using the same cost matrices as the LQR controller.
The regions of very low (dark blue) accumulated cost indicate simulations
for which the pole was successfully balanced. The LVIS approach resulted
in the lowest accumulated cost and successful stabilization from the widest
variety of initial conditions.

1) Evaluation: Three potential controllers were evaluated
for the cart-pole in order to measure the effectiveness of the
learned value function approach:

1) Lvis: One-step mixed-integer MPC using the value
function learned from the [Jy, Jyp] intervals as its
terminal cost.

2) MPC + LQR: One-step mixed-integer MPC using the
LQR cost-to-go as its terminal cost.



3) Policy Net: The neural net trained to mimic the optimal

policy (Sect. [[V-F).

Each controller was evaluated by simulating the cart-
pole for 4 seconds from a range of initial velocities. Each
simulation began with the cart centered (¢g; = 0) and the
pole upright (g2 = 0), with initial cart velocity ¢; ranging
uniformly from -8 m/s to 8 m/s and initial pole rotational
velocity ¢, ranging uniformly from —mwrad/s to wrad/s.
Eleven samples of each initial velocity were collected, for
a total of 121 simulations of each controller. Performance
of the controller was evaluated by measuring the total accu-
mulated cost (using the same quadratic cost matrices () and
R that were used to design the LQR controller) over each
simulation.

Results of the cart-pole simulation are shown in Fig. [3]
The Lv1S controller out-performed the MPC + LQR baseline,
resulting in a lower accumulated cost and successful stabi-
lization of the pole from a wider range of initial velocities.
The policy net controller (see Sect.[IV-F) was able to stabilize
the pole from a few initial velocities, but it accumulated more
cost than either of the MPC approaches in nearly every case.

B. Planar Humanoid

For the planar humanoid, approximately 33,700 trajectory
optimization samples were collected, with each trajectory
optimization having a horizon of 10 and a time step of 50 ms,
for a total lookahead of 0.5s. Trajectory optimizations were
terminated after 3 s of optimization with Gurobi. The higher
state dimension and larger number of discrete modes made
the humanoid trajectory optimization problems substantially
harder to solve within that time limit, and only 3.2% of
optimizations could be solved to within 1% of the optimal
cost within that time.

The method of Mason et al. [26] was used to generate
an LQR policy consistent with the contact dynamics of the
humanoid (the similar method of [27] could also be used).
The LQR policy was designed for the nominal configuration
of the robot, shown in the left-most column of Fig. E with
both feet in contact with the ground.

Training the humanoid value function required approxi-
mately 36 CPU hours, again with the majority spent collect-
ing trajectory optimization samples. A total of 300 rounds
of training with the ADAM optimizer were performed, and
convergence was estimated from 20% of the training samples
held as a validation set.

A policy net was also trained on the humanoid optimiza-
tion samples in an attempt to directly learn the mapping from
state to action. The policy net also had two hidden layers with
48 units each, but had 11 outputs, corresponding to the 11
input dimensions of the robot. The same DAGGER training
process was run for the policy net, and the same 33,700
samples were provided for training.

1) Evaluation: The learned controller was evaluated by
simulating the humanoid robot from a variety of initial
velocities. From the nominal configuration, the robot’s initial
linear velocity (along the y axis of Fig.[Ta) was varied from
-1.5m/s to 1.5m/s and its initial angular velocity (about
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Fig. 4. Animations of the planar humanoid recovering from pushes using
the LVIS controller. Initial velocities refer to the velocity of the robot’s torso
along the y axis of Fig.|1al Note that the robot can recover froma 1.5ms ™!
velocity to the right by using contact with the wall, but cannot recover from
the same initial velocity to the left.
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Fig. 5. Accumulated cost of the humanoid controllers. Each cell indicates
the total accumulated cost over a 4-second simulation from the given initial
linear and angular velocity of the robot’s body, using the same cost matrices
as the LQR controller. LVIS achieved a low accumulated cost (dark blue)
across a wide variety of initial conditions, performing particularly well in
the bottom-right corner of the grid in which the initial velocity moved the
robot towards the wall.

the x axis of Fig. was varied from —x rad/s to wrad/s.
The robot was then simulated under each control policy for
4 seconds using a simulated control rate of 100 Hz.

As was the case with the cart-pole, the LVIS controller
generated substantially lower accumulated cost than the base-
line controller using the LQR cost-to-go. In particular, the
Lvis controller performed especially well when the robot’s
initial velocity directed it towards the wall, since it was able
to both step and reach for the wall in order to maintain
balance. The performance of the LVIS controller from a
variety of initial velocities can be seen in Fig. 4] and the
learned cost is compared with LQR and the Policy Net in
Fig. [l

2) Capturability Analysis: Fig.[5|shows that the controller
using the learned cost-to-go out-performs the baseline LQR
controller, but it could simply be the case that the baseline
LQR controller performed very poorly, making it easy to
beat. To evaluate the performance of both controllers with
respect to an independent benchmark, we can apply the
Instantaneous Capture Point (ICP) work of Pratt et al. [28]
to estimate the range of initial velocities for which the
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Fig. 6. Comparing the performance of the humanoid controllers with
the zero-step capturability region predicted by [28]. Each cell indicates
the accumulated cost, as in Fig. El For initial velocities in the yellow
shaded region, the estimated Instantaneous Capture Point (ICP) lies between
the robot’s feet, so it should be possible for a controller to stabilize the
center of mass without taking a step. The set of states stabilized by the
LQR controller, indicated by the very low (dark blue) accumulated cost,
approximately matches the region predicted by the ICP, while the LvIs
controller stabilizes a much larger region.

controller should be able to recover without taking a step.
Fig. [6] shows in yellow the set of states for which the ICP
predicts that the robot should be able to balance without
taking a step. Even the baseline LQR controller is able to
stabilize the robot from that entire range of statesEI, while the
LVIS controller substantially out-performs the capture point
predictions, since it is able to exploit changes in contact to
stabilize the robot.
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Fig. 7. Comparing learning the cost-to-go from the bounded intervals
(Sect. [[V=C.I), just the upper bound samples J,,p, or just the lower bound
samples Jyp,. Accumulated cost was measured as in Fig. [5] Neither the upper
nor the lower bounds alone were sufficient to train an approximate cost-to-
go which out-performed the LQR baseline or the LVIS approach (left).

3) The Importance of Intervals: As described in Sect.
[C1] we only penalize the neural net for predicting a cost-
to-go which is outside of the interval [Jjy,, Jyp]. To test the
validity of that approach, we also tried training the neural net
to exactly mimic the best feasible value J,,; or the best lower
bound Jj;,. Two additional neural nets were trained using the
same neural net structure, number of samples, and training
process as in Sect. [V-B.I] Each net was penalized for the
¢! error between its prediction and Jj;, or J,;, respectively.
We evaluated both of these cost-to-go approximations using
the same simulation procedure as in Fig. [5] Neither the Jy;
samples alone nor the .J;;, samples alone produced a cost-
to-go and controller which could out-perform even the LQR
baseline, as shown in Fig.[7} In practice, attempting to train
from just Jy, or Jy; resulted in substantial under-fitting, as
the upper and lower bound data both showed a great deal

SWhile the LQR controller has no notion of stepping, it can sometimes
successfully slide the foot in the direction of the initial velocity, resulting
in stabilization even when the capture point predicts a fall.

of noise from one sample to the next, influenced by the
quality of the warm-start solutions, and the varying behavior
of Gurobi’s internal heuristics.

C. Learning in Parameterized Environments

A
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velocity g1 and the parameter representing the distance from the center
of the track to each wall. The parameterized cost-to-go closely matches
LQR (in red) for states for which the cart will not reach the wall within
the planning horizon (between the yellow lines), while it rises more gently
elsewhere as the walls enable the robot to dissipate energy and reduce its
cost. The black line shows the cost function learned in Sect.[V-A] for which
the wall distance was fixed at 1.5m.

One drawback of the LvIS approach is that the offline
training and trajectory optimization are performed in a fixed
environment. This essentially bakes that environment into the
learned cost-to-go, resulting in a controller which is only
useful in the trained environment. To handle a variety of
environments, we suggest creating parameterized templates
representing deformable environments. By encoding the en-
vironment parameters into the input to the LVIS neural net
(both in training and at run-time), we can create a learned
cost-to-go which is a function both of the robot’s state and
the environment parameters.

As a basic demonstration of this approach, we modified the
cart-pole environment (Fig. [Tb), adding a single parameter
to represent the distance from the center of the track to
the walls. The same training process as in Sect. [V-A] was
run, with 20,982 trajectory optimization samples collected
over 18 hours. For each iteration of the DAGGER training,
the distance to the walls was uniformly randomly varied
from 0.5m to 2.0m. The resulting learned cost-to-go (now
a function of x and that parameter) is shown in Fig. [§]

VI. FUTURE WORK

The most significant limitation of this work is the use
of the linearized dynamics, which means that the learned
cost-to-go is only valid for that linearization. We believe,
however, that this limitation can be overcome: there exist
spatial branch-and-bound techniques, analogous to the tools
used to solve MIQPs, which are applicable to general nonlin-
ear mixed-integer optimizations. These techniques can also
provide rigorous upper and lower bounds on the cost-to-go
with no need to linearize. We look forward to experimenting
with the full nonlinear dynamics, using tools like Couenne
[9] or BARON [10] to solve the resulting optimizations.
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