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Abstract— Learning to efficiently navigate an environment
using only an on-board camera is a difficult task for an
agent when the final goal is far from the initial state and
extrinsic rewards are sparse. To address this problem, we
present a self-supervised prediction network to train the agent
with intrinsic rewards that relate to achieving the desired final
goal. The network learns to predict its future camera view
(the future state) from a current state-action pair through
an Action Representation Module that decodes input actions
as higher dimensional representations. To increase the repre-
sentational power of the network during exploration we fuse
the responses from the Action Representation Module in the
transition network, which predicts the future state. Moreover,
to enhance the discrimination capability between predictions
from different input actions we introduce joint regression and
triplet ranking loss functions. We show that, despite the sparse
extrinsic rewards, by learning action representations we achieve
a faster training convergence than state-of-the-art methods with
only a small increase in the number of the model parameters.

I. INTRODUCTION

Visual navigation based on first-person vision is important
for task-oriented as well as exploratory applications, such as
a drone searching for an object or a robot entering an unseen
environment. Reinforcement Learning (RL) is a promising
approach that uses the experience collected by the agent
(robot) for sequential decision making for navigation [1],
[2], [3] and manipulation [4], [5]. For visual navigation,
the agent is trained to perform actions to reach, from the
current camera view (state), the final goal state. Since the
goal state can be several sequential actions (steps) away, a
reward explicitly given only in the final state is too sparse
to effectively train the agent.

Training the agent to collect experience about the environ-
ment through exploration is still a challenging task in deep
RL. Conventional strategies rely on heuristics, such as the
ε-greedy approach that chooses the action that most likely
generates a long-term effect [6] or noise-based exploration
that generates different actions from the same state [7].
Imitation learning [8] is widely used to acquire skills from
expert demonstrations and to learn policies with behavioural
cloning [8], [9], [10] or inverse reinforcement learning [11],
[12], [13]. Other approaches reshape an original reward
function to encourage the agent to obtain intrinsic rewards
that relate the most to the achievement of the final goal [14],
[15], [16], [17], [18].

Intrinsic motivation, e.g. the difference between predicted
(future) state and ground truth, encourages the agent to
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Fig. 1: Self-supervised visual exploration with intrinsic re-
wards, rit. The agent reaches the new state, st+1, based on
an input action, at, determined by the policy network. The
proposed Action Representation Module generates higher
dimensional representations of at enabling an effective pre-
diction of st+1 through the feature space φ̄(·).

explore novel states given the current state and action [17].
The input action is generally a simple one-hot encoding [1],
[3], [17], [19], [20], which allows one to describe categorical
variables as vectors. Examples are (1, 0, 0), (0, 1, 0), and
(0, 0, 1) to encode turn left, move forward and turn right,
respectively. However, combining a one-hot code after the
feature of the current state restricts the influence of the input
action in predicting the future state during training. In fact,
with first-person view, the distribution among future states
from different input actions can be extremely different. We
thus argue that the network should be able to describe various
input actions to predict the state, which has not been handled
in previous works [1], [3], [17], [19], [20].

In this paper, we propose a self-supervised prediction
network for the agent to learn from sparse extrinsic rewards
as well as to manage intrinsic rewards. While previous
works designed intrinsic rewards [14], [15], [16], [17], we
introduce a deep network that learns features for effective
self-supervised visual exploration. In particular, we explicitly
increase the dimensions of the input action with a decoding
process. This higher dimensional representation is then fused
in the state transition network to predict the future state
(Fig. 1).

The main contributions of this paper are as follows. We
propose an Action Representation Module for efficient RL
that can be easily integrated with existing convolutional neu-
ral network (CNN) architectures. This module expands the
dimensions of an input action to improve the representational



power of the network during training. We use joint regression
and triplet ranking loss functions to predict the future state
while discriminating predictions from different actions to
encode meaningful features effectively during training. The
proposed module equipped with these losses has a faster
training convergence than state-of-the-art methods with only
a 0.5% increase in the total number of parameters. Our
approach is generic and, in this work, we evaluate it using
as state a first-person view (camera view).

II. RELATED WORK

This section covers the main approaches to address the
problem of sparse extrinsic rewards: imitation learning, self-
supervised learning, and curiosity-driven exploration.

An agent (robot) can learn behaviours from expert demon-
strations with imitation learning, which is used for au-
tonomous driving [21], [22], drone navigation [23], [24],
locomotion [25], and manipulation [11], [26]. Imitation
learning methods can be classified as behavioural cloning
or inverse reinforcement learning. Behavioural cloning con-
sists in directly learning a policy through state-action pairs
provided by an expert, without the robot interacting with the
environment during training [8], [9], [10]. Inverse reinforce-
ment learning consists in receiving state-action pairs from an
expert and in learning to estimate a reward function that leads
to expert actions [24]. The reward function is used to infer an
imitation policy combined with RL [11], [12], [13]. Imitation
learning has good performance, but the expert supervision is
labour intensive, prone to bias, and needed for each new task.

When expert supervision is unavailable or insufficient to
learn features with a deep neural network, self-supervision
can be used [27]. A common approach is to train a network
with a proxy task that relates to the final goal of the task
itself [27], [28], [29]. Self-supervised strategies can also be
used to address the problem of sparse extrinsic rewards in
RL [5], [20], [30], [31]. As the robot moves sequentially,
the future state and action can be naturally obtained without
supervision. Therefore a prediction model can be used to
estimate, based on the current state-action pair, the future
state [20], [30] or action [31], which relates to the final goal
for manipulation [5], [20], [30] or navigation [17], [20].

Finally, curiosity-driven exploration reshapes the orig-
inal reward function by designing intrinsic rewards that
encourage the agent to explore unseen areas of the en-
vironment [32], [33]. An alternative is to maximise the
information gain for the agent and to reduce the uncertainty
about the environment [14], [16]. For exploration, a robot
can use state visitation counts [15], [34], [35] or the error
between predicted and real future states [17], [36]. While the
above-mentioned methods proposed the design of intrinsic
reward functions, we focus on the design of a model to
effectively learn meaningful features during exploration to
facilitate navigation in unknown environments. Our work
is inspired by a curiosity-driven exploration with prediction
error [17], but we investigate the model and loss functions
for exploration.

III. PROBLEM FORMULATION

Let an agent interact with an environment over a number
of discrete time steps. At each time step, t, the agent receives
a state, st, the image from its first-person view, and selects an
action, at, from a set of possible actions according to a policy
π : st → at. In return, the agent receives the next state, st+1,
and a reward, rt. The goal of the agent is to maximise the
expected reward from each state st. This process ends when
the agent reaches its goal or a maximum predefined number
of time steps. During training, the process is repeated until
the number of steps reaches a predefined value.

If θP represents the parameters of the neural network
that comprises the policy to determine the action, the goal
is to maximise the expected sum of rewards during T
steps by optimizing a parameterised policy, π (st; θP ), as
follows [37], [38]:

max
θP

Eπ(st;θP )

[∑T

t=0
rt

]
. (1)

A challenge for this optimization is that the agent can learn
from extrinsic rewards only when it succeeds to reach the
final goal state. In the real world, the agent may operate in
an environment where there are no extrinsic rewards or where
extrinsic rewards are sparsely distributed. To address this
challenge, self-supervised approaches for RL equip the agent
with intrinsic rewards that closely relate to the understanding
of the environment in order to reach the final goal [14], [15],
[16], [17].

IV. ACTION REPRESENTATIONS FOR SELF-SUPERVISED
EXPLORATION

The proposed model for exploring unseen environments
relies on the theory of curiosity-driven exploration [17],
where the agent undertakes a systematic exploration to unveil
unseen regions. We encode the input image (state) and an
action into CNNs with two models (see Fig. 2). A Forward
Model predicts the future state from the current state-action
pair, providing a prediction error as an intrinsic reward to the
agent. Here we introduce an Action Representation Module
that decodes an input action for an effective prediction of the
state. To effectively train the Forward Model, we use joint
regression and triplet ranking loss functions. The Inverse
Model classifies the action performed to become a future
state from a current state. This action classification task
enables the features from the Forward Model to encode
information to determine the action.

A. Forward Model

Given a state-action pair (st, at) at time t, the Forward
Model f (·) predicts st+1 as a high-level feature representa-
tion φ̄ (st+1) to constrain the state transition and to encode
information more efficiently:

φ̄ (st+1) = f (st, at; θA, θF ) , (2)

where the network parameters θA and θF are learned for
the Action Representation Module and the state transition
network, respectively.
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Fig. 2: The proposed architecture for self-supervised visual exploration. The Forward Model, which consists of a state
transition network combined with an Action Representation Module, estimates the feature of the (future) state φ̄ (st+1) from
an input state-action pair (st, at). The one-hot code of an input action passes through three convolution layers (Conv*) with
Exponential Linear Unit (ELU) to generate decoded responses that are then concatenated to an intermediate response of the
state transition network. The concatenated responses estimate the feature of the future state after subsequent convolutions
(Conv) and fully connected (FC) layers. The Inverse Model classifies the action āt that should be performed to reach the
future state from the current state.

The proposed Action Representation Module consists of
three convolutional layers with nonlinear activations (Ex-
ponential Linear Unit or ELU) [39]. The input action at,
represented as a one-hot code, passes through three convolu-
tional layers and ELUs to generate a decoded response that
has a higher dimensionality than the input one-hot vector
representing the action code. Then the output of the Action
Representation Module is concatenated with an intermediate
response of the state transition network and fused to predict
the state in the higher dimensionality feature space, φ̄(st+1),
which is more expressive for the training. This solution
considerably differs from previous works that represented an
input action as a one-hot code that was simply concatenated
with the response from the fully-connected (FC) layers of
the state transition network [1], [3], [17], [19], [20].

In training, the parameters from the Action Representation
Module are implicitly learned from the input actions without
an explicit loss function related to this module, which derives
higher dimensional features from one-hot action codes. Fig. 3
shows a sample response generated by each action code.

To learn the Forward Model effectively, we use joint
regression and triplet ranking loss functions. The regression
loss function, LF1

, minimises the prediction error:

LF1

(
φ̄ (st+1) , φ (st+1)

)
=
∥∥φ̄ (st+1)− φ (st+1)

∥∥2
2
, (3)

where φ (st+1) is the feature representation from the image
(state) st+1. LF1 ensures that the predicted state from an
input state-action pair is close to the future state. As the
prediction of the state without any actions is the current state
itself, st+1 can be encoded into a feature representation as:

φ (st+1) = f (st+1, at+1 = ∅; θA, θF ) , (4)

(a) (b) (c) (d)

Fig. 3: Sample responses from the Action Representation
Module for (a) move forward, (b) turn right, (c) turn left,
and (d) no action. These responses have a higher dimen-
sionality than the original one-hot vectors representing the
four actions.

where at+1 = ∅ denotes no action.
The triplet ranking loss function [40], LF2

, pushes
φ̄ (st+1) to be far from a prediction from st with a different
input action, which we define as φ̄ (s̃t+1) (see Fig. 4), while
maintaining the property of (3), in the form:

LF2

(
φ̄ (st+1) , φ (st+1) , φ̄ (s̃t+1)

)
= max

{
0,m+∥∥φ̄ (st+1)− φ (st+1)

∥∥2
2
−
∥∥φ̄ (st+1)− φ̄ (s̃t+1)

∥∥2
2

}
,

(5)

where m is a margin. Here an action, different from the
current action at, is randomly chosen.

The Forward Model can be explicitly trained to discrim-
inate among the features generated from the same state but
with different actions. Therefore, we define the final loss
function for the Forward Model as LF = LF1

+γLF2
, where

γ controls the effect of the triplet ranking loss function and
LF1 can be seen as a regulariser for training LF2 .
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Fig. 4: The elements of the triplet ranking loss function for
the self-supervised prediction network. φ̄ (st+1) and φ̄ (s̃t+1)
receive the same input state with different actions, thus
having closer distance than φ (st+1) in the observation space.
The loss function LF2 aims to encode φ̄ (st+1) and φ (st+1)
close in the prediction feature space, while pulling φ̄ (st+1)
away from φ̄ (s̃t+1) to discriminate the predictions from
different actions.

B. Intrinsic Reward

We estimate rit, the intrinsic reward at time t, in a feature
space rather than in the raw camera view [17]. We made
this choice to enable the network to focus on action-relevant
information during the self-supervised learning. We employ
LF1

as rit as [17]:

rit = η
∥∥φ̄ (st+1)− φ (st+1)

∥∥2
2
, (6)

where η is a scaling factor. The larger the prediction error,
the larger rit, thus the agent is encouraged to explore unseen
areas.

C. Inverse Model

The Inverse Model learns to recognise an actual action at
from input states st and st+1 and then generates a predicted
action āt to change from φ (st) to φ (st+1) as:

āt = g (φ (st) , φ (st+1) ; θI) , (7)

where θI denotes the network parameters of the Inverse
Model. The loss function LI (āt, at) we use for the Inverse
Model is a soft-max as the problem in (7) generates a discrete
action label, which can be considered as a classification
among several possible discrete actions.

Based on the Forward and Inverse models, the overall
optimization for training the agent is:

−Eπ(st;θP )

[∑k

t=0
rt

]
+ βLF + (1− β)LI , (8)

where rt = ret + rit, and ret and rit are extrinsic and intrinsic
rewards, respectively; the hyper-parameter β controls the
weight between the Forward and Inverse models; and k,
which can vary for each episode but is upper bounded, is
the number of time steps when the agent has moved.

The rationale behind training for navigation with (8) is
that, in the early stage of training, the agent focuses on
learning features by pursuing intrinsic rewards since it takes
time to get to the final goal where the extrinsic reward is
obtained. Therefore the action at sampled from the policy

Fig. 5: Sample first-person views (states) from the VizDoom
MyWayHome environment. The agent explores the environ-
ment until it finds the armour (see the bottom-right view)
that triggers an extrinsic reward.

tends to move the agent where a higher prediction error is
generated so as to receive a higher intrinsic reward. This en-
ables the agent to explore unseen portions of the environment
rather than remaining in previously experienced states. As the
training progresses, the intrinsic rewards decrease with the
forward loss function LF1

and the relative importance of the
extrinsic reward increases, thus enabling the agent to move
to maximise the extrinsic reward.

V. RESULTS

A. Simulation Setup

We compare our model, AR4E (Action Representations
for Exploration), with another self-supervised network, ICM
(Intrinsic Curiosity Module) [17], and a network that only
considers extrinsic rewards in training, A3C (a vanilla Asyn-
chronous Advantage Actor-Critic) [38]. Both ICM and AR4E
are built on A3C.

For a fair comparison, we follow the same architecture
for the state transition network, except for AR4E, which
has the three convolutional layers with ELUs for the Action
Representation Module. This additional module only slightly
increases the number of model parameters (+0.5%). Table I
shows the details of the network configuration.

All agents are trained using visual inputs (images) con-
verted to grey scale and resized to 42 × 42 pixels [38]. To
train the networks, sixteen workers are used to perform RL
following the asynchronous training protocol in A3C [38].
The feature from the Forward Model, φ (st), is fed into a
long short term memory (LSTM) network with 256 units.
Two separate FC layers are exploited to estimate the value
function and the action at from the LSTM networks. We use
the ADAM solver [42] with 10−4 as learning rate.

B. Scenario

We compare the performance of the networks and validate
AR4E with a first-person view navigation task in the Viz-
Doom MyWayHome environment (see Fig. 5). The goal here
is to reach an armour, which gives an extrinsic reward [43],
[44].



TABLE I: Details of the configuration of the networks. The Action Representation Module decodes the responses by setting
stride to 2 [41]. ‘Concat’ denotes a concatenation that fuses two responses.

Forward Model Inverse Model
State Transition Network Action Representation Module Action Classification Network

Layer Filter (stride) Layer Filter (stride) Layer Filter (stride)
Conv1+ELU 32× 1× 3× 3 (1) Conv∗1+ELU 4× 4× 3× 3 (2) Concat -
Conv2+ELU 32× 32× 3× 3 (1) Conv∗2+ELU 8× 4× 3× 3 (2) FC∗1+ELU 256× 512× 1× 1 (1)

Concat - Conv∗3+ELU 8× 8× 3× 3 (1) FC∗2 4× 256× 1× 1 (1)
Conv3+ELU 40× 40× 3× 3 (1)
Conv4+ELU 32× 40× 3× 3 (1)
FC1+ELU 288× 256× 1× 1 (1)

FC2 256× 256× 1× 1 (1)

We consider three settings, namely dense, sparse, and
extremely sparse extrinsic rewards [17]. With the dense
setting, the agent is randomly spawned in 17 locations (some
of which are near the goal). In the sparse and extremely
sparse settings, the agent takes at least 270 and 350 steps
(actions) to reach the goal state, respectively. Episodes are
terminated when the agent reaches the armour or when 2100
time steps are completed.

The agent can perform four discrete actions: move for-
ward, at = (1, 0, 0, 0); turn right, at = (0, 1, 0, 0); turn left,
at = (0, 0, 1, 0); and no action, at = (0, 0, 0, 1). For efficient
training, we set the action to be repeated four times [38].
Unless otherwise stated, the total number of steps taken by
all workers is 20M, and the values of the hyper-parameters
are β = 0.4, γ = 1.0, η = 10, and m = 3× 10−5.

C. Navigation with Sparse Extrinsic Rewards

Fig. 6 shows that with dense setting, A3C, ICM, and
AR4E have good performance, whereas with sparser rewards
the proposed model has good performance while the per-
formance of the other models degrades. In settings with
sparse and extremely sparse extrinsic rewards, the A3C agent
fails to perform navigation as it has insufficient feedback
to improve itself during training and the policy cannot be
trained efficiently. The ICM agent has good performance
with sparse rewards, but it has slow convergence in the envi-
ronment containing extremely sparse rewards. As the sparsity
of the extrinsic rewards increases, AR4E outperforms the
other models, indicating that our model effectively learns
the features for exploration.

D. Navigation without Extrinsic Rewards

To quantify the benefits of using intrinsic rewards, we
perform transfer learning to evaluate if the model learned
by self-supervised training encodes meaningful information
for navigation. First, we train a model learning features from
intrinsic rewards only (i.e. in a self-supervised manner). Then
we fine-tune this pre-trained model in VizDoom with sparse
extrinsic rewards. In the fine-tuning stage, we set η = 1 to
decrease the influence of the intrinsic rewards and to force
the network to focus on the extrinsic rewards.

Table II shows the results by changing the total number
of steps in pre-training. Compared to training from scratch,
the performance decreases when the steps for pre-training
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Fig. 6: Extrinsic rewards for an agent trained with AR4E,
A3C, and ICM in an environment with (a) dense, (b) sparse,
and (c) extremely sparse extrinsic rewards. As the sparsity
of the extrinsic rewards grows, the relative improvement of
AR4E with respect to the other models increases.



TABLE II: Success ratios when fine-tuning pre-trained mod-
els in VizDoom with sparse setting. Success refers to the
agent achieving the goal during trials within 20M steps.

Pre-training total steps Success ratio (%)

0 (from scratch) 94.45± 22.87
0.5M 91.89± 27.28
2M 92.01± 26.08
10M 96.32± 18.89

TABLE III: Success ratios with different loss functions and
their combinations in the Forward (Fwd) and Inverse (Inv)
models. Success refers to the agent achieving the goal during
trials within 20M steps.

Model Success ratio (%)

Fwd Inv Dense Sparse Extremely Sparse
- LI 7.87±26.93 0.01±1.12 0.06±2.50

LF - 9.12± 28.79 0.44± 6.60 0.09±2.96
LF1

LI 96.78± 17.63 91.33±28.13 87.10±33.51
LF2

LI 8.13± 27.33 0.0006± 0.00 11.25± 3.35
LF LI 96.06 ± 19.43 94.45± 22.87 87.13± 33.48

are 0.5M and 2M as self-supervision is insufficient in these
cases. The model trained from scratch is outperformed by
the pre-trained model with 10M steps as self-supervision
produces meaningful features for navigation.

E. Ablation Study

To investigate the contribution of the components within
the proposed network, we conducted an ablation analysis by
training the agent with different loss functions and computed
the success rate during 20M total steps.

Table III shows a good performance when both LF1
and

LI are used and that the performance decreases when ex-
trinsic rewards become sparse. When the network is trained
with LF2

, the agent is unable to perform the navigation task,
because the triplet ranking loss can be influenced not only by
the direction of the feature vector but also by its magnitude.
A common approach to avoid this problem is to normalise
the feature vector [40], [45].

VI. CONCLUSION

We proposed an Action Representation Module that ex-
pands the dimensions of one-hot codes of input actions,
which are then fused with the state-transition network. The
network can predict the future state efficiently in an explo-
ration task. Moreover we train the Forward Model with joint
regression and triplet ranking loss functions, enabling the
network to discriminate predictions from different actions.

As the sparsity of the extrinsic rewards increases, the
training of the proposed network converges faster than
previous networks [17], [38]. However, similarly to these
other networks, our model may repeatedly turn left and right
during navigation: in our future work we will investigate
loss functions to handle this problem and we will transfer
our model to a mobile robot for visual exploration in the
real world.

ACKNOWLEDGEMENTS

We thank Simon Butcher for his support in setting up the
environment for simulations in QMUL’s Apocrita HPC.

REFERENCES

[1] L. Tai, G. Paolo, and M. Liu, “Virtual-to-real deep reinforcement
learning: Continuous control of mobile robots for mapless navigation,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2017.

[2] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), 2017.

[3] O. Zhelo, J. Zhang, L. Tai, M. Liu, and W. Burgard, “Curiosity-
driven exploration for mapless navigation with deep reinforcement
learning,” in ICRA 2018 Workshop on Machine Learning in Planning
and Control of Robot Motion, 2018.

[4] Y. Chebotar, K. Hausman, Z. Su, G. S. Sukhatme, and S. Schaal,
“Self-supervised regrasping using spatio-temporal tactile features and
reinforcement learning,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst. (IROS), 2016.

[5] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal, and
S. Levine, “Time-contrastive networks: Self-supervised learning from
video,” in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2018.

[6] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning
with double q-learning,” in Proc. AAAI Conf. Artif. Intell. (AAAI),
2016.

[7] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour, “Policy
gradient methods for reinforcement learning with function approxima-
tion,” in Adv. Neural Inf. Process. Syst. (NIPS), 2000.

[8] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robot. Auton. Systems (RAS),
vol. 57, no. 5, pp. 469–483, 2009.

[9] D. A. Pomerleau, “Efficient training of artificial neural networks for
autonomous navigation,” Neural Comput., vol. 3, no. 1, pp. 88–97,
1991.

[10] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proc. Int.
Conf. Artif. Intell. Statist., 2011.

[11] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2016.

[12] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Adv. Neural Inf. Process. Syst. (NIPS), 2016.

[13] J. Ho, J. Gupta, and S. Ermon, “Model-free imitation learning with
policy optimization,” in Proc. Int. Conf. Mach. Learn. (ICML), 2016.

[14] S. Mohamed and D. J. Rezende, “Variational information maximisa-
tion for intrinsically motivated reinforcement learning,” in Adv. Neural
Inf. Process. Syst. (NIPS), 2015.

[15] M. Bellemare, S. Srinivasan, G. Ostrovski, T. Schaul, D. Saxton, and
R. Munos, “Unifying count-based exploration and intrinsic motiva-
tion,” in Adv. Neural Inf. Process. Syst. (NIPS), 2016.

[16] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. De Turck, and
P. Abbeel, “Vime: Variational information maximizing exploration,”
in Adv. Neural Inf. Process. Syst. (NIPS), 2016.

[17] D. Pathak, A. E. Pulkit Agrawal, and T. Darrell, “Curiosity-driven
exporation by self-supervised prediction,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2017.

[18] S. M. A. Eslami, D. Jimenez Rezende, F. Besse, F. Viola, A. S. Morcos,
M. Garnelo, A. Ruderman, A. A. Rusu, I. Danihelka, K. Gregor,
D. P. Reichert, L. Buesing, T. Weber, O. Vinyals, D. Rosenbaum,
N. Rabinowitz, H. King, C. Hillier, M. Botvinick, D. Wierstra,
K. Kavukcuoglu, and D. Hassabis, “Neural scene representation and
rendering,” Science, vol. 360, no. 6394, pp. 1204–1210, 2018.

[19] P. Agrawal, A. V. Nair, P. Abbeel, J. Malik, and S. Levine, “Learning
to poke by poking: Experiential learning of intuitive physics,” in Adv.
Neural Inf. Process. Syst. (NIPS), 2016.

[20] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu,
E. Shelhamer, J. Malik, A. A. Efros, and T. Darrell, “Zero-shot visual
imitation,” in Proc. Int. Conf. Learn. Rep. (ICLR), 2018.

[21] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang et al., “End
to end learning for self-driving cars,” arXiv:1604.07316, 2016.



[22] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in Proc. AAAI Conf. Artif.
Intell. (AAAI), 2008.

[23] A. Giusti, J. Guzzi, D. C. Ciresan, F.-L. He, J. P. Rodrı́guez, F. Fontana,
M. Faessler, C. Forster, J. Schmidhuber, G. Di Caro et al., “A machine
learning approach to visual perception of forest trails for mobile
robots.” IEEE Robot. Autom. Lett. (RA-L), vol. 1, no. 2, pp. 661–667,
2016.

[24] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in Proc. Int. Conf. Mach. Learn. (ICML), 2004.

[25] M. Kalakrishnan, J. Buchli, P. Pastor, and S. Schaal, “Learning loco-
motion over rough terrain using terrain templates,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), 2009.

[26] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and
A. G. Barto, “Learning grounded finite-state representations from
unstructured demonstrations,” The Int. J. Robot. Res. (IJRR), vol. 34,
no. 2, pp. 131–157, 2015.

[27] C. Doersch, A. Gupta, and A. A. Efros, “Unsupervised visual rep-
resentation learning by context prediction,” in Proc. IEEE Int. Conf.
Comput. Vis. (ICCV), 2015.

[28] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros,
“Context encoders: Feature learning by inpainting,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), 2016.

[29] R. Zhang, P. Isola, and A. A. Efros, “Colorful image colorization,” in
Proc. Eur. Conf. Comput. Vis. (ECCV), 2016.

[30] A. Nair, D. Chen, P. Agrawal, P. Isola, P. Abbeel, J. Malik, and
S. Levine, “Combining self-supervised learning and imitation for
vision-based rope manipulation,” in Proc. IEEE Int. Conf. Robot.
Autom. (ICRA), 2017.

[31] F. Torabi, G. Warnell, and P. Stone, “Behavioral cloning from obser-
vation,” in Proc. Int. Joint Conf. Artif. Intell. (IJCAI), 2018.

[32] P.-Y. Oudeyer, F. Kaplan, and V. Hafner, “Intrinsic motivation systems
for autonomous mental development,” IEEE Trans. Evol. Comput.,
vol. 11, no. 6, 2007.

[33] J. Schmidhuber, “A possibility for implementing curiosity and bore-
dom in model-building neural controllers,” in Proc. Int. Conf. Simu-
lation of Adaptive Behavior: From animals to animats, 1991.

[34] J. Oh, X. Guo, H. Lee, R. L. Lewis, and S. Singh, “Action-conditional
video prediction using deep networks in atari games,” in Adv. Neural
Inf. Process. Syst. (NIPS), 2015.

[35] H. Tang, R. Houthooft, D. Foote, A. Stooke, O. X. Chen, Y. Duan,
J. Schulman, F. DeTurck, and P. Abbeel, “# exploration: A study
of count-based exploration for deep reinforcement learning,” in Adv.
Neural Inf. Process. Syst. (NIPS), 2017.

[36] B. C. Stadie, S. Levine, and P. Abbeel, “Incentivizing exploration in re-
inforcement learning with deep predictive models,” arXiv:1507.00814,
2015.

[37] R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Mach. Learn., vol. 8, no. 3-4,
pp. 229–256, 1992.

[38] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in Proc. Int. Conf. Mach. Learn. (ICML),
2016.

[39] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and ac-
curate deep network learning by exponential linear units (elus),”
arXiv:1511.07289, 2015.

[40] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit. (CVPR), 2015.

[41] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” IEEE Trans. Pattern Anal. Machine Intell.
(TPAMI), vol. 39, no. 4, pp. 640–651, 2016.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” arXiv:1412.6980, 2014.

[43] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” arXiv:1606.01540, 2016.

[44] M. Kempka, M. Wydmuch, G. Runc, J. Toczek, and W. Jaśkowski,
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