
Combining Physical Simulators and Object-Based Networks for Control

Anurag Ajay1, Maria Bauza2, Jiajun Wu1, Nima Fazeli2,
Joshua B. Tenenbaum1, Alberto Rodriguez2, Leslie P. Kaelbling1

Abstract— Physics engines play an important role in robot
planning and control; however, many real-world control prob-
lems involve complex contact dynamics that cannot be char-
acterized analytically. Most physics engines therefore employ
approximations that lead to a loss in precision. In this paper,
we propose a hybrid dynamics model, simulator-augmented
interaction networks (SAIN), combining a physics engine
with an object-based neural network for dynamics modeling.
Compared with existing models that are purely analytical or
purely data-driven, our hybrid model captures the dynamics of
interacting objects in a more accurate and data-efficient manner.
Experiments both in simulation and on a real robot suggest
that it also leads to better performance when used in complex
control tasks. Finally, we show that our model generalizes to
novel environments with varying object shapes and materials.

I. INTRODUCTION

Physics engines are important for planning and control
in robotics. To plan for a task, a robot may use a physics
engine to simulate the effects of different actions on the
environment and then select a sequence of them to reach a
desired goal state. The utility of the resulting action sequence
depends on the accuracy of the physics engine’s predictions,
so a high-fidelity physics engine is an important component
in robot planning. Most physics engines used in robotics
(such as Mujoco [1] and Bullet [2]) use approximate contact
models, and recent studies [3], [4], [5] have demonstrated
discrepancies between their predictions and real-world data.
These mismatches make contact-rich tasks hard to solve using
these physics engines.

One way to increase the robustness of controllers and
policies resulting from physics engines is to add perturbations
to parameters that are difficult to estimate accurately (e.g.,
frictional variation as a function of position [4]). This
approach leads to an ensemble of simulated predictions that
covers a range of possible outcomes. Using the ensemble
allows to take more conservative actions and increases
robustness, but does not address the limitation of using
learned, approximate models [6], [7].

To correct for model errors due to approximations, we
learn a residual model between real-world measurements and
a physics engine’s predictions. Combining the physics engine
and residual model yields a data-augmented physics engine.
This strategy is effective because learning a residual error of
a reasonable approximation (here from a physics engine) is
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Fig. 1: Top: the robot wants to push the second disk to a goal
position by pushing on the first disk. Bottom: three snapshots within
a successful push (target marked as X). The robot learns to first
push the first disk to the right and then use it to push the second
disk to the target position.

easier and more sample efficient than learning from scratch.
This approach has been shown to be more data efficient, have
better generalization capabilities, and outperform its purely
analytical or data-driven counterparts [8], [9], [10], [11].

Most residual-based approaches assume a fixed number of
objects in the world states. This means they cannot be applied
to states with a varied number of objects or generalize what
they learn for one object to other similar ones. This problem
has been addressed by approaches that use graph-structured
network models, such as interaction networks [12] and
neural physics engines [13]. These methods are effective at
generalizing over objects, modeling interactions, and handling
variable numbers of objects. However, as they are purely data-
driven, in practice they require a large number of training
examples to arrive at a good model.

In this paper, we propose simulator-augmented interaction
networks (SAIN), incorporating interaction networks into a
physical simulator for complex, real-world control problems.
Specifically, we show:
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• Sample-efficient residual learning and improved predic-
tion accuracy relative to the physics engine,

• Accurate predictions for the dynamics and interaction
of novel arrangements and numbers of objects, and the

• Utility of the learned residual model for control in highly
underactuated planar pushing tasks.

We demonstrate SAIN’s performance on the experimental
setup depicted in Fig. 1. Here, the robot’s objective is to guide
the second disk to a goal by pushing on the first. This task is
challenging due to the presence of multiple complex frictional
interactions and underactuation [14]. We demonstrate the step-
by-step deployment of SAIN, from training in simulation to
augmentation with real-world data, and finally control.

II. RELATED WORK

A. Learning Contact Dynamics

In the field of contact dynamics, researchers have looked
towards data-driven techniques to complement analytical
models and/or directly learn dynamics. For example, Byravan
and Fox [15] designed neural nets to predict rigid-body
motions for planar pushing. Their approach does not exploit
explicit physical knowledge. Kloss et al. [11] used neural net
predictions as input to an analytical model; the output of the
analytical model is used as the prediction. Here, the neural
network learns to maximize the analytical model’s perfor-
mance. Fazeli et al. [8] also studied learning a residual model
for predicting planar impacts. Zhou et al. [16] employed a
data-efficient algorithm to capture the frictional interaction
between an object and a support surface. They later extended
it for simulating parametric variability in planar pushing and
grasping [17].

The paper closest to ours is that from Ajay et al. [9], where
they used the analytical model as an approximation to the push
outcomes, and learned a residual neural model that makes
corrections to its output. In contrast, our paper makes two key
innovations: first, instead of using a feedforward network to
model the dynamics of a single object, we employ an object-
based network to learn residuals. Object-based networks
build upon explicit object representations and learn how
they interact; this enables capturing multi-object interactions.
Second, we demonstrate that such a hybrid dynamics model
can be used for control tasks both in simulation and on a
real robot.

B. Differentiable Physical Simulators

There has been an increasing interest in building differ-
entiable physics simulators [18]. For example, Degrave et
al. [19] proposed to directly solve differentiable equations.
Such systems have been deployed for manipulation and
planning for tool use [20]. Battaglia et al. [12] and Chang et
al. [13] have both studied learning object-based, differentiable
neural simulators. Their systems explicitly model the state of
each object and learn to predict future states based on object
interactions. In this paper, we combine such a learned object-
based simulator with a physics engine for better prediction
and for controlling real-world objects.

C. Control with a Learned Simulator

Recent papers have explored model-predictive control with
deep networks [21], [22], [23], [24], [25]. These approaches
learn an abstract-state transition function, not an explicit
model of the environment [26], [27]. Eventually, they apply
the learned value function or model to guide policy network
training. In contrast, we employ an object-based physical
simulator that takes raw object states (e.g., velocity, position)
as input. Hogan et al. [28] also learned a residual model with
an analytical model for model-predictive control, but their
learned model is a task-specific Gaussian Process, while our
model has the ability to generalize to new object shapes and
materials.

A few papers have exploited the power of interaction
networks for planning and control, mostly using interaction
networks to help training policy networks via imagination—
rolling out approximate predictions [29], [30], [31]. In
contrast, we use interaction networks as a learned dynamics
simulator, combine it with a physics engine, and directly
search for actions in real-world control problems. Recently,
Sanchez-Gonzalez et al. [32] also used interaction networks
in control, though their model does not take into account
explicit physical knowledge, and its performance is only
demonstrated in simulation.

III. METHOD

In this section, we describe SAIN’s formulation and
components. We also present our Model Predictive Controller
(MPC) which uses SAIN to perform the pushing task.

A. Formulation

Let S be the state space and A be the action space. A
dynamics model is a function f : S × A→ S that predicts
the next state given the current action and state: f(s, a) ≈
s′, for all s, s′ ∈ S, a ∈ A.

There are two general types of dynamics models: analytical
(Fig. 2a) and data-driven (Fig. 2b). Our goal is to learn a
hybrid dynamics model that combines the two (Fig. 2c). Here,
conditioned on the state-action pair, the data-driven model
learns the discrepancy between analytical model predictions
and real-world data (i.e. the residual). Specifically, let fr
represent the hybrid dynamics model, fp represent the physics
engine, and fθ represent the residual component. We have
fr(s, a) = fθ(fp(s, a), s, a) ≈ s′. Intuitively, the residual
model refines the physics engine’s guess using the current
state and action.

For long-term prediction, let fRθ : S×S×A→ S represent
the recurrent hybrid dynamics model (Fig. 2d). If s0 is the
initial state, at the action at time t, s̄t the prediction by the
physics engine fp at time t and ŝt the prediction at time t,
then

fRθ (s̄t+1, ŝt, at) = ŝt+1 ≈ st+1, (1)
fp(s̄t, at) = s̄t+1, s̄0 = ŝ0 = s0. (2)
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Fig. 2: Model classes: (a) physics-based analytical models; (b) data-driven models; (c) simulator-augmented residual models; (d) recurrent
simulator-augmented residual models.

For training, we collect observational data {(st, at, st+1)}T−1t=0

and then solve the following optimization problem:

θ∗ = arg min
θ

T−1∑
t=0

‖ŝt+1 − st+1‖22+λ‖θ‖22, (3)

where λ is the weight for the regularization term.
In this study, we choose to use a recurrent parametric model

over a non-recurrent representation for two reasons. First,
non-recurrent models are trained on observation data to make
single-step predictions. Consequently, errors in prediction
compound over a sequence of steps. Second, since these
models recursively use their own predictions, the input data
given during the simulation phase will have a different
distribution than the input data during the training phase. This
creates a data distribution mismatch between the training and
test phases.

B. Interaction Networks

We use interaction networks [12] as the data-driven
model for multi-object interaction. An interaction network
consists of 2 neural nets: fdyn and frel. The frel network
calculates pairwise forces between objects and the fdyn
network calculates the next state of an object, based on
the states of the objects it is interacting with and the nature
of the interactions.

The original version of interaction networks was trained
to make a single-step prediction; for improved accuracy,
we extend them to make multi-step predictions. Let st =
{o1t , o2t , . . . , ont } be the state at time t, where oit is the state
for object i at time t. Similarly, let ŝt = {ô1t , ô2t , . . . , ônt } be
the predicted state at time t where oit is the predicted state
for object i at time t. In our work, oit = [pit, v

i
t,m

i, ri] where
pit is the pose of object i at time step t, vit the velocity of
object i at time step t, mi the mass of object i and ri the
radius of object i. Similarly, ôit = [p̂it, v̂

i
t,m

i, ri] where p̂it
is the predicted pose of object i at time step t and v̂it the
predicted velocity of object i at time step t. Note that we
do not predict any changes to static object properties such
as mass and radius. Also, we note that while st is a set of
objects, the state of any individual object, oit, is a vector.
Now, let ait be the action applied to object i at time t. The

equations for the interaction network are:

eit =
∑
j 6=i

frel(v
i
t, p

i
t − p

j
t , v

i
t − v

j
t ,m

i,mj , ri, rj), (4)

v̂it+1 = vit + dt · fdyn(vit, a
i
t,m

i, ri, eit), (5)

p̂it+1 = pit + dt · v̂it+1, (6)

ôit+1 = [p̂it+1, v̂
i
t+1,m

i, ri]. (7)

C. Simulator-Augmented Interaction Networks (SAIN)

A simulator-augmented interaction network extends an
interaction network, where fdyn and frel now take in the
prediction of a physics engine, fp. We now learn the residual
between the physics engine and the real world. Let s̄t =
{ō1t , ō2t , . . . , ōnt } be the state at time t and ōit be the state
for object i at time t predicted by the physics engine. The
equations for SAIN are

s̄t+1 = fp(s̄t, a
1
t , a

2
t , . . . , a

n
t ), (8)

eit =
∑
j 6=i

frel(v
i
t, v̄

i
t+1 − v̄it, pit − p

j
t , v

i
t − v

j
t ,m

i,mj , ri, rj),

(9)

v̂it+1 = vit + dt× fdyn(vit, p̄
i
t+1 − p̄it, ait,mi, ri, eit), (10)

p̂it+1 = pit + dt× v̂it+1, (11)

ôit+1 = [p̂it+1, v̂
i
t+1,m

i, ri]. (12)

These equations describe a single-step prediction. For multi-
step prediction, we use the same equations by providing the
true state s0 at t = 0 and predicted state ŝt at t > 0 as input.

D. Control Algorithm

Our action space has two free parameters: the point where
the robot contacts the first disk and the direction of the push.
In our experiments, a successful execution requires searching
for a trajectory of about 50 actions. Due to the size of the
search space, we use an approximate receding horizon control
algorithm with our dynamics model. The search algorithm
maintains a priority queue of action sequences based on the
heuristic below. For each expansion, let st be the current
state and ŝt+T (at, . . . , at+T−1) be the predicted state after
T steps with actions at, . . . , at+T−1. Let sg be the goal state.
We choose the control strategy at that minimizes the the
cost function ||ŝt+T (st, at, . . . , at+T−1) − sg||2 and insert



the new action sequence into the queue.

IV. EXPERIMENTS

We demonstrate SAIN on a challenging planar manipula-
tion task both in simulation and in the real-world. We further
evaluate how our model generalizes to handle control tasks
that involve objects of new materials and shapes.

A. Task

In this manipulation task, we are given two disks with
different mass and radii. Our goal is to guide the second
disk to a target location, but are constrained to push only the
first disk. Here, a point s in the state space is factored into
a set of two object states, s = {o1, o2}, where each oi is an
element of object state space O. The object state includes
the mass, 2D position, rotation, velocity, and radius of the
disk.

Targets locations are generated at random and divide into
two categories: easy and hard. A target location is produced
by first sampling an angle α from an interval U , then choosing
the goal location to be at distance of three times the radius
of second disk and at an angle of α with respect to the
second disk. In easy pushes, the interval U is [−π6 ,

π
6 ]. In

hard pushes, the interval U is [−π3 ,−
π
6 ] ∪ [π6 ,

π
3 ]. A push is

considered a success if the distance between the goal location
and the pose of the center of mass of the second disk is
within 1

10

th the radius of second disk.

B. Simulation Setup

We use the Bullet physics engine [33] for simulation.
For each trajectory, we vary the coefficient of friction
between the surface and the disks, the mass of the disks
and their radius. The coefficient of friction is sampled
from Uniform(0.05, 0.25). The mass is sampled from Uni-
form(0.85kg, 1.15kg) and the radius is sampled from
Uniform(0.05m, 0.06m). We always fix the initial position
of the first disk to the origin. The other disks are placed
in front of the first disk at an angle, randomly sampled
from Uniform(−π3 ,

π
3 ), and just touches it. We ensure that

disks don’t overlap each other. The pusher is placed at
back of the first disk at an angle randomly sampled from
Uniform(−π3 ,

π
3 ), and just touches it. Then the pusher makes

a straight line push at an angle, randomly sampled from
Uniform(−π6 ,

π
6 ), for 2s and covers a distance of about 1cm.

We experiment with two different simulation setups: (1)
direct-force simulation setup in which we control pusher
with external force and (2) robot control simulation setup
in which we control the pusher using position control. We
use the first setup to show the benefits of SAIN over other
models. But in our real world setup, we control the pusher
using position-based control. So, we have designed a second
simulation setup which matches the real robot and use it to
collect pre-training data.

For the direct-force simulation setup, we collect 4500
pushes with 2 disks for our training set, 500 pushes with 2
disks and 500 pushes with 3 disks for our test set. For the
robot control simulation setup, we collect 4500 pushes with

Models Error on Object 1/Object 2

trans (%) pos (mm) rot (deg)

Physics 2.82/2.31 6.57/6.05 0.91/0.45
IN 2.09/1.47 5.61/3.79 0.68/0.26
SAIN (ours) 1.62/1.38 4.38/3.34 0.38/0.2

TABLE I: Errors on dynamics prediction in direct-force simu-
lation setup. SAIN achieves the best performance in both position
and rotation estimation, compared with methods that rely on physics
engines or neural nets alone. The first two metrics are the average
Euclidean distance between the predicted and the ground truth object
reported as a percentage relative to the initial pose (trans) and as
absolute values (pos) in millimeters. The third is the average error
of object rotation (rot) in degree.

2 disks for our training set and 500 pushes with 2 disks for
our test set.

C. Model and Implementation Details

We compare two models for simulation and control:
the original interaction networks (IN) and our simulator-
augmented interaction networks (SAIN). They share the same
architecture. Each consists of two separate neural networks:
fdyn and frel. Both fdyn and frel have four linear layers with
hidden sizes of 128, 64, 32 and 16 respectively. The first
three linear layers are followed by a ReLU activation.

Training interaction networks in simulation is straightfor-
ward. It is more involved for SAIN, which learns a correction
over the Bullet physics engine, so the problem of training
“in simulation” is ill-posed. To address this problem, we fix
the physics engine in SAIN with mass and radius of disks
equaling that of disks in the real world. We also fix the
coefficient of friction in the physics engine to an estimated
mean of the coefficient of friction of the real world surface
across space. The training data instead contain varied mass
and radius of both disks, and varied the coefficient of friction
between the disks and the surface, and the model is trained
to learn the residual.

We use ADAM [34] for optimization with a starting
learning rate of 0.001. We decrease it by 0.5 every 2,500
iterations. We train these models for 10,000 iterations with
a batch size of 100. Let the predicted 2D position, rotation,
and velocity at time t of disk i be p̂it, r̂

i
t and v̂it, respectively,

and the corresponding true values be pit, r
i
t, and vit. Let T

be the length of all trajectories. The training loss function
for a single trajectory is

(13)
1

T

2∑
i =1

T−1∑
t =0

‖pit − p̂it‖22 + ‖vit − v̂it‖22 +

‖sin (rit)− sin (r̂it)‖22 + ‖cos (rit)− cos (r̂it)‖22.

During training, we use a batch of trajectories and take a
mean over the loss of those trajectories. We also use l2
regularization with 10−3 as regularization constant.

In practice, we ask the models to predict the change in
object states (relative values) rather than the absolute values.
This enables them to generalize to arbitrary starting positions
without overfitting.



Models Error on Object 1/2/3

trans (%) pos (mm) rot (deg)

Physics 2.79/2.34/2.38 6.53/6.11/6.21 0.89/0.48/0.49
IN 2.12/1.63/1.67 5.68/4.41/4.52 0.70/0.34/0.38
SAIN (ours) 1.68/1.52/1.61 4.54/3.97/4.34 0.41/0.25/0.32

TABLE II: Generalization to 3 objects in direct-force simulation
setup. SAIN achieves the best generalization in both position and
rotation estimation.

Models Error on Object 1/2

trans (%) pos (mm) rot (deg)

Physics 2.52/2.19 6.27/5.81 0.85/0.29
IN 2.13/1.59 5.76/3.84 0.72/0.28
SAIN (ours) 1.82/1.50 4.66/3.47 0.40/0.21

TABLE III: Errors on dynamics prediction in robot control
simulation setup. SAIN achieves the best performance in both
position and rotation estimation.

D. Search Algorithm

As mentioned in Sec. III-D, an action is defined by the
initial position of the pusher and the angle of the push, α,
with respect to the first disk. After these parameters have been
selected, the pusher starts at the initial position and moves
at an angle of α with respect to the first disk for 10mm.
We discretize our action space as follows. For selecting α,
we divide the interval [−π6 ,

π
6 ] into six bins and choose their

midpoints. For selecting the initial position of the pusher, we
choose an angle θ and place the pusher at edge of first disk
at an angle θ such that the pusher touches the first disk. For
selecting θ, we divide the interval [−π3 ,

π
3 ] into 12 bins and

choose midpoint of one of these bins. Therefore, our action
space consists of 72 discretized actions for each time step.
We maintain a priority queue of action sequences based on
heuristic h(p̂1, p̂2, pg) where p̂i is the predicted 2D position
of disk i and pg is the 2D position of goal. h(p̂1, p̂2, pg) is
sum of ‖p̂2 − pg‖ and cosine distance between pg − p̂1 and
p̂2 − p̂1. The cosine distance serves as a regularization cost
to encourage the center of both disks and the goal to stay in
a straight line. To prevent the priority queue from blowing
up, we do receding horizon greedy search with an initial
horizon of 2, and increase it to 3 when the distance between
the second disk and goal is less than 10mm.

E. Prediction and Control Results in Simulation

The forward multi-step prediction errors of both interaction
networks and SAIN for direct-force simulation setup with 2
disks and 3 disks are reported in Table I and Table II. Note
that errors on different objects are separated by / in all the
tables. The training data for this setup consist of pushes with
only 2 disks. The forward multi-step prediction errors of both
interaction networks and SAIN for robot control simulation
setup are reported in Table III. Given an initial state and a
sequence of actions, the models do forward prediction for the
next 200 timesteps, where each time-step is 1/240s. We see
that SAIN outperforms interaction networks in both setups.
We also list the results of the fixed physics engine used for
training SAIN for reference.

Models Fine-tuning Error on Object 1/2

trans (%) pos (mm) rot (deg)

Physics N/A 0.87/1.91 3.06/6.41 0.32/0.17
IN No 0.86/1.84 2.96/5.75 0.96/0.32
SAIN (ours) No 0.69/1.06 2.38/3.52 0.43/0.18

IN Yes 0.63/0.61 2.23/2.05 0.41/0.19
SAIN (ours) Yes 0.42/0.43 1.50/1.52 0.34/0.17

TABLE IV: Errors on dynamics prediction in the real world.
SAIN obtains the best performance in both position and rotation
estimation. Its performance gets further improved after fine-tuning
on real data.

(a) Control with interaction networks (IN)

(b) Control with simulator-augmented interaction networks (SAIN)

Models Easy Push Hard Push

IN 100% 88%
SAIN (ours) 100% 100%

Fig. 3: Qualitative results and success rates on control tasks in
simulation. The goal is to push the red disk so that the center of
the blue disk reaches the target region (yellow). The transparent
shapes are their initial positions, and the solid ones are their final
positions after execution. The center of the blue disk after execution
is marked as a white cross. (a) Control with interaction networks
works well but makes mistakes occasionally (column 3). (b) Control
with SAIN achieves perfect performance in simulation.

We have also evaluated IN and SAIN on control tasks in
simulation. We test each model on 25 easy and 25 hard pushes.
For these pushes, we set the mass of two disks to 0.9kg and
1kg and their radius to 54mm and 59mm, making them differ
them from those used in the internal physics engine of SAIN.
This mimics real-world environments, where objects’ size
and shape cannot be precisely estimated, and ensures SAIN
cannot cheat by just querying the internal simulator. Fig. 3
shows SAIN performs better than IN. This suggests learning
the residual not only helps to do better forward prediction,
but also benefits control.

F. Real-World Robot Setup

We now test our models on a real robot. The setup used
for the real experiments is based on the system from the MIT
Push dataset [4]. The pusher is a cylinder of radius 4.8mm
attached to the last joint of a ABB IRB 120 robot. The position
of the pusher is recorded using the robot kinematics. The two
disks being pushed are made of stainless steel, have radius of



(a) Using the model trained on simulated data only

(b) Using the model trained on both simulated and real data

Model Data Easy Push Hard Push

SAIN Sim 100% 68%
SAIN Sim + Real 100% 96%

Fig. 4: Qualitative results and success rates on control tasks in
the real world. The goal is to push the red disk so that the center
of the blue disk reaches the target region (yellow). The left column
is an example of easy pushe, while the right two show hard pushes.
(a) The model trained on simulated data only performs well for
easy pushes, but sometimes fails on harder control tasks; (b) The
model trained on simulated and real data improves the performance,
working well for both easy and hard pushes.

(a) Results on a new surface

(b) Results on a new shape with a smaller radius

Fig. 5: Generalization to new scenarios. (a) SAIN trained gener-
alizes to control tasks on a new surface (plywood), with a success
rate of 92%; (b): It also generalizes to tasks where the two disks
have a different radius (red: small → large; blue: large → small),
with a success rate of 88%. All tasks here are hard pushes.

52.5mm and 58mm, and weight 0.896kg and 1.1kg. During
the experiments, the smallest disk is the one pushed directly
by the pusher. The position of both disks is tracked using
a Vicon system of four cameras so that the disks’ positions
are highly accurate. Finally, the surface where the objects lay
is made of ABS (Acrylonitrile Butadiene Styrene), whose
coefficient of friction is around 0.15. Each push is done at
50mm/s and spans 10mm. We collect 1,500 pushes out of
which 1,200 are used for training and 300 for testing.

We evaluate two versions of interaction networks and SAIN.
The first is an off-the-shelf version purely trained on synthetic

data; the second is one trained on simulated data and later fine-
tuned on real data. This helps us understand whether these
models can exploit real data to adapt to new environments.

G. Results on Real-World Data

Results of forward simulation are shown in Table IV.
SAIN outperforms IN on real data. While both models
benefit from fine-tuning, SAIN achieves the best performance.
This suggests residual learning also generalizes to real data
well. All models achieve a lower error on real data than in
simulation; this is because simulated data have a significant
amount of noise to make the problem more challenging.

We then evaluate SAIN (both with and without fine-tuning)
for control, on 25 easy and 25 hard pushes. The results are
shown in Fig. 4. The model without fine-tuning achieves
100% success rate on easy pushes and 68% on hard pushes.
As shown in the rightmost columns of Fig. 4a, it sometimes
pushes the object too far and gets stuck in a local minimum.
After fine-tuning, the model works well on both easy pushes
(100%) and hard pushes (96%) (Fig. 4b).

While objects of different shapes and materials have differ-
ent dynamics, the gap between their dynamics in simulation
and in the real world might share similar patterns. This is the
intuition behind the observation that residual learning allows
easier generalization to novel scenarios. Ajay [9] validated this
for forward prediction. Here, we evaluate how our fine-tuned
SAIN generalizes for control. We test our model on 25 hard
pushes with a different surface (plywood, where the original
surface is ABS), using the original disks. Our framework
achieves successes in 92% of the pushes, where Fig. 5a
shows qualitative results. We’ve also evaluated our model on
another 25 hard pushes, where it pushes the large disk (58mm)
to direct the small one (52.5mm). Our framework achieves
successes in 88% of the pushes. Fig. 5b shows qualitative
results. These results suggest that SAIN can generalize to
solve control tasks with new object shapes and materials.

V. CONCLUSION

We have proposed a hybrid dynamics model, simulator-
augmented interaction networks (SAIN), combining a physical
simulator with a learned, object-centered neural network. Our
underlying philosophy is to first use analytical models to
model real-world processes as much as possible, and learn
the remaining residuals. Learned residual models are specific
to the real-world scenario for which data is collected, and
adapt the model accordingly. The combined physics engine
and residual model requires little need for domain specific
knowledge or hand-crafting and can generalize well to unseen
situations. We have demonstrated SAIN’s efficacy when
applied to a challenging control problem in both simulation
and the real world. Our model also generalizes to setups where
object shape and material vary and has potential applications
in control tasks that involve complex contact dynamics.
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[24] G. Farquhar, T. Rocktäschel, M. Igl, and S. Whiteson, “Treeqn and
atreec: Differentiable tree planning for deep reinforcement learning,”
in ICLR, 2018.

[25] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
planning networks,” in ICML, 2018.

[26] D. Silver, H. van Hasselt, M. Hessel, T. Schaul, A. Guez, T. Harley,
G. Dulac-Arnold, D. Reichert, N. Rabinowitz, A. Barreto, and T. Degris,
“The predictron: End-to-end learning and planning,” in ICML, 2017.

[27] J. Oh, S. Singh, and H. Lee, “Value prediction network,” in NeurIPS,
2017.

[28] M. Bauza, F. R. Hogan, and A. Rodriguez, “A data-efficient approach
to precise and controlled pushing,” in CoRL, 2018.

[29] S. Racanière, T. Weber, D. Reichert, L. Buesing, A. Guez, D. J. Rezende,
A. P. Badia, O. Vinyals, N. Heess, Y. Li, R. Pascanu, P. Battaglia,
D. Silver, and D. Wierstra, “Imagination-augmented agents for deep
reinforcement learning,” in NeurIPS, 2017.

[30] J. B. Hamrick, A. J. Ballard, R. Pascanu, O. Vinyals, N. Heess, and P. W.
Battaglia, “Metacontrol for adaptive imagination-based optimization,”
in ICLR, 2017.

[31] R. Pascanu, Y. Li, O. Vinyals, N. Heess, L. Buesing, S. Racanière,
D. Reichert, T. Weber, D. Wierstra, and P. Battaglia, “Learning model-
based planning from scratch,” arXiv:1707.06170, 2017.

[32] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Ried-
miller, R. Hadsell, and P. Battaglia, “Graph networks as learnable
physics engines for inference and control,” in ICML, 2018.

[33] E. Coumans, “Bullet physics engine,” Open Source Software:
http://bulletphysics. org, 2010.

[34] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in ICLR, 2015.


	I Introduction
	II Related Work
	II-A Learning Contact Dynamics
	II-B Differentiable Physical Simulators
	II-C Control with a Learned Simulator

	III Method
	III-A Formulation
	III-B Interaction Networks
	III-C Simulator-Augmented Interaction Networks (SAIN)
	III-D Control Algorithm

	IV Experiments
	IV-A Task
	IV-B Simulation Setup
	IV-C Model and Implementation Details
	IV-D Search Algorithm
	IV-E Prediction and Control Results in Simulation
	IV-F Real-World Robot Setup
	IV-G Results on Real-World Data

	V Conclusion
	References

