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Abstract—Visual-Inertial Odometry (VIO) algorithms typically
rely on a point cloud representation of the scene that does not
model the topology of the environment. A 3D mesh instead offers
a richer, yet lightweight, model. Nevertheless, building a 3D mesh
out of the sparse and noisy 3D landmarks triangulated by a
VIO algorithm often results in a mesh that does not fit the
real scene. In order to regularize the mesh, previous approaches
decouple state estimation from the 3D mesh regularization step,
and either limit the 3D mesh to the current frame [1], [2]
or let the mesh grow indefinitely [3], [4]. We propose instead
to tightly couple mesh regularization and state estimation by
detecting and enforcing structural regularities in a novel factor-
graph formulation. We also propose to incrementally build the
mesh by restricting its extent to the time-horizon of the VIO
optimization; the resulting 3D mesh covers a larger portion of
the scene than a per-frame approach while its memory usage
and computational complexity remain bounded. We show that
our approach successfully regularizes the mesh, while improving
localization accuracy, when structural regularities are present,
and remains operational in scenes without regularities.

Index Terms—SLAM, Vision-Based Navigation, Sensor Fusion.

SUPPLEMENTARY MATERIAL

https://www.mit.edu/~arosinol/research/struct3dmesh.html

I. INTRODUCTION

Recent advances in VIO are enabling a wide range of
applications, ranging from virtual and augmented reality to
agile drone navigation [5]. While VIO methods can deliver
accurate state estimates in real-time, they typically provide a
sparse map of the scene. In particular, feature-based meth-
ods [6]–[9] produce a point cloud that is not directly usable
for path planning or obstacle avoidance. In those cases,
a denser map is built subsequently, e.g., by using (multi-
view) stereo algorithms [10], [11]. Alternatively, direct every-
pixel methods estimate denser point clouds online [12]–[14].
Nevertheless, these algorithms rely on GPUs which consume
relatively high amounts of power, making them impractical
for computationally-constrained systems such as micro aerial
vehicles or smartphones. Furthermore, these models typically
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Fig. 1: We propose a VIO pipeline that incrementally builds a
3D mesh of the environment starting from a 2D Delaunay
triangulation of keypoints (a). We also detect and enforce
structural regularities, c.f. (b) planar walls (green) and floor
(blue). The bottom row compares the mesh constructed (c)
without and (d) with structural regularities.

decouple trajectory estimation and mapping, resulting in a
loss of accuracy [15], and produce representations that are
expensive to store and manipulate. Ideally one would like to
use a map representation that (i) is lightweight to compute
and store, (ii) describes the topology of the environment, and
(iii) couples state estimation and mapping, allowing one to
improve the other and vice versa. A 3D mesh representation is
lightweight, while it provides information about the topology
of the scene. Moreover, a 3D mesh allows for extracting
the structure of the scene, which can potentially be used to
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improve simultaneously the accuracy of the pose estimates and
the mesh itself, thereby coupling state estimation and mapping.

Recent approaches have tried to avoid the caveats of every-
pixel methods by using a 3D mesh over the set of sparse
3D landmarks triangulated by a VIO pipeline. Nevertheless,
these approaches perform regularization of the mesh as a
post-processing step – decoupling state estimation and mesh
generation – and work on a per-frame basis [1], [2]. Our ap-
proach instead tightly couples the 3D mesh generation and the
state estimation by enforcing structural constraints in a factor-
graph formulation, which allows for joint mesh regularization
and pose estimation. We also maintain the 3D mesh over the
receding horizon of the VIO’s fixed-lag optimization problem,
thereby spanning multiple frames and covering a larger area
than the camera’s immediate field-of-view.

Contributions. In this paper, we propose to incrementally
build a 3D mesh restricted to the receding horizon of the VIO
optimization. In this way, we can map larger areas than a per-
frame approach, while memory footprint and computational
complexity associated to the mesh remain bounded. We also
propose to use the 3D mesh to detect and enforce structural
regularities in the optimization problem, thereby improving
the accuracy of both the state estimation and the mesh at each
iteration, while circumventing the need for an extra regular-
ization step for the mesh. In particular, we extract co-planarity
constraints between landmarks (Fig. 1), and show that we can
detect these structural priors in a non-iterative way, contrary to
RANSAC-based approaches [16]. Overall, our approach runs
in real-time by using a single CPU core. Moreover, we do not
rely on sensors such as LIDAR or RGB-D cameras, instead
we use a (stereo) monochrome camera.

Finally, we provide an extensive experimental evaluation
on the EuRoC dataset [17], where we compare the proposed
VIO approach against state-of-the-art methods. Our evaluation
shows that (i) the proposed approach produces a lightweight
representation of the environment that captures the geometry
of the scene, (ii) leveraging structural regularities improves
the state and map estimation, surpassing the state-of-the-art
when structural regularities are present, while (iii) performing
on-par with standard VIO methods in absence of regularities.

II. APPROACH

We consider a stereo visual-inertial system and adopt a
keyframe-based approach [7]. This section describes our VIO
front-end and back-end. Our front-end proceeds by building
a 2D Delaunay triangulation over the 2D keypoints at each
keyframe. Then, the VIO back-end estimates the 3D position
of each 2D keypoint, which we use to project the 2D trian-
gulation into a 3D mesh. While we incrementally build the
3D mesh, we restrict the mesh to the time-horizon of the VIO
optimization, which we formulate in a fixed-lag smoothing
framework [18], [19]. The 3D mesh is further used to extract
structural regularities in the scene that are then encoded as
constraints in the back-end optimization.

A. Front-end
Our front-end has the same components as a keyframe-based

indirect visual-inertial odometry pipeline [7], [20], but it also
incorporates a module to generate a 3D mesh, and a module to
detect structural regularities from the 3D mesh. We refer the
reader to [21, Sec. 4.2.1] for details on the standard modules
used, and we focus here instead on the 3D mesh generation
and regularity detection.

1) 3D Mesh Generation: using a sparse point cloud from
VIO to create a 3D mesh is difficult because (i) the 3D
positions of the landmarks are noisy, and some are outliers;
(ii) the density of the point cloud is highly irregular; (iii) the
point cloud is constantly morphing: points are being removed
(marginalized) and added, while the landmarks’ positions are
being updated at each optimization step. Therefore, we avoid
performing a 3D tetrahedralisation from the landmarks, which
would require expensive algorithms, such as space carving
[22]. Instead, we perform a 2D Delaunay triangulation only
over the tracked keypoints in the latest frame, as shown in
Fig. 1 (a); and project the 2D triangulation in 3D using the
fact that each tracked keypoint has a 3D landmark associated
(Fig. 1 (b)). For the first frame, no keypoint is yet tracked,
hence no 3D mesh is generated.

The Delaunay triangulation maximizes the minimum angle
of all the angles of the triangles in the triangulation; thereby
avoiding triangles with extremely acute angles. Since we want
to promote triangles that represent planar surfaces, this is a
desirable property, as it will promote near isotropic triangles
that cover a good extent of a potentially planar surface. Never-
theless, having an isotropic triangle in 2D does not guarantee
that the corresponding triangle in 3D will be isotropic, as
one of the vertices could be projected far from the other
two. Furthermore, a triangle in the 2D image will result in
a 3D triangle independently of whether it represents an actual
surface or not. We deal with some of these misrepresentative
faces of the mesh by using simple geometric filters that we
detail in [21, Sec. 3.2.1].

2) 3D Mesh Propagation: While some algorithms update
the mesh for a single frame [1], [2], we attempt to maintain
a mesh over the receding horizon of the fixed-lag smoothing
optimization problem (Section II-B), which contains multiple
frames. The motivation is three-fold: (i) A mesh spanning
multiple frames covers a larger area of the scene, which
provides more information than just the immediate field of
view of the camera. (ii) We want to capture the structural
regularities affecting any landmark in the optimization prob-
lem. (iii) Anchoring the 3D mesh to the time-horizon of the
optimization problem also bounds the memory usage, as well
as the computational complexity of updating the mesh. The
3D mesh propagation can be decomposed in two parts.

a) Temporal propagation deals with the problem of updating
the 3D mesh when new keypoints appear and/or old ones
disappear in the new frame. Unfortunately, most of the key-
points’ positions on the 2D image change each time the camera
moves. Hence, we re-compute a 2D Delaunay triangulation
from scratch over the keypoints of the current frame. We can



then project all the 2D triangles to 3D mesh faces, since we
are keeping track of the landmark associated to each keypoint.

b) Spatial propagation deals with the problem of updating
the global 3D mesh when a new local 3D mesh is available,
and when old landmarks are marginalized from the optimiza-
tion’s time-horizon. We solve the first problem by merging the
new local 3D mesh to the previous (global) mesh, by ensuring
no duplicated 3D faces are present. At the same time, when
a landmark is marginalized from the optimization, we remove
any face in the 3D mesh that has the landmark as a vertex. This
operation is not without caveats. For example, the removed
landmark might be at the center of a wall, thereby leaving a
hole when surrounding faces of the mesh are deleted. While we
did not attempt to solve this issue, the problem usually appears
on the portion of the mesh that is not currently visible by the
camera. Also, we do not explicitly deal with the problem of
occlusions.

3) Regularity Detection: By reasoning in terms of the
triangular faces of the mesh, we can extract the geometry in
the scene in a non-iterative way (unlike RANSAC approaches).
In particular, we are interested in co-planarity regularities
between landmarks, for which we need to first find planar
surfaces in the scene. In our approach, we only detect planes
that are either vertical (i.e. walls) or horizontal (i.e. floor,
tables), which are structures commonly found in man-made
environments. Fig. 1 (b) shows the faces of the mesh as-
sociated to a vertical wall in green, while the blue faces
correspond to the floor. To detect horizontal planes, we cluster
the faces of the mesh with vertical normals, and then build a
1D histogram of the height of the vertices. After smoothing the
histogram with a Gaussian filter, the resulting local maximums
of the histogram correspond to predominant horizontal planes.
Among these planes, we take the candidates with the most
inliers (above a minimum threshold of 20 faces). To detect
vertical planes, we cluster the faces of the mesh which have a
horizontal normal. Then, we build a 2D histogram; where one
axis corresponds to the shortest distance from the plane of the
3D face to the world origin1, and the other axis corresponds
to the azimuth of the normal with respect to the vertical
direction2. Candidate selection is done the same way as in
the horizontal case.

4) Data Association: With the newly detected planes, we
still need to associate which landmarks are on each plane.
For this, we use the set of landmarks of the 3D faces that
voted for the given plane in the original histogram. Once we
have a new set of planes detected, we still need to check if
these planes are already present in the optimization problem to
avoid duplicated plane variables. For this, we simply compare
the normals and distances to the origin of the plane to see if
they are close to each other.

B. Back-end

1The world origin corresponds to the first estimated pose of the IMU.
2Since gravity is observable via the IMU, we have a good estimate of what

the vertical direction is.

1) State Space: If we denote the set of all keyframes up to
time t by Kt, the state of the system xi at keyframe i ∈ Kt is
described by the IMU orientation Ri ∈ SO(3), position pi ∈
R3, velocity vi ∈ R3, and biases bi = [bgi bai ] ∈ R6, where
bgi ,b

a
i ∈ R3 are respectively the gyroscope and accelerometer

biases:
xi

.
= [Ri,pi,vi,bi]. (1)

We will only encode in the optimization the 3D positions
ρl for a subset Λt of all landmarks Lt visible up to time
t: {ρl}l∈Λt

, where Λt ⊆ Lt. We will avoid encoding the
rest of the landmarks St = Lt \ Λt by using a structureless
approach, as defined in [8, Sec. VII], which circumvents
the need to add the landmarks’ positions as variables in the
optimization. This allows trading-off accuracy for speed, since
the optimizations complexity increases with the number of
variables to be estimated.

The set Λt corresponds to the landmarks which we con-
sider to satisfy a structural regularity. In particular, we are
interested in co-planarity regularities, which we introduce in
Section II-B5. Since we need the explicit landmark variables to
formulate constraints on them, we avoid using a structureless
approach for these landmarks. Finally, the co-planarity con-
straints between the landmarks Λt require the modelling of the
planes Πt in the scene. Therefore, the variables to be estimated
comprise the state of the system {xi}i∈Kt

, the landmarks
which we consider to satisfy structural regularities {ρl}l∈Λt

,
and the planes {ππ}π∈Πt . The variables to be estimated at
time t are:

Xt
.
= {xi,ρl,ππ}i∈Kt,l∈Λt,π∈Πt

. (2)

Since we are taking a fixed-lag smoothing approach for the
optimization, we limit the estimation problem to the sets of
variables in a time-horizon of length ∆t. To avoid cluttering
the notation, we skip the dependence of the sets Kt, Λt and
Πt on the parameter ∆t. By reducing the number of variables
to a given window of time ∆t, we will make the optimization
problem more tractable and solvable in real-time.

2) Measurements: The input for our system consists of
measurements from the camera and the IMU. We define the
image measurements at keyframe i as Ci. The camera can
observe multiple landmarks l, hence Ci contains multiple
image measurements zli, where we distinguish the landmarks
that we will use for further structural regularities lc (where the
index c stands for ‘constrained’ landmark), and the landmarks
that will remain as structureless ls (where the index s stands
for ‘structureless’). We represent the set of IMU measurements
acquired between two consecutive keyframes i and j as Iij .
Therefore, we define the set of measurements collected up to
time t by Zt:

Zt
.
= {Ci, Iij}(i,j)∈Kt

. (3)

3) Factor Graph Formulation: We want to estimate the
posterior probability p(Xt|Zt) of our variables Xt (Eq. (2))
using the set of measurements Zt (Eq. (3)). Using standard
independence assumptions between measurements, we arrive



to the following formulation where we grouped the different
terms in factors φ:

p(Xt|Zt)
(a)
∝ p(Xt)p(Zt|Xt)

= φ0(x0)
∏
lc∈Λt

∏
π∈Πt

φR(ρlc ,ππ)δ(lc,π) (4a)∏
(i,j)∈Kt

φIMU(xi,xj) (4b)

∏
i∈Kt

∏
lc∈Λt(i)

φlc(xi,ρlc)
∏
ls∈St

φls(xi∈Kt(ls)), (4c)

where we apply the Bayes rule in (a), and ignore the nor-
malization factor since it will not influence the result (Sec-
tion II-B4). Eq. (4a) corresponds to the prior information we
have about Xt. The factor φ0 represents a prior on the first
state of the optimization’s time-horizon. The following terms
in Eq. (4a) encode regularity factors φR between constrained
landmarks lc and planes π. We also introduce the data associ-
ation term δ(lc, π), which returns a value of 1 if the landmark
lc is associated to the plane π, 0 otherwise (Section II-A4). In
Eq. (4b), we have the factor corresponding to the IMU mea-
surements which depends only on the consecutive keyframes
(i, j) ∈ Kt. Eq. (4c) encodes the factors corresponding to
the camera measurements. We add a projection factor φlc
for each observation of a constrained landmark lc, where we
denote by Λt(i) ⊆ Λt the set of constrained landmarks seen
by keyframe i. Finally, we add structureless factors φls for
each of the landmarks ls ∈ St; note that these factors depend
on the subset of keyframes that observe ls, which we denote
by Kt(ls) ⊆ Kt. In Fig. 2, we use the expressiveness of
factor graphs [23], [24] to show the dependencies between
the variables in Eq. (4).

x0 x1 x2

ρl0 ρl1 ρl2

π0

φ0

φIMU φIMU

φlc φlc φlc φlcφlc

φls φls

φR

φR
φR

Fig. 2: VIO factor graph combining Structureless (φls ), Pro-
jection (φlc ) and Regularity (φR) factors (SPR). The factor
φR encodes relative constraints between a landmark li and a
plane π0.

4) MAP Estimation: Since we are only interested in the
most likely Xt given the measurements Zt, we calculate the
maximum a posteriori (MAP) estimator XMAP

t . Minimizing
the negative logarithm of the posterior probability in Eq. (4)
(under the assumption of zero-mean Gaussian noise) leads to
a nonlinear least-squares problem:

XMAP
t = arg min

Xt

‖r0‖2Σ0
+
∑
lc∈Λt

∑
π∈Πt

δ(lc, π) ‖rR‖2ΣR

+
∑

(i,j)∈Kt

∥∥rIij

∥∥2

Σij
+
∑
i∈Kt

∑
lc∈Λt(i)

‖rlc‖
2
ΣC

+
∑
ls∈St

‖rls‖
2
ΣS
,

where r represents the residual errors, and Σ the covariance
matrices. We refer the reader to [8, Sec. VI, VII] for the
actual formulation of the preintegrated IMU factors φIMU and
structureless factors φls , as well as the underlying residual
functions rIMU, rls . For the projection factors φlc , we use a
standard monocular and stereo reprojection error as in [19].

5) Regularity Constraints: For the regularity residuals rR,
we use a co-planarity constraint between a landmark ρlc ∈
R3 and a plane π = {n, d}, where n is the normal of the
plane, which lives in the S2 .

= {n = (nx, ny, nz)
T
∣∣‖n‖ = 1}

manifold, and d ∈ R is the distance to the world origin: rR =
n · ρlc − d. This plane representation is nevertheless an over-
parametrization that will lead to a singular information matrix.
This is not amenable for Gauss-Newton optimization, since it
leads to singularities in the normal equations [25]. To avoid
this problem, we optimize in the tangent space TnS2 ∼ R2 of
S2 and define a suitable retraction Rn(v) : TnS

2 ∈ R2 → S2

to map changes in the tangent space to changes of the normals
in S2 [8]. In other words, we rewrite the residuals as:

rR(v, d) = Rn(v)T · ρ− d (5)

and optimize with respect to the minimal parametrization
[v, d] ∈ R3. This is similar to [25], but we work on the
manifold S2 instead of adopting a quaternion parametrization.
Note that a single co-planarity constraint, as defined in Eq. (5),
is not sufficient to constrain a plane variable, and a minimum
of three are needed instead. Nevertheless, degenerate config-
urations exist, e.g. three landmarks on a line would not fully
constrain a plane. Therefore, we ensure that a plane candidate
has a minimum number of constraints before adding it to the
optimization problem.

III. EXPERIMENTAL RESULTS

We benchmark the proposed approach against the state
of the art on real datasets, and evaluate trajectory and map
estimation accuracy, as well as runtime. We use the EuRoC
dataset [17], which contains visual and inertial data recorded
from an micro aerial vehicle flying indoors. The EuRoC
dataset includes eleven datasets in total, recorded in two
different scenarios. The Machine Hall scenario (MH) is the
interior of an industrial facility. It contains little (planar)
regularities. The Vicon Room (V) is similar to an office room
where walls, floor, and ceiling are visible, as well as other
planar surfaces (boxes, stacked mattresses).

Compared techniques. To assess the advantages of our
proposed approach, we compare three formulations that build
one on top of another. First, we denote as S the approach
that uses only Structureless factors (φls , in Eq. (4c)). Second,
we denote as SP the approach that uses Structureless factors,
combined with Projection factors for those landmarks that have



co-planarity constraints (φlc , in Eq. (4c)), but without using
regularity factors. Finally, we denote as SPR our proposed for-
mulation using Structureless, Projection and Regularity factors
(φR, in Eq. (4a)). The IMU factors (φIMU, in Eq. (4b)) are
implicitly used in all three formulations. We also compare our
results with other state-of-the-art implementations in Table II.
In particular, we compare the Root Mean Squared Error
(RMSE) of our pipeline against OKVIS [26], MSCKF [6],
ROVIO [20], VINS-MONO [18], and SVO-GTSAM [8], using
the reported values in [27]. Note that these algorithms use a
monocular camera, while we use a stereo camera. Therefore,
while [27] aligns the trajectories using Sim(3), we use instead
SE(3). Nevertheless, the scale is observable for all algorithms
since they use an IMU. No algorithm uses loop-closure.

A. Localization Performance

Absolute Translation Error (ATE). The ATE looks at
the translational part of the relative pose between the ground
truth pose and the corresponding estimated pose at a given
timestamp. We first align our estimated trajectory with the
ground truth trajectory both temporally and spatially (in
SE(3)), as explained in [21, Sec. 4.2.1]. We refrain from using
the rotational part since the trajectory alignment ignores the
orientation of the pose estimates. Table I shows the ATE for
the pipelines S, SP, and our proposed approach SPR on the
EuRoC dataset.

First, if we look at the performance of the different algorith-
mic variants for the datasets MH_03, MH_04 and MH_05 in
Table I, we observe that all methods perform equally. This
is because in these datasets no structural regularities were
detected. Hence, the pipelines SP and SPR gracefully down-
grade to a standard structureless VIO pipeline (S). Second,
looking at the results for dataset V2_03, we observe that
both the SP and the SPR pipelines achieve the exact same
performance. In this case, structural regularities are detected,
resulting in Projection factors being used. Nevertheless, since
the number of regularities detected is not sufficient to spawn
a new plane estimate, no structural regularities are actually
enforced. Finally, Table I shows that the SPR pipeline consis-
tently achieves better results over the rest of datasets where
structural regularities are detected and enforced. In particular,
SPR decreases the median APE by 27.6% compared to the SP
approach for dataset V1_02, which has multiple planes.

Table II shows that the SPR approach achieves the best
results when compared with the state-of-the-art on datasets
with structural regularities, such as in datasets V1_01 and
V1_02, where multiple planes are present (walls, floor).
We observe a 19% improvement compared to the next best
performing algorithm (SVO-GTSAM) in dataset V1_01, and a
26% improvement in dataset V1_02 compared to ROVIO and
VINS-MONO, which achieve the next best results. We also
see that the performance of our pipeline is on-par with other
state-of-the-art approaches when no structural regularities are
present, such as in datasets MH_04 and MH_05.

Relative Pose Error (RPE). While the ATE provides in-
formation on the global consistency of the trajectory estimate,

TABLE I: ATE for pipelines S, SP, and SPR. Our proposed
approach SPR achieves the best results for all datasets where
structural regularities are detected and enforced.

ATE [cm]

S SP SPR (Proposed)

EuRoC Sequence Median RMSE Median RMSE Median RMSE

MH 01 easy 13.7 15.0 12.4 15.0 10.7 14.5
MH 02 easy 12.9 13.1 17.6 16.7 12.6 13.0
MH 03 medium 21.0 21.2 21.0 21.2 21.0 21.2
MH 04 difficult 17.3 21.7 17.3 21.7 17.3 21.7
MH 05 difficult 21.6 22.6 21.6 22.6 21.6 22.6
V1 01 easy 5.6 6.4 6.2 7.7 5.3 5.7
V1 02 medium 7.7 8.9 8.7 9.4 6.3 7.4
V1 03 difficult 17.7 23.1 13.6 17.6 13.5 16.7
V2 01 easy 8.0 8.9 6.6 8.2 6.3 8.1
V2 02 medium 8.8 12.7 9.1 13.5 7.1 10.3
V2 03 difficult 37.9 41.5 26.0 27.2 26.0 27.2

TABLE II: RMSE of the state-of-the-art techniques (reported
values from [27]) compared to our proposed SPR pipeline, on
the EuRoC dataset. A cross (×) states that the pipeline failed.
In bold the best result, in blue the second best.

RMSE ATE [cm]

Sequence OKVIS MSCKF ROVIO VINS-
MONO

SVO-
GTSAM

SPR

MH 01 16 42 21 27 5 14
MH 02 22 45 25 12 3 13
MH 03 24 23 25 13 12 21
MH 04 34 37 49 23 13 22
MH 05 47 48 52 35 16 23
V1 01 9 34 10 7 7 6
V1 02 20 20 10 10 11 7
V1 03 24 67 14 13 × 17
V2 01 13 10 12 8 7 8
V2 02 16 16 14 8 × 10
V2 03 29 113 14 21 × 27

it does not provide insights on the moment in time when
the erroneous estimates happen. Instead, RPE is a metric for
investigating the local consistency of a trajectory. RPE aligns
the estimated and ground truth pose for a given frame i, and
then computes the error of the estimated pose for a frame j > i
at a fixed distance farther along the trajectory. We calculate
the RPE from frame i to j in translation and rotation (absolute
angular error) [21, Sec. 4.2.3]. As [28], we evaluate the RPE
over all possible trajectories of a given length, and for different
lengths.

Fig. 3 shows the results for dataset V2_02, where we
observe that using our proposed pipeline SPR, with respect
to the SP pipeline, leads to: (i) an average improvement of
the median of the RPE over all trajectory lengths of 20% in
translation and 15% in rotation, and (ii) a maximum accuracy
improvement of 50% in translation and 30% in rotation of the
median of the RPE.

B. Mapping quality

We use the ground truth point cloud for dataset V1 to assess
the quality of the 3D mesh by calculating its accuracy, as
defined in [10]. To compare the mesh with the ground truth
point cloud, we compute a point cloud by sampling the mesh
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Fig. 3: Boxplots of the RPE on dataset V2_02 for the
approaches S, SP, and SPR (proposed).

with a uniform density of 103 points/m2. We also register the
resulting point cloud to the ground truth point cloud. In Fig. 4,
we color-encode each point r on the estimated point cloud
with its distance to the closest point in the ground-truth point
cloud G (dr→G). We can observe that, when we do not enforce
structural regularities, significant errors are actually present
on the planar surfaces, especially on the walls (Fig. 4 top).
Instead, when regularities are enforced, the errors on the walls
and the floor are reduced (Fig. 4 bottom). A closer view on the
wall itself (Fig. 1(c)-(d)) provides an illustrative example of
how adding co-planarity constraints results in smoother walls.

C. Timing

The pipelines S, SP, and SPR differ in that they try to solve
an increasingly complicated optimization problem. While the
S pipeline does not include neither the 3D landmarks nor
the planes as variables in the optimization problem, the SP
pipeline includes 3D landmarks, and the pipeline using regu-
larities (SPR) further includes planes as variables. Moreover,
SP has significantly less factors between variables than the
SPR pipeline. Hence, we can expect that the optimization
times for the different pipelines will be each bounded by the
other as toptS < toptSP < toptSPR, where toptX is the time taken to
solve the optimization problem of pipeline X.

Fig. 5 shows the time taken to solve the optimization prob-
lem for each type of pipeline. We observe that the optimization
time follows roughly the expected distribution. We also notice
that if the number of plane variables is large (∼ 101), and
consequently the number of constraints between landmarks
and planes also gets large (∼ 102), the optimization problem
cannot be solved in real-time (see keyframe index 250 in
Fig. 5). This can be avoided by restricting the number of
planes in the optimization. Finally, the SPR pipeline has the
overhead of generating the mesh. Nevertheless, it takes just
8ms per frame.
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Fig. 4: Point cloud sampled from the estimated 3D mesh color-
encoded with the distance to the ground truth point cloud
(V1_01), for SP approach (top) and SPR (bottom).
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Fig. 5: Comparison of the time to solve the optimization
problem for pipeline S, SP, and SPR for dataset V1_01.

IV. CONCLUSION

We present a VIO algorithm capable of incrementally
building a 3D mesh of the scene restricted to a receding
time-horizon. Moreover, we show that we can improve the
state estimation and mesh by enforcing structural regularities
present in the scene. Hence, we provide a tightly coupled ap-
proach to regularize the mesh and improve the state estimates
simultaneously.

Finally, while the results presented are promising, we are not
yet enforcing higher level regularities (such as parallelism or
orthogonality) between planes. Therefore, these improvements
could be even larger, potentially rivaling pipelines enforcing
loop-closures.
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