
Robust Execution of Contact-Rich Motion Plans by Hybrid
Force-Velocity Control

Yifan Hou and Matthew T. Mason Fellow, IEEE

Abstract— In hybrid force-velocity control, the robot can
use velocity control in some directions to follow a trajectory,
while performing force control in other directions to maintain
contacts with the environment regardless of positional errors.
We call this way of executing a trajectory hybrid servoing. We
propose an algorithm to compute hybrid force-velocity control
actions for hybrid servoing. We quantify the robustness of a
control action and make trade-offs between different require-
ments by formulating the control synthesis as optimization
problems. Our method can efficiently compute the dimensions,
directions and magnitudes of force and velocity controls. We
demonstrated by experiments the effectiveness of our method
in several contact-rich manipulation tasks. Link to the video:
https://youtu.be/KtSNmvwOenM.

I. INTRODUCTION

In the materials handling industry where robots pick up
random objects from bins, it’s generally difficult to pick up
the last few objects, because they are usually too close to the
bin walls, leaving no collision-free grasp locations. It’s even
harder if a flat object is lying in the corner. However, in such
cases a human would simply lift the object up with only one
finger by pressing on a side of the object and pushing against
the bin wall. This is one of the many examples where humans
can solve manipulation problems that are difficult for robots
with surprisingly concise solutions. The human finger can
do more than the robot finger because the human naturally
utilizes the contacts between the object and the environment
to create solutions.

Manipulation under external contacts is common and
useful in human life, yet our robots are still far less capable
of doing it than they should be. In the robot motion planning
community, most works are focused on generating collision-
free motion trajectories. There are planning methods that
are capable of computing complicated, contact-rich robot
motions [15], [16], however, the translation from a planned
motion to a successful experiment turns out to be difficult.
High stiffness servo controls, such as velocity control, are
prone to positional errors in the model. Low stiffness controls
such as force control are vulnerable to all kinds of inevitable
force disturbances and noise, such as un-modeled friction.

In this work, we attempt to close the gap between contact-
rich motion planning and successful execution with hybrid
servoing, defined as using hybrid force-velocity control to
execute the planned trajectory. We try to combine the good
points of both worlds: high stiffness controls are immune to

*This work was supported under NSF Grant No. 1662682.
The authors are with the Robotics Institute, Carnegie Mellon

University, Pittsburgh, PA 15213, USA. yifanh@cmu.edu,
matt.mason@cs.cmu.edu

small force disturbances, while force controls (even some-
what inaccurate force controls) can comply with holonomic
constraints under modeling uncertainties.

Solving for hybrid force-velocity control is more difficult
than solving for force or velocity alone, because we need to
compute directions for each type of control. It is challenging
to properly formulate the problem itself; the solution space
is also higher dimensional. This is why most of the previous
works on hybrid force-velocity control only analyzed simple
systems with the robot itself (may include a firmly grasped
object) and a rigid environment, without any free objects and
more degree-of-freedoms.

In this work, we provide a hybrid servoing problem
formulation that works for systems with more objects, along
with an algorithm to efficiently solve it. We quantify what
it means for a constraint to be satisfied “robustly”, and
automate the control synthesis by formulating it as two op-
timization problems on the velocity/force controlled actions.
The optimization automatically makes trade-offs between
robustness and feasibility. In particular, we show that the
velocity controlled directions do not have to be orthogonal
to the holonomic constraints, leaving space for more solu-
tions. Being closer to orthogonal does have benefits; it is
considered in the cost function.

The rest of the paper is organized as follows. In the
next section we review the related works. In section III,
we introduce our modeling and problem formulation for
hybrid servoing. In section IV, we describe our algorithm
for solving hybrid servoing. In section V and VI, we provide
a step by step analysis for one simple example, along with
experimental results for several examples.

II. RELATED WORK
A. Hybrid Force-Velocity Control

The idea of using hybrid force-velocity control for manip-
ulation under constraints can date back to 1980s. Mason [12]
introduced a framework for identifying force and velocity
controlled directions in a task frame given a task description.
Raibert and Craig [17] completed the framework and demon-
strated a working system. Yoshikawa [23] investigated hybrid
force-velocity control in joint space under Cartesian space
constraints, and proposed to use gradient of the constraints
to find the normal of the constraint surface in the robot
joint space. There are also works on modeling the whole
constrained robot system using Lagrange dynamics, such as
analyzing the system stability under hybrid force-velocity
control [13], or performing Cartesian space tracking for both
positions and forces [14]. Most of these works modeled

ar
X

iv
:1

90
3.

02
71

5v
1

 [
cs

.R
O

]
 7

 M
ar

 2
01

9

https://youtu.be/KtSNmvwOenM

only the robot and a rigid environment without any un-
actuated degree-of-freedoms in the system. As an exception,
Uchiyama and Dauchez performed hybrid force-velocity
control for a particular example: two manipulators contacting
one object [20].

There are lots of works on how to implement hybrid force-
velocity controls on manipulators. For example, stiffness
control can be used for this purpose. Velocity control is
essentially a high stiffness control; force control can be
implemented by low stiffness control with force offset.
Salisbury [18] described how to perform stiffness control on
arbitrary Cartesian axes with a torque-controlled robot. Raib-
ert and Craig [17] divided Cartesian space into force/velocity
controlled parts, then controlled them with separated con-
trollers. The impedance control [7] and operational space
control [8] theory provided detailed analysis for regulating
the force related behaviors of the end-effector for torque-
controlled robots. Maples and Becker described how to use a
robot with position controlled inner loop and a wrist-mounted
force-torque sensor to do stiffness control on Cartesian axes
[11]. Lopes and Almeida enhanced the impedance control
performance of industrial manipulators by mounting a high
frequency 6DOF wrist [9]. Whitney [22] and De Schutter [3]
provided overviews and comparisons for a variety of force
control methods.

B. Motion Planning through Contacts

Recently, a lot of works tried to solve manipulation under
constraints without explicitly using force control. For holo-
nomic constraints, De Schutter et al. proposed a constraint-
based motion planning and state estimation framework [4].
Berenson et al. did motion planning on the reduced mani-
fold of the constrained state space [1]. For non-holonomic
constraints, the most popular example is pushing [10], [24],
[5]. Chavan-Dafle et al. performed in-hand manipulation by
pushing the object against external contacts [2]. In these
works, the robots interacted with the objects in a way that
force control was not necessary.

III. MODELING & PROBLEM FORMULATION

First of all, we introduce how we model a hybrid servoing
problem. We adopt quasi-static assumption throughout the
work, i.e. inertia force and Coriolis force are negligible.
All objects and the robot are rigid. A motion trajectory is
available such that the goal for our algorithm at any time
step can be given as instantaneous velocities. All analysis
in this section and the next section are conducted for one
time step. For consistency with previous works, we reuse
several concepts from [12] such as natural constraints and
artificial constraints. To better suit a more general problem
formulation, we extend the meanings of these terms when
necessary, much to the second author’s consternation.

A. Symbols

Consider a system of rigid bodies including the robot and
at least one object. Denote q ∈ Rnq as the configuration
of the whole system. Denote τ ∈ Rnq as the corresponding

force variable (internal forces), i.e. if q denotes joint angles,
τ denotes joint torques. Although the configuration space is
enough to encode the state of the system, its time derivative
may not make sense as a velocity, e.g. when q contains
quaternions. We describe the system velocity in a different
space, the selection of the variables is usually called the
“generalized variables”.

Denote v = [vTu vTa]T ∈ Rn as the generalized velocity.
We pick the variables of v in such an order that the first nu
elements vu ∈ Rnu denote the uncontrolled (free) dimen-
sions in the system, such as the velocity of an object; the
last na elements va ∈ Rna represent the degrees-of-freedom
of the robot actuation. v 6= q̇ in general, but is related to q̇ by
a linear transformation: q̇ = Ω(q)v, where Ω(q) ∈ Rnq×n.
Denote f = [fTu fTa]T ∈ Rn as the generalized force vector
(the internal force). The product of f and v is the work
done by the robot. Note that the uncontrolled part of f is
always zero: fu = 0. In the following we will do most of
our analysis in the language of generalized variables.

B. Goal Description

The goal for our control at a time step is an affine
constraint on the generalized velocity:

Gv = bG. (1)

The goal (1) could be a desired generalized velocity, in which
case G = I . The goal may also only involve some entries
of v. For example, in regrasping problems people only care
about the in-hand pose of the object; the pose of the hand can
be set free to allow for more solutions. If a motion trajectory
is available, the desired velocity can be obtained from its time
derivatives.

C. Natural Constraints

The law of physics constrains the system in many ways.
These constraints will never be violated, no matter what
actions the robot takes. We call them the natural constraints.
Our definition of the natural constraints includes holonomic
constraints and the Newton’s second law. The original defini-
tion in [12] did not contain the Newton’s second law, because
it is of no significance for fully actuated systems.

1) Holonomic Constraints: Holonomic constraints are
bilateral constraints on q that are also independent of q̇.
Examples are persistent contact constraints and sticking
contact constraints. We describe them by

Φ(q) = 0, (2)

where Φ(q) ∈ RnΦ . Its time-derivative gives the constraint
on instantaneous velocity:

JΦ(q)q̇ = JΦ(q)Ω(q)v = 0. (3)

If an action attempts to violate a holonomic constraint, e.g.
pressing an object against a table, a reaction force will
emerge to maintain the constraint. Denote λ ∈ RnΦ as the
reaction forces for Φ(q). Its positive direction is determined
by how we define Φ(q): when both δΦ and reaction force
λ are positive, they make positive work. Be careful when

applying the rule to the contact forces between two movable
objects, as the force would have a different direction for
each body. The contribution of λ to the joint torque can be
computed from the principle of virtual work [21]:

τλ = JTΦ (q)λ,

project τλ into the space of generalized force:

fλ = ΩT (q)τλ = ΩT (q)JTΦ (q)λ (4)

2) Newton’s second law: For systems that are not fully-
actuated, Newton’s second law becomes necessary. Denote
F ∈ Rn as the external force (gravity, magnetic force, etc.)
in the generalized force coordinates. Newton’s second law
requires the sum of all the forces in the system to be zero:

ΩT (q)JTΦ (q)λ+ f + F = 0 (5)

The three terms are contact reaction forces, control actions
(internal forces) and external forces, respectively.

D. Velocity controlled actions and holonomic constraints

Fig. 1. Relation between velocity commands and holonomic natural
constraints. The robot (blue) has a velocity controlled joint and a force
controlled joint, which are orthogonal to each other. The table provides
a natural constraint that stops the object from moving down. Assume no
collision between the robot and the table. Systems in the left and middle
are feasible. The right system is infeasible.

In some works of quasi-static analysis, the rows of New-
ton’s second law for velocity controlled dimensions are
ignored because the forces have no influence on other parts
of the system, as shown in Fig. 1, left. We keep these rows
in (5), because the axes of velocity commands may not lie
completely in the null space of natural constraints, then the
force generated from a velocity command would matter in
the force computation of the system. One such system is
illustrated in Fig. 1, middle.

An interesting question is, can we set velocity commands
in any directions? One apparent fact is that the velocity
action must not fight against the natural constraints, e.g.
trying to push against a wall (Fig. 1, right). Mathematically
it means the system of linear equations formed by the natural
constraints and velocity commands is infeasible. The velocity
controlled directions are thus preferred to overlap less with
the natural constraints, more with its null space, so that the
system of equations will be less likely to become infeasible
under disturbances. If the system is holonomic, i.e. fully
actualized, the velocity commands can be chosen from within
the null space of the natural constraints [23]. This is not
always possible in general.

Fig. 2. Relation between different velocity commands. The blue robot and
green robot are applying different velocity commands on the object. Assume
no collision between the two robots. Systems in the left and middle figures
are feasible. The right system is infeasible.

We can do the same analysis among different velocity
commands. As shown in Fig. 2, different velocity controlled
directions in generalized velocity space should not be co-
linear. The system would be more robust to disturbances if
the velocities are more perpendicular to each other.

E. Guard Conditions

A contact may be in one of three modes: sliding, sticking
or not contacting. A motion plan usually assumes a certain
contact mode for each contact at any given time. In hybrid
control theory, the term guard conditions refers to conditions
for transitions between discrete modes. In our problem, we
also need to apply guard conditions to make sure our robot
action will maintain the contact modes in the motion plan.

In this work, we consider guard conditions that can be
expressed as linear (or affine) constraints on force variables.
Examples of this type are friction cone constraints and
lower/upper bounds on forces.

Λ

[
λ
f

]
≤ bΛ, Γ

[
λ
f

]
= bΓ. (6)

F. Problem Formulation

To clearly describe the actions, we introduce transformed
generalized velocity w = [wTu w

T
af w

T
av]

T ∈ Rn, where wu =
vu is the un-actuated velocity, waf ∈ Rnaf is the velocity in
the force controlled directions, wav ∈ Rnav is the velocity
controlled actions. Denote η = [ηTu ηTaf η

T
av]

T ∈ Rn as the
transformed generalized force, where ηu = fu = 0 is the un-
actuated force, ηaf ∈ Rnaf is the force controlled actions,
ηav ∈ Rnav is the force in the velocity controlled directions.
The action space of the robot is (wav, ηaf).

We use matrix T to describe the directions of
force/velocity controlled axes: w = Tv, η = Tf . T =
diag(Iu, Ra) ∈ Rn×n, where Iu ∈ Rnu×nu is an identity
matrix, Ra ∈ Rna×na is an invertible matrix (not neces-
sarily orthogonal). Now we are ready to define the hybrid
servoing problem mathematically. At any time step during
the execution of a motion plan, the task of hybrid servoing
is to find out:

1) the dimensions of force controlled actions and velocity
controlled actions, naf and nav , and

2) the directions to do force control and velocity control,
described by the matrix T , and

3) the magnitude of force/velocity actions: ηaf and wav ,

such that:
• the goal (1) is satisfied as a result of velocity controlled

actions and holonomic constraints (2);
• the guard conditions (6) are satisfied as a result of force

controlled actions and the Newton’s law (5).
Usually the problem described above has more than one
solution. As discussed in section III-D, we prefer velocity
commands that are perpendicular to each other, and are close
to the null space of holonomic natural constraints.

Under this formulation, the satisfaction of goals is ensured
by velocity controlled actions, which are accurate and im-
mune to force disturbances; the holonomic natural constraints
are satisfied by selecting non-conflicting directions for ve-
locity controlled actions, it won’t be easy for a disturbance
to make them conflict again. The guard conditions are
basically maintaining contacts, which do not require the force
controlled actions to be super precise. These are the keys to
the robustness of our method.

IV. APPROACH

Now we introduce an algorithm to efficiently solve the
problem defined in section III-F. The algorithm first solves
for velocity commands, during which the dimensions and
directions of both velocity control and force control are also
determined. Then we fix the directions and solve for force
controlled actions.

A. Solve for Velocity Controlled Actions

In this section, we design the velocity command (solve for
naf , nav, T and wav), so as to satisfy all the velocity-level
conditions. We use a nav × n selection matrix Sav to select
the velocity commands out of the generalized variables:
wav = Savw. Equations of interest to this section are: (Use
q̇ = Ωv, w = Tv, omitting argument q)
• Holonomic natural constraint JΦΩv = 0. Denote N =
JΦΩ, the constraint becomes Nv = 0;

• Goal condition Gv = bG;
• Velocity command SavTv = wav . Denote C = SavT ,
bC = wav , rewrite the velocity command as Cv = bC .

Denote the solution set of each equation as Sol(N), Sol(G)
and Sol(C). We need to design the velocity command
C, bC such that the resulted solution space (the solution
set of natural constraints and velocity commands) becomes
a non-empty subset of the desired generalized velocities (the
solution set of natural constraints and goal condition):

Sol(N&C) ∈ Sol(N&G) (7)

1) Determine dimensions of velocity control: Denote

rN = rank(N), rNG = rank(

[
N
G

]
). The minimum

number of independent velocity control we must enforce is

nmin
av = rNG − rN . (8)

This condition makes sure the dimension of Sol(N&C) is
smaller or equal to the dimension of Sol(N&G), so that
their containing relationship becomes possible. Physically it

means the velocity commands need to reduce enough degree-
of-freedoms from the null space of the natural constraints.
The maximum number of independent velocity commands
we can enforce is

nmax
av = n− rN = Dim(null(N)), (9)

where null(N) denotes the null space of N . This condition
ensures the system will not be overly constrained to have
no solution. We choose the minimal number of necessary
velocity constraints:

nav = nmin
av = rNG − rN . (10)

This choice makes it easier for the system to avoid jamming.
As will be shown in the next section, it also leaves more
space for solving force controlled actions.

2) Solve for directions and magnitude: With our choice
of nav , we know rank([N ;C]) = rank([N ;G]). Then the
condition Sol(N&C) ∈ Sol(N&G) implies

Sol(N&C) = Sol(N&G), (11)

i.e. the two linear systems share the same solution space.
(11) can be achieved by firstly choosing C such that the

homogeneous linear systems
[
N
C

]
v = 0 and

[
N
G

]
v = 0

become equivalent (share the same solution space). Compute
a basis for the solution of [NTGT]T v = 0: [σ1, ..., σn−rNG

],
then we just need to ensure C satisfies:

Cσi = 0, i = 1, ..., n− rNG (12)

Then we can compute bC from any specific solution of
{Nv = 0, Gv = bG}. The original non-homogeneous
systems then become equivalent.

Beside equation (12), we have a few more require-
ments/preferences on C based on the discussions in section
III-D:
• Rows of C must be linearly independent from each

other. And we prefer to have them as orthogonal to
each other as possible.

• Each row of C is also independent from rows of the
holonomic natural constraint N . We prefer to pick the
rows as close to null(N) as possible.

To solve for C, denote cT ∈ R1×n as any row in C. From
C = SavT we know the first nu columns in C are zeros,
rewrite this and equation (12) as a linear constraint on c:

σT1
...

σTn−nNG[
Inu 0nu×na

]
 c =

 0
...
0

 (13)

Its solution space has dimension of nc = na − n + rNG =
rNG − nu. Since we need nav independent constraints, we
require nc = rNG − nu ≥ nav = rNG − rN , which gives
rN ≥ nu, i.e.

rN + na ≥ n. (14)

For our method to work, (14) says it must be possible for the
actions and constraints to fully constrain the system. Denote

matrix Bc = [c(1) · · · c(nc)] as a basis of the solution space
of equation (13). Denote Null(N) as a basis of null(N). We
can find a C that satisfies all the conditions by solving the
following optimization problem:

min
k1,···,knav

∑
i6=j
||cTi cj || −

∑
i

||Null(N)T ci||

s.t. cTi ci = 1, ∀i
ci = Bcki, ∀i

(15)

The best velocity constraint C∗ = (Bc [k1 ... knav])T .
The optimization problem (15) is non-convex because of the
unit length constraint cTi ci = 1. However, we can solve the
problem numerically by projecting the solution back to the
constraint after each gradient update:

1) Start from a random k = [k1 ... knav];
2) Perform a gradient descent step: k← k− t∇f ;
3) Projection: ki ← ki

||Bcki|| , ∀i;
4) Repeat from step two until convergence.

Here ∇f is the gradient of the cost function reshaped to
the same size as k. t = 10 is a step length. In practice, we
run the projected gradient descent algorithm above with Ns
different initializations to avoid bad local minima.

After obtaining C∗, we know the last nav rows of Ra.
Denote the last na columns of C∗ as RC∗ , we can expand
it into a full rank Ra:

Ra =

[
Null(RC∗)

T

RC∗

]
, (16)

it encodes the axes of the force controlled directions. Then
we have T = diag(Iu,Ra). The procedures are summarized
in algorithm 1.

Algorithm 1 Solve for velocity controlled actions
1: Check condition (14) for feasibility.
2: Compute nav from equation (10).
3: Compute a basis of [NTGT]T v = 0, plug in equation

(13) and compute a basis Bc.
4: Sample Ns sets of coefficients k ∈ Rnc×nav

5: for each sample k do
6: Solve the optimization problem (15).
7: Compute C = (Bck)T from the solution.
8: Compute the cost of C from equation (15).
9: end for

10: Pick the C∗ with lowest cost.
11: Use equation (16) to compute Ra. Then T =

diag(Iu,Ra).
12: Compute one solution v∗ for Nv = 0, Gv = bG.
13: Compute wav = bC = C∗v∗.

B. Solve for Force Controlled Actions
Next we compute the force command (solve for ηaf) so

as to satisfy all the force-level requirements. Equations of
interest to this section: (Use η = Tf , omitting argument q)
• Newton’s second law: express (5) in the transformed

generalized force space:

TΩT (q)JTΦ (q)λ+ η + TF = 0. (17)

• Guard conditions: express them as constraints on λ, η:

Λ

[
λ
f

]
= [Λλ ΛfT

−1]

[
λ
η

]
≤ bΛ. (18)

Γ

[
λ
f

]
= [Γλ ΓfT

−1]

[
λ
η

]
= bΓ. (19)

The unknowns are the force variables λ, η. Remember η =
[ηu, ηaf , ηav]. All the equality constraints ((17), (19) and our
choice of ηaf) will determine the value of all the forces; we
need to make sure the resulted forces satisfy the inequality
constraints (18). Remember also fu = 0. Express it as Hf =
HT−1η = 0. Combine HT−1η = 0, (17) and (19) into one
constraint: 0 HT−1

TΩTJTΦ I
Γλ ΓfT

−1

[λ
η

]
=

 0
−TF
bΓ

 . (20)

Due to the limitation of rigid body modeling, the free forces
may not have a unique solution given a force action ηaf .
Denote the free forces as ffree = [λT ηTu ηTav]

T , rewrite
the constraints (20) and move ηaf to the right hand side, we
find one solution for ffree by penalizing the sum-of-squares
norm of the free forces:

min
ffree

fTfreeffree

s.t. Mfreeffree =

 0
−TF
bΓ

−Mηf ηf .
(21)

This is a quadratic programming (QP) problem. Denote f∗free
as the dual variables of ffree, the KKT condition says the
solution to the QP can be found by solving the following
linear system:

[
2I MT

free

Mfree 0

] [
ffree
f∗free

]
=

 0[
0
−TF

]
−Mηf ηf

 .
(22)

This linear system uniquely determines the free forces given
force action ηaf . Rewrite it as

[
2I MT

free 0

Mfree 0 Mηf

] ffree
f∗free
ηaf

 =

[
0
−TF

]
.

(23)
This linear equation encodes the unique solution for New-
ton’s law. Finally we solve (23) together with guard condi-
tions (18) to compute all forces. The procedure is summa-
rized in algorithm 2.

Algorithm 2 Solve for force controlled actions
1: From Newton’s laws, write down Mfree,Mηaf

in (21).
2: Write down coefficient matrices for equation (23).
3: Solve the linear programming problem (18)(23) for ηaf .

V. EXAMPLE

Next we illustrate how our method works with a concrete
example. Consider the “block tilting” task shown in Fig. 3.
The robot hand is a point. The robot needs to tilt and flip
a square block about one of its edges by pressing on the
block’s top surface. We use a simple motion plan: the robot
hand moves along an arc about the rotation axis, and all
contacts in the system are sticking. If we only use velocity
control to execute the plan, the robot can easily get stuck
since the modeling or perception of the block may not be
perfect.

Fig. 3. Block tilting example. From left to right, the robot use one point
contact to rotate the block.

A. Variables

Fig. 4. illustration of the coordinate frames.

Denote W , H and O as the world frame, the hand frame
and the object frame respectively. In the following, we use
the form of ABX to represent a symbol of frame B as viewed
from frame A. We do Cartesian control for the robot, so we
ignore the joints and only model the hand. The state of the
system can be represented by the 3D pose of the object and
the position of the hand as viewed in the world frame:

q = [WO p
T , WO q

T , WH p
T]T ∈ R10. (24)

Define the generalized velocity for the system to be the object
body twist OOξ ∈ R6 and the hand linear velocity W

H v ∈ R3:

v = [OOξ
T , WH v

T]T ∈ R9. (25)

The benefit of choosing body twist over spatial twist for
representing generalized velocity of rigid body is that the
expression of the mapping q̇ = Ω(q)v becomes simple:

Ω(q) =

 W
O R

E(WO q)
IH

 ∈ R10×9, (26)

where W
O R ∈ SO(3) denotes the rotation matrix for W

O q,
E(WO q) is the linear mapping from the body angular velocity
to the quaternion time derivatives [6]:

E(WO q) =
1

2


−WO q1 −WO q2 −WO q3
W
O q0 −WO q3

W
O q2

W
O q3

W
O q0 −WO q1

−WO q2
W
O q1

W
O q0

 . (27)

The generalized force corresponding to our choice of gener-
alized velocity is the object body wrench together with the
hand pushing force:

f = [OOw
T , WH f

T]T ∈ R9 (28)

B. Goal Description

In the motion plan, the object rotates about the line of
contact on the table. The goal for control at any time step is
to let the object follow this motion. Now we try to write down
the generalized velocity for such motion. Denote W ptc as the
location of any point on the line of contact, Wωg as the axis
of rotation, θ̇g as the desired object rotation speed. We can
firstly write down the spatial twist for the object motion as
W ξg = (−Wωg ×W ptc,

Wωg)θ̇g ∈ R6. The corresponding
body twist can be computed as

Oξg = AdW
O g−1

W ξg (29)

where AdW
O g−1 =

[
W
O R

T −WO RTWO p̂
0 W

O R
T

]
is the adjoint

transformation associated with W
O g
−1 =

[
W
O R

W
O p

0 1

]−1

.

Then the goal for our controller can be specified as

Gv = bG, (30)

where G =
[
I6 06×3

]
, bG = Oξg.

C. Natural constraints

1) Holonomic constraints: The contact between the object
and the hand is a sticking point contact, which constrains the
system states by

W
O Q(Ophc) +W

O p =W phc, (31)

where W phc,
O phc denote the location of the contact point,

function W
O Q(p) rotates vector p by quaternion W

O q.
The contact between the object and the table is a sticking

line contact. We approximate it with two point contacts at
the two ends. Use subscript tc to denote the table contacts,
the sticking constraints can be approximated by requiring the
two points to be sticking:

W
O Q(Optc,i) + W

O p=
W ptc,i, i = 1, 2. (32)

Equation (31) and (32) together form the holonomic con-
straints for our system:

Φ(q) =

 W
O Q(Ophc) +W

O p =W phc
W
O Q(Optc,1) + W

O p=
W ptc,1

W
O Q(Optc,2) + W

O p=
W ptc,2

 = 0 (33)

This example does not have face to face contacts; they can
be handled similarly by multi-point-contacts approximation.

2) Newton’s second law: The reaction forces λ =
[WλThc,

W λTtc,1,
W λTtc,2]T ∈ R9 associated with the holo-

nomic constraints (33) are the three contact forces as viewed
in world frame. In Newton’s second law (5):

ΩT (q)JTΦ (q)λ+ f + F = 0

Ω is known, JΦ(q) is computed by symbolic derivation from
Φ(q), we refrain from showing its exact expression to save
pages. The external force F contains the gravity of the object
GO and the robot hand GH , the reference frames of which
should be consistent with the generalized force:

F =

 OGO
0

HGH

 ∈ R9. (34)

HGH should be zero if the robot force controller already
compensates for self weight.

D. Guard Conditions
The motion plan requires all contacts to be sticking.

Coulomb friction thus gives two constraints on the force
variables:

1) The normal forces at all contacts must be greater than
a threshold nmin.

2) All contact forces must be within their friction cones.
To express 3D friction cone constraints linearly, we ap-
proximate the cone with eight-sided polyhedron [19] with
di = [sin(πi/4), cos(πi/4), 0]T being the unit direction
vectors for each ridge. Denote µhc, µtc as the estimated
minimal possible friction coefficient, z = [0 0 1]T as the
unit Z vector, the friction cone constraints becomes

µhcz
T (OWR

Wλhc) ≥ dTi (OWR
Wλhc), i = 1, ..., 8

µtcz
TWλtc,1 ≥ dTi Wλtc,1, i = 1, ..., 8

µtcz
TWλtc,2 ≥ dTi Wλtc,2, i = 1, ..., 8

(35)
The normal force lower bound can be written as

zT (OWR
Wλhc) ≥ nmin

zT
W
λtc,1 ≥ nmin

zT
W
λtc,2 ≥ nmin

(36)

Equation (35) and (36) are affine constraints on λ, together
they form the guard condition (6).

E. Solve the problem
At each time step, given the object and the hand poses

we can use algorithm 1 and 2 to solve for the hybrid
force-velocity control numerically. You can find our Matlab
implementation of the step by step derivations in our GitHub
repository (see section VI-A).

Here we briefly describes the solved actions. The solution
to the block tilting problem has one dimensional velocity
controlled action, which points in the tilting direction and
is roughly perpendicular to the line from the hand to the
rotation axis. The other two dimensions are under force
control. The Y component of the force command is close
to zero, which makes sense as forces in Y direction don’t
do anything useful. The force in other component is roughly
pressing against the rotation axis to maintain sticking.

VI. EXPERIMENTS

Fig. 5. Our experiment setup. Left: block tilting. Right: tile levering-up.

We implemented two example tasks: block tilting (sec-
tion V) and tile levering-up. In the tile levering-up example,
the robot need to pivot the object up against a corner in a
box. The object is modeled as a cuboid. During the motion,
the contacts between the object and the corner are sliding,
while the contact between the object and the robot is sticking.

In the block tilting task, the object is a wooden block with
edge length 75mm. We place a 2mm-thick piece of cloth on
the table to introduce some passive compliance as well as
increasing friction. In the tile levering-up example, the object
is placed at a corner of a plastic box, which is fixed in space.
We experimented with a variety of objects. The robot hand is
a metal bar with a rubber ball installed on the tip to increase
friction.

We implemented our algorithm 1 and 2 in both Matlab
and C++. The projected gradient descent is the most time-
consuming part of our algorithm. With Ns = 3 initial
guesses, the C++ code can solve the block tilting problem in
35ms, solve the levering-up problem in 25ms. The Matlab
version is on average 10x slower.

The control computed by our algorithm can be imple-
mented in many ways. We implemented hybrid force-velocity
control with position-control inner loop according to [11],
and added functionality for choosing axes in any orientation.
We used an ABB IRB 120 robot arm with 250Hz commu-
nication (but with 25ms latency), and a wrist-mounted force
torque sensor, ATI Mini-40, to measure contact forces at
1000Hz.

We ran the block tilting task 50 times in a row1. Each run
contains 15 time steps. The robot successfully tilted the block
47 times. The three failures were all stopped prematurely
because the robot detected large force (about 25N on the FT
sensor) at a time step. The reason could be a bad solution
from our algorithm, or the instability of our force control
implementation.

We ran the tile levering-up task for about 20 times on
different objects. The successful rate is about two-thirds. The
failures are caused by unexpected sticking between the object
and the wall, or unexpected slipping between the robot hand

1You can find the 25min video at https://youtu.be/YIP8xIFATHE

https://youtu.be/YIP8xIFATHE

and the object. One important reason for these failures is the
slow response of the low level force control: the commanded
positive contact normal force were tracked with large errors,
which could surely be improved with better engineering. We
did observe that the failures are less likely to happen if the
robot moved slower.

A. Resources

The Matlab implementation of the two algorithms
along with several examples can be obtained from
https://github.com/yifan-hou/pub-icra19-hybrid-control.

VII. DISCUSSION AND FUTURE WORK

For a hybrid force-velocity control problem, people might
be able to manually design a control strategy that works
just fine. We insist that our method is valuable, because we
can automate the process for new problems without manual
design. Moreover, we can solve some problems that are
unintuitive for a human. For example, consider the bottle

Fig. 6. Illustration of the bottle rotation problem.

rotation problem as shown in Fig. 6, left. Use a robot to
press on its top surface with a face to face contact. If you
apply force properly, you can tilt the bottle and rotate it on
the table. The control strategy is not straightforward, since
it involves hybrid actions in 6D wrench space. The Matlab
code for solving this problem is also available in our GitHub
repository. Unfortunately we don’t have time to implement
it on a robot.

Our method has several limitations. Firstly, we haven’t
consider non-holonomic constraints in our current formula-
tion. Secondly, the algorithm 1 could get stuck in a bad local
minimum. The only way of avoiding it is to sample more
initial points, which increases computation time. Finally, the
cost functions proposed in this work are largely based on
our intuition. The exact conditions for maintaining contact
modes are not completely clear. Although they seem to work
empirically, a better understanding of contact mechanics may
lead to a more reliable hybrid servoing algorithm.

ACKNOWLEDGMENT

We would like to thank Hongkai Dai, Nikil Chavan-Dafle
and François Hogan for helpful discussions and suggestions.

REFERENCES

[1] Dmitry Berenson, Siddhartha S Srinivasa, Dave Ferguson, and James J
Kuffner. Manipulation planning on constraint manifolds. In Robotics
and Automation, 2009. ICRA’09. IEEE International Conference on,
pages 625–632. IEEE, 2009.

[2] N. Chavan-Dafle and A. Rodriguez. Prehensile pushing: In-hand
manipulation with push-primitives. In 2015 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 6215–6222.

[3] Joris De Schutter, Herman Bruyninckx, Wen-Hong Zhu, and Mark W
Spong. Force control: a bird’s eye view. In Control Problems in
Robotics and Automation, pages 1–17. Springer, 1998.

[4] Joris De Schutter, Tinne De Laet, Johan Rutgeerts, Wilm Decré,
Ruben Smits, Erwin Aertbeliën, Kasper Claes, and Herman Bruyn-
inckx. Constraint-based task specification and estimation for sensor-
based robot systems in the presence of geometric uncertainty. The
International Journal of Robotics Research, 26(5):433–455, 2007.

[5] Mehmet Dogar and Siddhartha Srinivasa. A framework for push-
grasping in clutter. Robotics: Science and systems VII, 1, 2011.

[6] Basile Graf. Quaternions and dynamics. arXiv preprint
arXiv:0811.2889, 2008.

[7] Neville Hogan. Impedance control: An approach to manipulation:
Part iiimplementation. Journal of dynamic systems, measurement, and
control, 107(1):8–16, 1985.

[8] Oussama Khatib. A unified approach for motion and force control of
robot manipulators: The operational space formulation. IEEE Journal
on Robotics and Automation, 3(1):43–53, 1987.

[9] António Lopes and Fernando Almeida. A force–impedance controlled
industrial robot using an active robotic auxiliary device. Robotics and
Computer-Integrated Manufacturing, 24(3):299–309, 2008.

[10] Kevin M Lynch and Matthew T Mason. Stable pushing: Mechanics,
controllability, and planning. The International Journal of Robotics
Research, 15(6):533–556, 1996.

[11] J. Maples and J. Becker. Experiments in force control of robotic
manipulators. In Proceedings. 1986 IEEE International Conference
on Robotics and Automation, volume 3, pages 695–702, Apr 1986.

[12] Matthew T Mason. Compliance and force control for computer
controlled manipulators. IEEE Transactions on Systems, Man, and
Cybernetics, 11(6):418–432, 1981.

[13] N Harris McClamroch and Danwei Wang. Feedback stabilization
and tracking of constrained robots. IEEE Transactions on Automatic
Control, 33(5):419–426, 1988.

[14] James K Mills and Andrew A Goldenberg. Force and position control
of manipulators during constrained motion tasks. IEEE Transactions
on Robotics and Automation, 5(1):30–46, 1989.

[15] Igor Mordatch, Emanuel Todorov, and Zoran Popović. Discovery
of complex behaviors through contact-invariant optimization. ACM
Transactions on Graphics (TOG), 31(4):43, 2012.

[16] Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method
for trajectory optimization of rigid bodies through contact. The
International Journal of Robotics Research, 33(1):69–81, 2014.

[17] Marc H Raibert and John J Craig. Hybrid position/force control
of manipulators. Journal of Dynamic Systems, Measurement, and
Control, 103(2):126–133, 1981.

[18] J Kenneth Salisbury. Active stiffness control of a manipulator in carte-
sian coordinates. In Decision and Control including the Symposium
on Adaptive Processes, 1980 19th IEEE Conference on, volume 19,
pages 95–100. IEEE, 1980.

[19] David E Stewart and Jeffrey C Trinkle. An implicit time-stepping
scheme for rigid body dynamics with inelastic collisions and coulomb
friction. International Journal for Numerical Methods in Engineering,
39(15):2673–2691, 1996.

[20] Masaru Uchiyama and Pierre Dauchez. A symmetric hybrid posi-
tion/force control scheme for the coordination of two robots. In
Robotics and Automation, 1988. Proceedings., 1988 IEEE Interna-
tional Conference on, pages 350–356. IEEE, 1988.

[21] Luigi Villani and Joris De Schutter. Force control. In Springer
handbook of robotics, pages 161–185. Springer, 2008.

[22] Daniel E Whitney. Historical perspective and state of the art in robot
force control. The International Journal of Robotics Research, 6(1):3–
14, 1987.

[23] Tsuneo Yoshikawa. Dynamic hybrid position/force control of robot
manipulators–description of hand constraints and calculation of joint
driving force. IEEE Journal on Robotics and Automation, 3(5):386–
392, 1987.

[24] Jiaji Zhou, R. Paolini, J. A. Bagnell, and M. T. Mason. A convex
polynomial force-motion model for planar sliding: Identification and
application. In 2016 IEEE International Conference on Robotics and
Automation (ICRA), pages 372–377, 2016.

https://github.com/yifan-hou/pub-icra19-hybrid-control

	I INTRODUCTION
	II RELATED WORK
	II-A Hybrid Force-Velocity Control
	II-B Motion Planning through Contacts

	III MODELING & PROBLEM FORMULATION
	III-A Symbols
	III-B Goal Description
	III-C Natural Constraints
	III-C.1 Holonomic Constraints
	III-C.2 Newton's second law

	III-D Velocity controlled actions and holonomic constraints
	III-E Guard Conditions
	III-F Problem Formulation

	IV APPROACH
	IV-A Solve for Velocity Controlled Actions
	IV-A.1 Determine dimensions of velocity control
	IV-A.2 Solve for directions and magnitude

	IV-B Solve for Force Controlled Actions

	V Example
	V-A Variables
	V-B Goal Description
	V-C Natural constraints
	V-C.1 Holonomic constraints
	V-C.2 Newton's second law

	V-D Guard Conditions
	V-E Solve the problem

	VI EXPERIMENTS
	VI-A Resources

	VII DISCUSSION AND FUTURE WORK
	References

