
Graduated Fidelity Lattices for Motion Planning under Uncertainty

Adrián González-Sieira1, Manuel Mucientes1 and Alberto Bugarı́n1

c©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers
or lists, or reuse of any copyrighted component of this work in other works.

Abstract— In this work we present a state lattice based
approach for motion planning in mobile robotics. Sensing and
motion uncertainty are managed at planning time to obtain
safe and optimal paths. To do this reliably, our approach
estimates the probability of collision taking into account the
robot shape and the uncertainty in heading. We also introduce
a novel graduated fidelity approach and a multi-resolution
heuristic which adapt to the obstacles in the map, improving the
planning efficiency while maintaining its performance. Results
for different environments, shapes and motion models are
reported, including experiments with real robots.

I. INTRODUCTION

Motion planning in mobile robotics has been successfully
addressed using stochastic and deterministic sampling strate-
gies [1]. Among the latter, state lattices are noteworthy for
their regularity and for having the structure of a graph in
which the discrete states are connected by motions extracted
from the dynamics model. Thus, optimal paths satisfying the
kinematic constraints can be found with a search algorithm.

Managing motion and sensing uncertainty is also impor-
tant, because the safety of the planned paths is crucial in real
world applications. Doing so at planning time allows select-
ing the best path according to its probability of collision,
which should be reliably estimated taking into account the
robot dimensions and the uncertainty in heading.

The fidelity of the lattice is the resolution of the sampled
states. Decreasing the fidelity improves the planning effi-
ciency, but it affects the optimality and the capacity to obtain
valid solutions. However, in a graduated fidelity lattice the
resolution can vary and adapt to the obstacles in the map,
managing the trade off between planning performance and
efficiency. Heuristics are key for the latter, so reducing their
computation time is equally relevant. Multi-resolution maps,
like octrees [2], also adapt to the obstacles, so they can be a
good source of information for the fidelity selection and to
introduce multi-resolution techniques in the heuristics.

In this paper we present a state lattice based motion
planner that manages the uncertainty at planning time. Our
main contributions are: 1) a sampling strategy which reliably
estimates the probability of collision of the robot taking into

This research was supported by the Spanish Ministry of Economy
and Competitiveness (grants TIN2014-56633-C3-1-R and TIN2017-84796-
C2-1-R), and the Galician Ministry of Education, Culture and Univer-
sities (grants GRC2014/030 and accreditation 2016-2019, ED431G/08).
These grants are co-funded by the European Regional Development Fund
(ERDF/FEDER program).

1Authors are with Centro Singular de Investigación en Tec-
noloxı́as da Información (CiTIUS), Universidade de Santiago de Com-
postela, Spain. {adrian.gonzalez, manuel.mucientes,
alberto.bugarin.diz}@usc.es

account its dimensions and the uncertainty in heading; 2) a
novel graduated fidelity approach which, unlike prior works,
adapts to the maneuverability of the robot and to the obsta-
cles in the map; and 3) a novel multi-resolution heuristic with
improved efficiency and scalability in large environments.
This approach allows to reduce significantly the runtime of
the planner while maintaining its performance.

II. RELATED WORK

Sampling based techniques combined with search algo-
rithms have been successfully applied to the field of mo-
tion planning. Random sampling —Probabilistic Roadmaps
(PRM) [3], Rapidly Exploring Random Trees (RRT) [4]—
and deterministic sampling techniques have been described in
the literature. Among the latter, state lattices [5] benefit from
their regularity to pre-compute a set of canonical actions
from the dynamics model. Graduated fidelity state lattices
were introduced by [6], although this approach does not
take into account the dynamics in the low fidelity areas,
thus making impossible managing the uncertainty at planning
time. In [7] this issue was addressed using a subset of the
motion primitives to connect the states within low fidelity
areas. However, the approach of [7] and [8] is to obtain a
pre-planned path and improve it in real time as the robot
moves along the planned path, increasing the fidelity of the
lattice around its position. Combining this with uncertainty
management is not trivial because every time the lattice
changes the uncertainty of the affected paths has to be re-
computed, which is a costly operation. Instead, our graduated
fidelity approach only depends on the obstacles in the map
and the maneuverability of the robot, addressing these issues.

Different heuristics to improve the planning efficiency
were described in the literature. In [9] they presented an
admissible heuristic —FSH— which copes with the robot dy-
namics. Although its obtention is computationally expensive,
it can be pre-computed offline and stored in a look-up table.
In [7] they introduced H2D, a low-dimensional heuristic
which takes into account the obstacles in the map, and which
combined with FSH obtained good results. However, it is
computed applying the Dijkstra’s algorithm over a grid with a
fixed resolution, so its efficiency when dealing with large and
uncluttered environments can be improved. For this reason
we introduce H2DMR, a heuristic based on that of [7], which
relies on a multi-resolution grid and improves the planning
efficiency and scalability.

Regarding the uncertainty management, prior works used
the theory of Markov Decision Processes —MDPs and
POMDPs— to deal with the inaccuracies in the controls
[10] and measurements [11], although they had scalability

ar
X

iv
:1

90
5.

13
53

1v
1 

 [
cs

.R
O

] 
 3

1 
M

ay
 2

01
9



issues [12]. These were addressed by [13], which computes
a locally-optimal solution given an initial path. However,
this approach can only be applied to smooth dynamics
and observations. Other works, like [14] and [15], use the
Extended Kalman Filter —EKF— to deal with motion and
sensing uncertainty without assuming maximum likelihood
observations. [14] relies on RRT to compute a set of paths
and selects among them the one with the minimal probability
of collision, although this does not guarantee finding a good
solution in all cases. [15] addresses this drawback growing
a search tree which predicts the uncertainty for all candidate
paths. Despite their good results in uncertainty management,
both approaches estimate the probability of collision using
simplified versions of the robot shape. [14] approximates the
robot by its bounding circle, while [15] checks collisions
with the predicted distributions. This affects the reliability
of the planner and leads to potential failures when the
shape is far from these approximations —e.g. asymmetric or
irregular shapes. Our approach considers the real robot shape
with a deterministic sampling strategy which computes the
probability of collision from the predicted uncertainty, also
taking into account the uncertainty in heading.

III. PLANNING ON STATE LATTICES

Our motion planner relies on a state lattice, so the state
space, X , is sampled in a regular manner —a rectangular
arrangement was used in this work, although others are pos-
sible. A canonical set of actions extracted from the dynamics
model —U , also called motion primitives— connects the
lattice states, Xlat. Due to their regular arrangement, these
actions are position-independent and can be computed offline
and replicated to generate the whole connectivity. Moreover,
these actions respect the kinematic restrictions.

The motion primitives are obtained using numerical opti-
mization, as detailed in [16]. The cost of the resulting actions
is optimal given the constraints: the initial an final states,
belonging to Xlat, and the dynamics model.

Due to the graph structure of the state lattice, an informed
search algorithm can be used to find the optimal path in it.
These algorithms rely on heuristics, which estimate the cost
between each state and the goal, to efficiently explore the
state space. The planner we present uses Anytime Dynamic
A* [17], AD*, due to its capability to obtain sub-optimal
solutions and refine them iteratively without planning from
scratch. The value of the heuristic is inflated by a parameter
ε, which acts as boundary for the cost of the solution.

As heuristic, we combine the proposed H2DMR —which
deals with the obstacles in the map, like H2D [7]— with
FSH [9] —which copes with the kinematic restrictions while
considering free space—, as follows:

HEURISTIC(x) = max (h2dmr(x), fsh(x)) (1)

This allows estimating the cost to the goal in an accurate
manner, which benefits the planning efficiency.

Alg. 1 summarizes the operations done by AD*. Inputs —
x0 and xG— are the initial state and the goal, and the output
is the path with the minimal cost connecting them. H2DMR

is initialized before running the planner —Alg. 1:2—, since
it depends on the location of the goal and the obstacles in the
environment. The algorithm is then run iteratively, starting
with ε = ε0 and decreasing the value of the parameter until
the optimal solution is found —Alg. 1:13.

Given a value for ε, the algorithm iteratively extracts a
state xa from the OPEN queue —Alg. 1:6. This is the state
minimizing the added cost from the start and the estimated
one to the goal —cx and hx, respectively. The latter is given
by the heuristic and scaled by ε. The successors for xa, Xb,
are then obtained in Alg. 1:7 and the cost of each transition
is evaluated —Alg. 1:9. Finally, each state xb is inserted in
OPEN after computing its heuristic —Alg. 1:10-11. A valid
path is found when xa is the goal.

To ensure the safety of the planned paths they have to be
evaluated in terms of probability of collision. This requires
managing the uncertainty at planning time, for which we
use the approach of [15] to predict the Probability Density
Functions of the robot being in each state of the path —
PDFs. This method focuses on nonlinear, partially observable
systems with dynamics and observations described in a
discrete time manner:

xt+1 = f(xt, ut) +mt, mt ∼ N (0,Mt)

zt = z(xt) + nt, nt ∼ N (0, Nt)
(2)

where xt ∈ X , ut ∈ U and zt are the robot states, the
controls and the measurements. mt and nt are Gaussian
motion and observation noises with covariances Mt and
Nt. The PDFs are estimated considering the influence of
a Linear Quadratic Gaussian [18] controller —LQG— when
executing the planned paths, using linearized versions of f
and z. The uncertainty depends on that at the initial state,
the controls and the accuracy of the measurements; and it is
therefore different for each candidate path in the lattice.

IV. RELIABLE PROBABILITY OF COLLISION

The distributions resulting from predicting the uncertainty
are used to estimate the probability that the robot collides

Algorithm 1 Main operations of the search algorithm
Require: x0, initial state; xG, goal state; initially ε = ε0

1: function MAIN ( x0, xG, ε )
2: INITIALIZEHEURISTIC(x0, xG) . Alg. 4
3: while ε >= 1 do
4: cx0 = 0; hx0 = HEURISTIC(x0); OPEN = {x0}
5: repeat
6: xa = arg minx∈OPEN(cx + ε · hx)
7: Xb = SUCCESSORS(xa) . Alg.3
8: for all xb ∈ Xb do
9: cxb = cxa+ COST(xa, xb) . Alg. 2

10: hxb = HEURISTIC(xb) . Alg. 4
11: OPEN = OPEN ∪ {xb}
12: until xa = xG

13: publish path(x0, xa) and decrease ε
14: return



when executing the paths. We introduce a novel method to
do so in a reliable manner, taking into account the real shape
of the robot and dealing with the uncertainty in heading.

The goal of the planner is to obtain paths minimizing
the probability of collision and the traversal time. This is
achieved with a cost function which evaluates a path between
xa and xb with three objectives: a safety measure, which
depends on the probability of collision; the traversal time;
and the uncertainty at xb —ca:b, ta:b and Σb, respectively.
An order of priority is introduced in these elements, so that
the planner first minimizes the probability of collision, then
the traversal time and finally the uncertainty at the goal.

Alg. 2 details the evaluation of a path between two states
xa and xb. First, the PDFs of the path are predicted with
the approach of Bry et. al. [15] —Alg. 2:2—, since they
are needed to obtain ca:b and Σb. Conversely, ta:b is directly
given by the motion primitives —Alg. 2:3.

The probability of collision is estimated from the PDFs
with a deterministic sampling strategy, which is similar to
the obtention of the sigma points in an Unscented Kalman
Filter —UKF [19]. Given a n-dimensional distribution —
xt ∼ N (x̄t,Σt)— a set of samples XS is obtained:

xsi+ , x
s
i− = x̄t ± λ ·

(√
Σt

)
i

i = 1, ..., n (3)

where
(√

Σt
)
i

is the i-th column of the factorized covariance
matrix, and λ allows obtaining samples with different dis-
tances to x̄t. Then, the following samples outside the main
axes of the distribution are added to XS :

xsi−j+ , x
s
i−j− = xsi− ± λ ·

(√
Σt

)
j

i, j = 1, ..., n

xsi+j+ , x
s
i+j− = xsi+ ± λ ·

(√
Σt

)
j

j 6= i
(4)

By doing so we achieve a better coverage of the PDF for
collision check purposes —Fig. 1.

Each sample xs ∈ XS is weighted according to its
probability in the PDF. The probability that the robot collides
—Alg. 2:8-11— is the ratio of the weights of the colliding
samples —checked with the real shape of the robot— and

Algorithm 2 Cost of a trajectory between xa and xb

Require: xa and xb, beginning and final states
1: function COST(xa, xb)
2: P a:b = UNCERTAINTY(xa, xb) . PDF prediction
3: ta:b = time(ua:b)
4: ca:b = 0
5: for all xa:bt ∼ N (x̄a:bt ,Σa:bt ) ∈ P a:b do
6: wc = 0; wt = 0
7: XS = sampling(xa:bt )
8: for all xs ∈ XS do
9: wt = wt + pdf(xs, xa:bt )

10: if collision(xs) then . with real shape
11: wc = wc + pdf(xs, xa:bt )

12: ca:b = ca:b − log(1− wc/wt)
13: return

[
ca:b, ta:b, tr(Σb)

]
. Σb, uncertainty at xb

the total weight. Then, the collision cost of the path, ca:b, is
obtained combining the estimations of the PDFs belonging
to it, assuming they are independent —Alg. 2:12. The cost
due to Σb is the trace of the matrix —Alg. 2:13.

The elements of the cost are compared hierarchically,
which allows obtaining paths that are optimal in terms of
safety, in the first place, then in terms of traversal time —
given the set of motion primitives used for planning—, and
finally in terms of estimated final uncertainty.

V. EFFICIENT MOTION PLANNING

The fidelity of the lattice has a great impact in the planning
efficiency. High fidelities allow representing more precisely
the state space, while lower ones benefit the runtime at the
expense the cost of the paths. The trade off between them
can be properly managed with a graduated fidelity lattice,
specially if it adapts to the obstacles in the map.

The standpoint of the proposed method is to use high
fidelity only in those areas which require complex maneu-
vering —i.e. near the obstacles—, selecting long trajectories
whenever possible —Fig. 2(a). Thus, the state space is
simplified reducing the density of lattice states and candidate
paths connecting them. This is achieved grouping together
similar actions in U and selecting only one representative
of each group when generating the successors of a state —
Alg. 1:7. The selected maneuver is the longest one which
does not affect the probability of collision —Fig. 2(b). Each
group contains those trajectories beginning and ending with
the same heading and velocities, U(θi,vi,ωi,θf ,vf ,ωf ), so that
it has maneuvers of the same kind but different length. Any
two groups are disjoint, while the union of all of them is the
whole set of motion primitives, U .

Fig. 1: We estimate the probability of collision considering
the robot real shape, deterministically sampling the PDFs.

(a) (b)

Fig. 2: Graduated fidelity approach. (a) shows a lattice
combining high (red) and low (blue) fidelity; (b) the fidelity
selection approach: the longest collision free motion of each
group is selected (green).



Algorithm 3 State successors in a graduated fidelity lattice
Require: U = {U(θi,vi,ωi,θf ,vf ,ωf )},∀(θ, v, ω) ∈ Xlat

1: function SUCCESSORS(xa)
2: θi = xaθ ; vi = xav ; ωi = xaω; Γ = ∅
3: for U ∈ {U(θi,vi,ωi,θf ,vf ,ωf )},∀(θf , vf , ωf ) do
4: repeat
5: U c = arg maxta:b(U) . Get longest
6: U = U \ U c
7: until CHECK(U cxa , U cxb ) ∨ U == ∅
8: Γ = Γ ∪ U c
9: return Γ

10: function CHECK(xa, xb)
11: κa = cell(xa); κb = cell(xb) . Get map cells
12: sa = size(κa); sb = size(κb) . Get size of cells
13: ca:b = COST(xa, xb)[0] . Alg. 2
14: return (sa + sb >

∥∥xa − xb∥∥) ∧ (ca:b == 0)

Alg. 3 details this process. The successors of a state xa, Γ,
are selected from those groups of trajectories with the same
initial heading and velocities —Alg. 3:3. For each group, all
candidates are evaluated in descending order by ta:b, and the
first one fulfilling the restrictions is selected —Alg. 3:4-7.
These restrictions —Alg. 3:10-14— relate to the resolution
of the source and destination map cells —sa and sb— and
the probability of collision. The goal of the former is to
choose maneuvers in accordance with the resolution of the
map, which is a good indicator of the complexity of the
environment. The latter maintains the safety of the solutions
and it is obtained from the cost function —Alg. 2.

With this approach the density of states and maneuvers
significantly decreases except near the obstacles, where com-
plex maneuvering is required. This improves the planning
efficiency, while the cost of the solutions is barely affected.

A. Multi-resolution heuristic

Heuristics play a key role in the planning efficiency and
their obtention time should be the lowest possible. Unlike
FSH, H2D cannot be computed offline, since it depends on
the obstacles in the map. Therefore, we propose H2DMR, a
multi-resolution version of the latter which takes advantage
of the octree map to reduce its obtention time.

Dijkstra’s algorithm is used to build a multi-resolution grid
which stores the distance between each point and the goal
considering the obstacles —Alg. 4. Collisions are checked
with the inscribed circle to the real shape to maintain the
optimistic nature of the estimations. The resolution of this
grid depends on that of the map and the highest fidelity of
the motion primitives, f+. H2DMR uses positions instead
of states, and the cost is the euclidean distance —Alg. 4:19-
20. Starting in the goal, pG, the point with the lowest cost
from the start is iteratively selected —Alg. 4:5— and its
successors explored. As in H2D [7], the stopping condition
is reaching twice the cost between p0 and pG.

This approach takes advantage of the octree structure —
Fig. 3. Given a point p, its successors are the center of the
map cells which are adjacent to the one containing p. If the

Algorithm 4 Obtention of H2DMR
Require: f+, highest fidelity of the lattice

1: function INITIALIZEHEURISTIC(x0, xG)
2: p0 = position(x0) ; pG = position(xG);
3: c(pG) = 0; OPEN = {pG}
4: repeat
5: p = arg minp∈OPEN c(p)
6: κ = cell(p) . Get map cell containing p
7: for all κ′ ∈ adjacent(κ) do . Adjacents to κ′

8: if size(κ′) > f+ then . Size of cell κ′

9: for all κ′′ ∈ subcells(κ′) do
10: p′ = position(κ′′) . Center of κ′′

11: c(p′) = c(p)+ COSTH(p, p′)
12: OPEN = OPEN ∪ {p′}
13: else
14: κ′′ = adjust(κ′, f+) . Adjust size to f+

15: p′ = position(κ′′) . Center of κ′′

16: c(p′) = c(p)+ COSTH(p, p′)
17: OPEN = OPEN ∪ {p′}
18: until c(p) > 2 · c(p0)

19: function COSTH ( p, p′ ) . Uses the optimistic shape
20: if collides(p′) then return ∞; else return ‖p′− p‖

Fig. 3: Given a point (in green), its neighbors (in blue) are
the adjacent map cells (in gray). Those bigger than f+ are
split, otherwise bigger ones containing them are selected.

size of a cell is higher than f+, it is split into subcells to
keep the accuracy of the heuristic —Alg. 4:8-12. Otherwise
a bigger cell containing it is selected —Alg. 4:13-17— to
limit the highest resolution of the grid to f+.

AD* uses the costs stored in this multi-resolution grid as
heuristic. However, the positions of H2DMR and the lattice
states do not directly match, so the value for a state xa is
given by the position, p, contained in the cell of xa or one
of its adjacents which minimizes the sum of its cost in the
grid —c(p)— and its distance to xa:

h2dmr(xa) = arg min
p

(‖xa − p‖+ c(p)) (5)

This approach outperforms H2D in the obtention time of
the grid, since it requires significantly less iterations to build
it. Moreover, due to the octree structure the benefits are even
more noticeable in large and uncluttered environments.



VI. RESULTS

The following experiments were run on a computer with
a CPU Intel CoreTM i7-4790 and 16 GB of RAM. Motion
uncertainty is Mt = 0.01 · I . Measurement noise is Nt =
0.01 · I or Nt =∞· I , depending on whether the robot is in
a location denied area or not.

A. Reliable probability of collision

In this section we report results for a robot with 2D
Ackermann dynamics and a set of 336 motion primitives
with lengths between 0.5 m —f+— and 8 m.

Fig. 4(a) shows the planned path in a 30× 30 m squared
environment. The robot has an irregular shape, like a “T”,
with dimensions 3.0 × 0.75 m and 2.0 × 0.75 m —long
and short edges. Our approach finds a safe path for this
environment, whilst other approaches disregarding the real
shape and the uncertainty in heading would fail. Approxi-
mating the robot by its inner circle would be unreliable due
to underestimating probability of collision in the turnings. On
the contrary, using a bounding box would be too conservative
and some maneuvers would be discarded for being too risky
—e.g. the turning before entering the corridor.

Fig. 4(b) shows the optimal solution and the predicted
PDFs for an environment of 25 × 35 m and a rectangular
robot of 3.0× 0.75 m. Due to the uncertainty, the best path
in terms of probability of collision and traversal time goes
outside the location denied area to receive measurements,
allowing the robot to localize itself before crossing the door.

We have measured the accuracy of the estimations given
by our method and compared it with that of the gamma
function —used by other approaches, like [14]. To do this,
we compared the output of both methods for the robot
with rectangular shape, a diagonally placed obstacle, and an
uncertainty of Σ = I . The error of the gamma function was
inversely proportional to the distance between the robot and
the obstacle, up to a 59% for distances between 0.75 m and

(a) (b)

Fig. 4: Motion planning results. The start is the diamond, and
the goal is the rectangle. (a) shows the predicted uncertainty,
where the ellipses are 3 · σ of the PDFs, and the location
denied areas are in gray; (b) shows the path for a robot with
an irregular shape (in blue).

1.0 m. Conversely, as our PDF sampling strategy takes into
account the deviations both in position and orientations, it
obtained reliable estimations for the entire range of distances
—with only a 1.5% of average error. To show the reliability
of the planner, we run 1, 000 simulations of the solutions of
Fig. 4 with random noise, which were all collision free.

B. Planning efficiency

To improve the planning efficiency, the proposed gradu-
ated fidelity method reduces the number of candidate paths
decreasing the fidelity, but only in the uncluttered areas of
the environment. Thus, high fidelity is used only when the
estimated probability of collision is greater than 0 —due to
the proximity of obstacles or the amount of uncertainty. With
this approach, the complex maneuvers in the control set are
available where they are most needed. Similarly, using high
fidelity near the goal facilitates approaching to this point.

Table I details the impact of the graduated fidelity lattice
approach —GF— in the planning efficiency and perfor-
mance. Columns “Iterations” and “Insertions” count the
extractions and insertions in OPEN —see Alg. 1—, “Time”
the runtime of the planner, while “Cost” is the traversal time
of the solution. A 87.4% average reduction in the number
of iterations is achieved, although more important is the
reduction in the number of insertions, which is decreased
a 89.7%. This caused the runtime to improve on average
a 89.9%, as each insertion in OPEN involves obtaining the
PDFs and the probability of collision for the new candidate
path. With regard to the performance, there is an average
increase of a 9.7% in the cost of the paths caused by selecting
longer maneuvers in uncluttered areas, although this is almost
unnoticeable when the solutions are visually compared.

Executions in Table I were made without anytime search
—ε0 = 1— to show the planning efficiency due to the
graduated fidelity, although they improved when iteratively
refining the solution until finding the optimal one. For ε0 =
1.5 and the experiment of Fig. 4(a), the optimal plan was
obtained in 1.2 s and 422 iterations, for ε = 1.15. For Fig.
4(b) it was obtained in 2.2 s and 684 iterations, for ε = 1.03.

These results outperform other approaches in the state of
the art. In the environment of Fig. 4(b), [15] finds a valid
solution in approximately 40 s — 17, 500 iterations—, while
[14] fails due to not expanding the paths going through
the measurement area. [13] obtains in 3.65 s a locally-
optimal control policy based on an initial path, and their
simulations show a 93% of probability of success. However,
this approach requires obtaining a policy for each homotopy
class of trajectory to guarantee that the global optimum is
found, which would lead to higher planning times.

TABLE I: Impact of the graduated fidelity lattice.

Planning Solution
Fig. GF Iterations Insertions Time (s) Cost (s)
4(a) 3 525 1,191 1.65 133.46
4(a) 7 2,755 10,844 11.1 130.86
4(b) 3 1,302 2,868 2.68 108.27
4(b) 7 15,952 42,594 45.38 95.96



TABLE II: Efficiency of H2DMR compared to that of H2D.

Iterations Time (ms)
C+ SR MR Gain SR MR Gain
≤0.8 8,281 3,250 60.8% 176.8 81.1 52.2%
1.6 8,281 842 89.8% 123.4 33.0 73.3%
3.2 8,281 842 89.3% 119.0 30.0 74.8%
6.4 8,281 410 95.1% 117.8 20.0 83.0%
12.8 8,281 362 95.6% 116.2 19.0 83.7%

We also compared the efficiency of H2DMR and H2D in
an empty environment of 50×50 m. To analyze the impact of
the map structure in the results we used several octrees with a
maximum resolution of 0.1 m, varying the minimum one up
to 25.6 m. Table II details these results —columns “MR”
and “SR” are for H2DMR and H2D, respectively. Since
H2DMR adapts the resolution to that of the octree —with
an upper bound of f+—, the iterations and runtime decrease
as the minimum resolution of the octree —C+— increases.
The optimistic nature H2DMR is not affected due to the
multi-resolution grid. In fact, it has an increased connectivity
—all points between adjacent cells are linked— and the
estimations are on average a 4% lower than those of H2D.

C. Real experiments

In Fig. 5 we show an experiment done with the robot
Pepper (Softbank Robotics). First, we obtained the dynamics
model from 512s of navigation data, and then a set of 236
actions with lengths between 0.2 and 1 m. The maneuvering
of the robot was that of an odometric motion model, with a
maximum linear speed of 0.5 m/s.

We used a SLAM algorithm [20] to build the map, and
a Monte Carlo method [21] to localize the robot. The
accuracy of the localization decreases when the distance to
the obstacles exceeds the range of the laser sensor —1.5 m
for Pepper—, e.g. near the start or after waypoint 2. This

Fig. 5: Executions in a real environment with the robot
Pepper —the robot starts in waypoint 0, then it goes to 1, 2,
3, and back to 0. Arrows indicate the direction of motion.

Fig. 6: Executions in a real, cluttered environment with a
UAV —starting in waypoint 0, then going to 1, 2, 3, and
back to 0. The UAV shape is in orange.

causes deviations that are corrected by the LQG controller.
Despite this, the planned path was safe, and no collisions
were reported in 20 executions. Finally, the efficiency of
the planner allowed the robot to operate without noticeable
delays. On average, the plans between consecutive waypoints
were obtained in less than 5 seconds and 1,000 iterations due
to our graduated fidelity approach and the anytime search
capabilities of AD*. Also, H2DMR was obtained in 0.2 s
—941 iterations. The total cost of the path was 115 s.

The experiment of Fig. 6 was done with a UAV (Asctec
Pelican) localized with a motion capture system. The dy-
namics model was obtained from 1, 458 s of flight data,
which resulted in a set of 3, 316 motion primitives with
lengths between 0.2 and 0.8 m. These motions allowed
the UAV to move forward and laterally with a maximum
linear speed of 0.7 m/s. The maximum angular speed was
30◦/s. The environment was cluttered with obstacles, and the
only way to navigate between the waypoints was to cross
the narrow spaces between them. In fact, in some points
there was only 11 cm of distance between the UAV and
the obstacles. Despite this, the planned path was safe, and
in 20 executions no collisions were reported. H2DMR was
obtained in 0.1 s —216 iterations, and on average the plans
between waypoints were obtained in less than 8 seconds and
2,500 iterations. The total cost of the path was 86.9 s.

VII. CONCLUSIONS

We have presented a state lattice based motion planner
which manages motion and sensing uncertainty. The planner
reliably obtains the probability of collision considering the
real robot shape and the uncertainty in heading, and it
is based on a novel graduated fidelity approach, which
adapts to the obstacles in the map, and on a muli-resolution
heuristic. We have reported results for simulated and real en-
vironments, with different motion models and robot shapes,



proving the reliability and efficiency of the proposed method.
Future research will extend the validation of the proposed
algorithms in practical applications demanding autonomous
navigation for UAVs.

REFERENCES

[1] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006.

[2] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur-
gard, “Octomap: An efficient probabilistic 3D mapping framework
based on octrees,” Autonomous Robots, vol. 34, no. 3, pp. 189–206,
2013.

[3] L. E. Kavraki, P. Svestka, J. . Latombe, and M. H. Overmars, “Proba-
bilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, Aug 1996.

[4] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
The International Journal of Robotics Research, vol. 20, no. 5, pp.
378–400, 2001.

[5] M. Pivtoraiko and A. Kelly, “Efficient constrained path planning via
search in state lattices,” in 8th International Symposium on Artificial
Intelligence, Robotics and Automation (I-SAIRAS), 2005.

[6] ——, “Differentially constrained motion replanning using state lattices
with graduated fidelity,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2008, pp. 2611–2616.

[7] M. Likhachev and D. Ferguson, “Planning Long Dynamically Feasible
Maneuvers for Autonomous Vehicles,” The International Journal of
Robotics Research, vol. 28, no. 8, pp. 933–945, Jun. 2009.

[8] M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained
mobile robot motion planning in state lattices,” Journal of Field
Robotics, vol. 26, no. 3, pp. 308–333, 2009.

[9] R. Knepper and A. Kelly, “High Performance State Lattice Planning
Using Heuristic Look-Up Tables,” IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 3375–3380, 2006.

[10] R. Alterovitz, T. Siméon, and K. Goldberg, “The stochastic motion
roadmap: A sampling framework for planning with Markov motion
uncertainty,” in Robotics: Science and Systems, 2007, pp. 246–253.

[11] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial intelli-
gence, vol. 101, no. 1, pp. 99–134, 1998.

[12] C. H. Papadimitriou and J. N. Tsitsiklis, “The complexity of Markov
decision processes,” Mathematics of operations research, vol. 12,
no. 3, pp. 441–450, 1987.

[13] J. Van den Berg, S. Patil, and R. Alterovitz, “Motion planning under
uncertainty using iterative local optimization in belief space,” The
International Journal of Robotics Research, vol. 31, no. 11, pp. 1263–
1278, 2012.

[14] J. Van den Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” The International Journal of Robotics Research, vol. 30,
no. 7, pp. 895–913, 2011.

[15] A. Bry and N. Roy, “Rapidly-exploring random belief trees for motion
planning under uncertainty,” in IEEE International Conference on
Robotics and Automation (ICRA), 2011, pp. 723–730.

[16] T. M. Howard and A. Kelly, “Optimal rough terrain trajectory genera-
tion for wheeled mobile robots,” The International Journal of Robotics
Research, vol. 26, no. 2, pp. 141–166, 2007.

[17] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic A*: An anytime, replanning algorithm,” in Pro-
ceedings of the International Conference on Automated Planning and
Scheduling (ICAPS), 2005, pp. 262–271.

[18] D. Bertsekas, Dynamic programming and optimal control. Athena
scientific Belmont, MA, 1995, vol. 1.

[19] S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte, “A new approach
for filtering nonlinear systems,” in Proceedings of the American
Control Conference, vol. 3. IEEE, 1995, pp. 1628–1632.

[20] G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based
slam with rao-blackwellized particle filters by adaptive proposals and
selective resampling,” in Proceedings of the 2005 IEEE international
conference on robotics and automation. IEEE, 2005, pp. 2432–2437.

[21] D. Fox, W. Burgard, F. Dellaert, and S. Thrun, “Monte carlo localiza-
tion: Efficient position estimation for mobile robots,” AAAI/IAAI, vol.
1999, no. 343-349, pp. 2–2, 1999.


	I Introduction
	II Related work
	III Planning on state lattices
	IV Reliable probability of collision
	V Efficient motion planning
	V-A Multi-resolution heuristic

	VI Results
	VI-A Reliable probability of collision
	VI-B Planning efficiency
	VI-C Real experiments

	VII Conclusions
	References

