
HAL Id: hal-02017773
https://hal.science/hal-02017773

Submitted on 13 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

CartesI/O: A ROS Based Real-Time Capable Cartesian
Control Framework

Arturo Laurenzi, Enrico Mingo Hoffman, Luca Muratore, Nikos Tsagarakis

To cite this version:
Arturo Laurenzi, Enrico Mingo Hoffman, Luca Muratore, Nikos Tsagarakis. CartesI/O: A ROS Based
Real-Time Capable Cartesian Control Framework. IEEE International Conference on Robotics and
Automation 2019, May 2019, Montreal, Canada. �hal-02017773�

https://hal.science/hal-02017773
https://hal.archives-ouvertes.fr


CartesI/O: A ROS Based Real-Time Capable Cartesian
Control Framework

Arturo Laurenzi1,2, Enrico Mingo Hoffman1, Luca Muratore1,3, and Nikos G. Tsagarakis1

Abstract— This work introduces a framework for the Carte-
sian control of multi-legged, highly redundant robots. The
proposed framework allows the untrained user to perform
complex motion tasks with robotics platforms by leveraging a
simple, auto-generated ROS-based interface. Contrary to other
motion control frameworks (e.g. ROS MoveIt!), we focus on
the execution of Cartesian trajectories that are specified online,
rather than planned in advance, as it is the case, for instance,
in tele-operation and locomotion tasks. Moreover, we address
the problem of generating such motions within a hard real-
time (RT) control loop. Finally, we demonstrate the capabilities
of our framework both on the COMAN+ humanoid robot, and
on the hybrid wheeled-legged quadruped CENTAURO.

I. INTRODUCTION

In the past few decades, advancements in robotics have
vastly extended its domain of application, moving from the
traditional industrial focus to eventually applying robots to
human and more unstructured environments. Consequently,
robotic platforms have grown in complexity, in an attempt
to satisfy the requirements that the new applications demand
in terms of hardware, motion generation, control and human
machine interfaces. Indeed, operating effectively in complex
environments requires enhanced mobility in order to move on
rough surfaces, overcome obstacles, and to carry out complex
manipulation tasks that take place in an extended workspace,
ranging from the ground-level to above the eye-level.

Such robots exhibit a high degree of redundancy, which
however complicates their control from several perspectives:
first, tasks have usually different priorities; then, when in-
finitely many solutions exist, some criterion is needed to
select one. Finally, the complexity of the code required to
control the robot grows considerably: a simple-yet-effective
scheme for solving the manipulator inverse kinematics may
be realized with few lines of code, whereas the control
of highly redundant robots is best done inside a suitable
framework that hides most of the involved complexity in
the motion coordination of redundant robots.

An aspect that is worth highlighting is the dichotomy
between tasks that are pre-planned offline, and tasks that
are specified online, in a continuous fashion. As an example
from the first family, the reader could consider a reach-
to-grasp task taking place in a cluttered environment; such
an action can be completely pre-planned before the actual

1Advanced Robotics Department (ADVR), Istituto Italiano di Tecnologia,
Genova, Italy

2DIBRIS, Università di Genova, Italy
3School of Electrical and Electronic Engineering, The University of

Manchester, M13 9PL, UK
{arturo.laurenzi, enrico.mingo, luca.muratore,

nikos.tsagarakis}@iit.it

execution, thus opening the possibility of performing a time-
consuming search over the robot configuration space in order
to find obstacle-free trajectories. Conversely, examples from
the second category include tele-operation scenarios, reactive
locomotion and physical interaction, and others. Online tasks
greatly differ from their pre-planned counterparts, since they
require low computation times and, especially when any
kind of feedback is involved, small delay and jitter in the
execution.

Existing works have recognized the need for a Cartesian
control framework; yet, it is hard to find a solution that
satisfies the following requirements:
• flexible task specification, in terms of both type and

number of tasks;
• ability to enforce soft priorities as well as hard priorities

between tasks;
• ability to specify constraints in the task execution;
• small computation time (suitable for online execution);
• possibility to execute inside a real-time (RT) thread in

order to reduce delays and jitter;
• ease of configuration and use, quick setup time and

ready to use control tools;
• parametrized with standard description formats (e.g.

URDF) in order to support multiple platforms;
• handling of floating base robots.

Previous work from the authors [1], [2] goes in the direction
outlined by the aforementioned points, resulting in the C++
library OpenSoT, which provides tools for writing Cartesian
solvers while taking into account priorities and constraints,
in a real-time safe way. In the present article, we extend
the framework with additional layers that permit to perform
Cartesian control “out of the box”: we relieve the user from
the need of writing and compiling C++ code that is tailored to
a specific robotic platform and task, and we provide an auto-
generated uniform interface to send commands to Cartesian
controllers inside the popular ROS framework. Notably, the
same ROS API is provided even when Cartesian controllers
run inside a hard real time thread.

We organize the rest of the article as follows: in Section II,
we review some of the related works; then, in Section III the
overall architecture of the proposed framework is described.
Section IV is dedicated to the description of two experimen-
tal setups that validate the effectiveness of the framework.
Finally, possible future directions are depicted in Section V.

II. RELATED WORKS

The presented framework draws inspiration from previous
work on the same topic; in the remainder of this section



Environment-aware
planning capabilities

Real time capable Generic robot support Flexible task specifica-
tion

Floating-base support

OpenRAVE [3] X X X 7 7
MoveIt! [4] X 7 X 7 7
Chorenoid [5] 7 X 7 7 X
CartesI/O 7 X X X X

TABLE I
COMPARISON BETWEEN DIFFERENT FRAMEWOKS FOR ROBOT CARTESIAN CONTROL.

we present a summary of the most prominent contributions
in the field, highlighting the shortcomings that we aim to
address with our framework. A summary of our comparison
is outlined in Table I.

OpenRAVE [3] is one of the first environments for test-
ing, developing, and deploying motion planning algorithms
in real-world robotics applications. It has been used with
many different types of robots such as humanoids, mobile
platforms and manipulators. From the Cartesian control point
of view, OpenRAVE relies on ikfast which is an analytical
IK engine; it is one of the fastest IK engines available at the
moment, however it does not handle redundancy (extra DoFs
have to be locked manually in order to match the required
kinematic structure).

The most widely-spread framework for Cartesian control
is probably MoveIt! [4], which is part of the open source
ROS framework. MoveIt! provides a rather complete system
of motion planning and execution tools that also take into ac-
count the perceived environment. The main core of MoveIt!
is based on state-of-the-art sampling-based motion planning
algorithms, mostly deployed inside the OMPL project [6].
Despite MoveIt! has been used on many different types of
robot, it lacks explicit support for multi-chains and floating-
base (e.g. legged) robots. Furthermore its non-linear planning
nature does not make it suitable for on-line (tele-operation)
or real-time control.

Another notable work is the software suite Chorenoid [5],
which permits to synthesize whole body motions for bipedal
humanoid robots. The user can control different end-effectors
as well as perform dynamic motions which are filtered
through a Zero-Moment-Point (ZMP) based stabilizer. Such a
tool has been used successfully on many HRP-series robots,
yet it does not permit to setup customized IK problems. This
indeed limits the usability of Chorenoid to manipulators and
bipeds.

A lot of effort was spent on creating GUI systems for the
DARPA Robotics Challenge (DRC) (e.g. [7], [8], [9]). Yet,
none of these works was designed to be general enough to
handle different types of robots with considerably diverse
structure. Moreover, most of these GUI systems focus on
predefined tasks (usually arms end-effectors, center-of-mass,
and direct joint-space control) without any flexibility in terms
of tasks or constraints declaration.

III. ARCHITECTURE AND IMPLEMENTATION

The purpose of this section is to present details about
the framework design and structure. First and foremost,
we highlight which are the main building blocks of the
framework; then, we briefly introduce our previous work [1],
the OpenSoT library. Finally, from Section III-C to Section
III-E we present the core components of CartesI/O, that is
the main focus of this work.

A. Framework components

Following a bottom-up description, we can distinguish:
• the solver; this is the component that solves a single

instance of the mathematical problem that describes our
Cartesian control algorithm. In our case, this could be
either a matrix pseudo-inverse solver, or a Quadratic
Program (QP) solver. Other possibilities exist, like more
general Non-Linear Program (NLP) solvers.

• A modeling language that allows to construct the afore-
mentioned mathematical problems in a natural and more
high-level way, which is less error-prone and time
consuming.

• A base class for Cartesian controllers, that allows for
uniform programmatic usage of any specific imple-
mentation. It also takes care of set-point management,
as for instance enforcing velocity/acceleration limits,
or transforming waypoints into properly interpolated
references.

• A middleware interface, which enables all other pro-
cesses that compose the control system to send their
references in a uniform way that does not depend on
the specific implementation running.

This work is mostly concerned with the last two parts,
and it is completely decoupled from any specific choice of
a solver and modeling language. However, integration with
the OpenSoT library, which implements a modeling language
tailored to Cartesian control, also represents a major goal; we
briefly describe OpenSoT in the following section.

B. The OpenSoT library

The OpenSoT library is a C++ framework which has been
initially developed to participate to the DARPA Robotics
Challenge [10] as a whole-body inverse kinematics engine.
During the years, inverse dynamics and force optimization
have also been integrated [1], [2] for different robotic plat-
forms. The focus of OpenSoT is to ease the formalization of
prioritized controllers through dedicated interfaces for tasks,



constraints and solvers. Each of these entities are atomic
elements which can be combined using a simple syntax,
named Math Of Task. An example of a simple controller
described using the Math Of Task is the following one:(WaistTRWrist +

Waist TLWrist
)
/

TPosture

<<
(
C Joint

Limits
+CJoint Velocity

Limits

)
.

(1)
Two hard priorities (slash “/” operator) are specified: the first
one is constituted by two tasks (in relative soft priority, plus
“+” operator) which control the arms end-effectors w.r.t. the
Waist frame, and the second one is a Joint Postural task. All
priority levels are subject to Joint Limits and Joint Velocity
Limits constraints (“<<” operator).

The control problem (1) is then solved in two steps: first, a
solver front-end computes matrices and vectors that describe
the QP problems for all priority levels, according to the
following formulation:

min
xxxi
‖Ai xxxi−bi‖2 + ε‖xxxi‖2

s.t. bl ≤ Dxxxi ≤ bu
ul ≤ xxxi ≤ uu

Ai−1xxx∗i−1 = Ai−1xxxi
...

A0 xxx∗0 = A0 xxxi.

(2)

Then, a solver back-end1 actually computes the correspond-
ing solutions. Notice that the Math Of Task formulation, as
well as the chosen solver, are completely decoupled from the
type of controller (velocity or acceleration-level IK, torque
control, . . . ) which depends only on the specific tasks and
constraints implementations.

C. Cartesian Interface

A modeling language eases the job of formulating and
solving a complex optimization problem; yet, the need to
write C++ code that is customized for the specific robotic
platform and task to be solved remains. This should be
avoided, both with a view to promote code reuse, and also
considering that, for complex platforms and according to the
authors’ experience, writing a hierarchy of tasks/constraints
that makes the robot show the desired behavior can be
“an art”. Therefore, it should be left to “experts in the field”,
while users should simply customize the problem to better
fit their needs. Furthermore, this code would be of little use
without an I/O infrastructure that allows a control module to
communicate with the external world. Again, the user should
be relieved from developing its own. With this motivation,
we started developing an interface layer that:
• provides a uniform way to programmatically interact

with a Cartesian controller;
• automatically generates a complete ROS API for send-

ing references to the controller;
• allows to use the ROS-based API also in the case that

the solver is running inside a real-time thread.

1At this moment, back-ends are available for the qpOASES [11] and
OSQP [12] solvers.

We call the base class that specifies such an interface
CartesianInterface. It defines simple methods that can be
used to change the behavior of all defined tasks, as for
instance:
• a setPoseReference() method sets the Cartesian set-point

corresponding to a task, given its controlled link name;
• the corresponding setWayPoints() method is used to

specify a point-to-point motion passing through custom
waypoints.

• A setBaseLink() method can be used to change online
the base-link of a task.

• A setControlMode() method is used for selecting
whether a specific task should be position-controlled,
velocity-controlled, or disabled at all. Tasks that are
running in velocity mode will discard any position
reference, while tasks that are disabled will disappear
completely from the Cartesian control problem.

• An update() method is used to evaluate all point-to-
point trajectories given the current time, and to enforce
velocity/acceleration limits by means of the Reflexxes
library [13]. This method is overridden by the specific
subclasses in order to implement their own control loop.

The developer willing to implement its own Cartesian con-
troller can override all these methods in order to take
appropriate actions whenever a reference, a control mode
or a base-link has changed.

To store the state of the robot, and to perform kine-
matic/dynamic computation as well, we make use of
the XBot::ModelInterface class from the XBotCore frame-
work [14], [15], which acts as a wrapper for rigid body
dynamics libraries. Specific implementations of it2 can be
chosen at runtime, using a dynamic loading mechanism.

D. Auto-generated ROS API

Once that a Cartesian controller has been implemented,
a communication layer towards external modules is needed,
which is our middleware interface. This is implemented in
the form of a C++ class that we call ROS Server Class;
for each of the defined tasks, it provides the following
functionalities:
• a TF publisher for the model state;
• point-to-point motions with custom waypoints through

a custom ROS action;
• commanding continuous pose and velocity references

by publishing to ROS topics;
• run-time activation/deactivation of tasks, as well as

change of control mode and base-link by calling custom
ROS services;

• Rviz interactive markers manager [18] that allows for
intuitive, GUI-based reference generation;

• joystick-based reference generation;
• joint sliders, which permit to work at joint space level.

2 An RBDL-based [16] version is available at https://github.
com/ADVRHumanoids/ModelInterfaceRBDL, a version based on
iDynTree [17] is available at https://gitlab.advrcloud.iit.
it/advr_humanoids/modelinterfaceidynutils

https://github.com/ADVRHumanoids/ModelInterfaceRBDL
https://github.com/ADVRHumanoids/ModelInterfaceRBDL
https://gitlab.advrcloud.iit.it/advr_humanoids/modelinterfaceidynutils
https://gitlab.advrcloud.iit.it/advr_humanoids/modelinterfaceidynutils


ROS Cartesian Server
● Loads cartesian control problem from ROS param server
● Loads requested Cartesian Interface implementation
● LoadController service

ROS Server Class
● Reach actions
● Pose reference topics
● SetBaseLink services
● SetControlMode services
● Rviz interactive markers
● TF publisher
● ...

Cartesian Interface (Base)
● setPoseReference()
● setBaseLink()
● setControlMode()
● update():

○ Trajectory interpolation
○ Velocity/acceleration limits
○ Logging

(c)

Cartesian Interface (Implementation)
● update(): realize references
● setBaseLink()
● setControlMode()
● ...

Solver impl.

(d)

XBot::ModelInterface
● Holds the robot state
● Kinematics/dynamics 

(e)

XBot::RobotInterface
● Receive robot state
● Send set-points to control system

(f)

(g)

URDFURDF
SRDF

(b)

(a)

Fig. 1. Components of the Cartesian Interface and signal flow when the Cartesian Interface is executed inside a ROS node. External processes exchange
information with the CartesI/O framework via ROS topics (a), thanks to the ROS Server Class component. It gets the current solver state through the
ModelInterface object (b), in order to broadcast it to the ROS environment. It also forwards the received commands to the Cartesian Interface base class
(c), where trajectory interpolation and filtering take place. The Cartesian Interface implementation component gets these pre-processed signals in order to
track them (d). This results in an updated model state (e), which is then sent to the robot actuators through the RobotInterface object (f, g).

Furthermore, a ROS node that acts as a Cartesian Server
is provided as well. It loads a user-specified implementation
of the CartesianInterface class using a dynamic loading
mechanism, and initialize the ROS Server Class in order to
generate the ROS API. Finally, a ROS service is provided
to dynamically change the controller that is under execution
during runtime. The resulting architecture is shown in Fig-
ure 1: note that, in order to send actual references to the
robot, we employ the XBot::RobotInterface class from the
XBotCore framework, which serves as the robot abstraction
layer3.

E. Configurable OpenSoT implementation

As the final step towards a complete Cartesian control
framework as described in Section III-A, we provide a
generic implementation of the CartesianInterface that relies
on OpenSoT as the modeling language, and on its supported
solvers for carrying out the actual optimization procedure.
Such a module allows the user to formulate a hierarchical,
whole-body inverse kinematics problem at the velocity level
(as described in Section III-B); it is written so as to be
completely configurable, meaning that the stack of tasks can
be specified either on a YAML file or via the ROS parameter
server. In this way, starting from a standard description of the
robot in terms of its URDF/SRDF, the user can directly run a
ROS Cartesian Server to perform rather complex whole-body
control tasks with no code compilation involved; moreover,
the auto-generated ROS API provides a convenient way

3 A ROS-based version that eventually publishes on a joint
state topic is available at https://github.com/ADVRHumanoids/
RobotInterfaceROS

to interact with such a controller from all processes that
compose a distributed control system.

F. Real-time execution

Whenever a Cartesian controller is based on continuous
feedback from the robot, its precise and jitter-free execution
at the specified control frequency becomes critical; indeed,
delays contribute to destabilize feedback loops, and should
therefore be avoided. Typical examples are torque-based
controllers (e.g. Cartesian impedance control); however, it
is worth noticing that position-based controllers can involve
feedback, as in the case of admittance controllers, stabilizers
for legged robots (e.g. [19]), and tele-manipulation with force
feedback.

Such characteristics can be achieved by calling the Carte-
sianInterface’s update() method from within a real-time
(RT) thread that runs inside a suitable real-time operating
system (RTOS); in addition, the communication between this
thread and the robot control PC needs to be fast introducing
minimum latency. In order to do so, we need to ensure real-
time safeness of all components of our architecture, which
broadly speaking means that all non-deterministic operations
should be avoided, most notably memory allocations and,
e.g., network communication.

By careful code development and profiling, we ensure
satisfaction of these constraints both by the OpenSoT library
(including its solver back-ends), and by the CartesianInter-
face layer. However, it is not possible to run our ROS Server
Class on the RT layer directly, mainly because of ROS’s
usage of TCP primitives4. To address this issue, a dual-thread

4TCP usage from a real time thread will eventually will be possible in
ROS2, which is based on the DDS middleware.

https://github.com/ADVRHumanoids/RobotInterfaceROS
https://github.com/ADVRHumanoids/RobotInterfaceROS


architecture is needed, where a non-RT thread runs our ROS
API server, while a RT thread runs the CartesianInterface
implementation. We put this idea into practice by leveraging
the XBotCore framework, that provides us both a RT “control
thread” and a non-RT “communication thread”. We design
the synchronization between the two to be lock-free for the
RT thread, in order to avoid priority inversion problems. This
results in a deterministic execution time for our controller,
as we experimentally demonstrate in Section IV-A.

IV. EXPERIMENTAL RESULTS

To validate our CartesI/O framework and demonstrate
its flexibility in different robot platforms, we set up two
manipulation tasks to be carried out by our legged robots
CENTAURO [20], a 39-DoF wheeled-legged quadruped with
a humanoid torso, and the 28-DoF humanoid COMAN+. In
both cases, we select a box-picking task where the box must
be picked from a low height. In such a case, not only the arms
but all the robot chains must coordinate to accomplish the
task, which highlights the advantage of using a floating-base
whole-body formulation. The outcome of our experiments is
summarized in the accompanying video; an extended version
can be found at https://youtu.be/eVmDBVL83WY.

A. Case study: stabilized box-picking task

As our first experiment, we present an application of our
framework to a scenario where the humanoid COMAN+ has
to pick a 3 Kg box and pass it to a human. We define the task
such that the robot must reject external disturbances without
falling, and it must also show compliance in the reaction
in order not to hurt people around it. To achieve compliant
rejection of external forces, we use the work of [19] where
a compliant admittance-base stabilizer is introduced, which
essentially computes a modified CoM reference from a ref-
erence on the center of pressure (CoP) (which we kept fixed
during the experiment) and from force-torque measurements
at the feet as well. Since this experiment involves a feedback
controller, we run our Cartesian solver plus the stabilizer
from within the XBotCore RT control thread as explained in
Section III-F. To execute the motions, we run from a different
low-priority process a ROS SMACH5-based state machine
written in Python that sends target poses to the end-effectors
via our auto-generated ROS API as follows:
• the box is grasped and brought to the chest level by

sending suitable references to the hands w.r.t. the world
frame;

• the box is then passed to the human operator; in order
to do so, we change the base link for the hands tasks
from the world frame to the torso frame, and finally we
command it to rotate about the z-axis.

During the whole demo, the compliant stabilizer is continu-
ously adjusting the CoM reference to track the desired CoP.

Time statistics regarding the experiment are shown in
Figure 2; it can be noticed that our control thread does indeed

5http://wiki.ros.org/smach

0 10 20 30 40 50 60

Time [s]

0

0.5

1

1.5

2

2.5

P
e
ri
o
d
 [
m

s
]

RT thread period

Controller execution time

RT thread period (filtered)

Fig. 2. Timing statistics for the box picking experiment with COMAN+.
The thin blue line represents the XBotCore RT thread period. The cartesian
controller computation time (including the stabilizer) is depicted in red.

Fig. 3. Snapshots from a box-picking task with RT stabilization using
humanoid COMAN+.

meet its deadline in a deterministic way, with a root-mean-
square deviation of Tjitter ≈ 90µs, over more than one minute
of experiment. Snapshots from the experiment are visible in
Figure 3.

B. Case study: ground-level bimanual manipulation

For our second experiment, we choose to pick up a 6 kg
brick from the ground using the CENTAURO robot, and then
pass it to a human operator. Since the operator is standing
on one side of the robot, the robot must perform a brief
wheeled-locomotion phase in order to turn ninety-degrees.
This is done by switching at runtime between two different
implementation of the Cartesian Interface: the first, which
is used to pick up the box, is the dynamically-configurable
IK controller described in Section III-E; the second one,
which we call Centauro Wheeled Motion, is an IK controller
that is tailored to the mixed wheeled-legged locomotion of
the CENTAURO robot. It is implemented by means of the
OpenSoT library, and it permits to:

• control the waist pose w.r.t. the world through appro-
priate steering/rolling of the wheels;

• control the wheels position w.r.t. the waist frame in
order to adjust the support polygon shape;

• perform basic control of the end-effectors w.r.t. waist
frame.

Since this demonstration does not require to meed hard
deadlines, we run the Cartesian controllers on the ROS
Cartesian Server at a frequency of 100 Hz. Again we script
the robot behavior via a ROS SMACH state machine as
follows:

https://youtu.be/eVmDBVL83WY
http://wiki.ros.org/smach


Fig. 4. Snapshots from the experiment with CENTAURO robot described
in Section IV-B.

• first, we change the postural for the front knees in order
to avoid later collisions with the arms;

• then we command the end-effector to surround the box,
then grasp it and bring it up;

• after this, we load our Centauro Wheeled Motion, and
we command a ninety-degrees rotation to the waist;

• finally, we command the arms to open in order to release
the box.

The outcome of this experiment is summarized in Figure 4,
and in the accompanying video as well.

V. CONCLUSIONS

In this work we have introduced CartesI/O, a framework
for Cartesian control of floating/fixed-base robots which
is focused on online execution, possibly under real-time
constraints. As our main contribution, we integrate Cartesian
solvers inside an architecture that permit to interact with
them in a uniform way. This is achieved at two different
levels:
• programmatically, through our CartesianInterface base

class;
• from the ROS middleware, via an auto-generated set of

topics, services, actions and tools that can be used to
monitor the solver state, send references, and customize
the solver behavior.

Our API aims at providing highly flexible task customization
during runtime: the user can activate/deactivate tasks, change
their base-link, switch between position and velocity control,
and even dynamically load different controllers. Furthermore,
the framework integrates common tools, such as trajectory
interpolation with way-points, as well as enforcement of
user-specified velocity/acceleration limits.

A configurable inverse-kinematics solver is also provided,
through which the user can quickly set up a Cartesian control

problem from a YAML file, which is then solved using
the OpenSoT library. Such a controller is designed to be
real-time safe, allowing for the deterministic execution of
the commanded references. Moreover, we provide tools to
connect a RT Cartesian controller to our auto-generated ROS
API, in order to enable mixed RT/non-RT robot control.

Future work will address the development of solvers
working at the dynamics level, as well as the augmentation
of the markers capabilities (e.g. Cartesian impedance mark-
ers). Moreover, we aim to add previewing capabilities, and
environment-aware trajectory planning, e.g. via integration
with MoveIt!. Finally, we aim at integrating this work with
well-known RT frameworks such as OROCOS and ROS2.

ACKNOWLEDGMENTS

The research leading to these results has received fund-
ing from the European Union’s Horizon 2020 research
and innovation programme under grant agreements No.
644839 (CENTAURO) and No. 644727 (CogIMon).

REFERENCES

[1] E. M. Hoffman, A. Rocchi, A. Laurenzi, and N. G. Tsagarakis, “Robot
control for dummies: Insights and examples using opensot,” in 17th
IEEE-RAS International Conference on Humanoid Robotics, 2017,
pp. 736–741, 2017.

[2] E. M. Hoffman, A. Laurenzi, L. Muratore, D. G. Caldwell, and
N. G. Tsagarakis, “Multi-priority cartesian impedance control based
on quadratic programming optimization,” in 2018 IEEE International
Conference on Robotics and Automation (ICRA), 2018.

[3] R. Diankov, Automated Construction of Robotic Manipulation Pro-
grams. PhD thesis, Carnegie Mellon University, Robotics Institute,
August 2010.

[4] S. Chitta, I. Sucan, and S. Cousins, “Moveit!,” IEEE Robotics &
Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[5] S. Nakaoka, S. Kajita, and K. Yokoi, “Intuitive and flexible user inter-
face for creating whole body motions of biped humanoid robots,” in
Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International
Conference on, pp. 1675–1682, IEEE, 2010.

[6] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, pp. 72–82,
December 2012. http://ompl.kavrakilab.org.

[7] S. Caron and Y. Nakamura, “Teleoperation system design of valve
turning motions in degraded communication conditions,” The 33-rd
Annual Conference of the RSJ, 2015.

[8] M. Schwarz, T. Rodehutskors, et al., “Nimbro rescue: Solving disaster-
response tasks with the mobile manipulation robot momaro,” Journal
of Field Robotics, vol. 34, no. 2, pp. 400–425, 2016.

[9] M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, T. Schneider,
H. Dai, C. P. D’Arpino, R. Deits, M. DiCicco, D. Fourie, et al., “An
architecture for online affordance-based perception and whole-body
planning,” Journal of Field Robotics, vol. 32, no. 2, pp. 229–254,
2015.

[10] N. G. Tsagarakis, D. G. Caldwell, et al., “Walk-man: A high-
performance humanoid platform for realistic environments,” Journal
of Field Robotics, vol. 34, no. 7, pp. 1225–1259, 2017.

[11] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl,
“Qpoases: a parametric active-set algorithm for quadratic program-
ming,” Mathematical Programming Computation, vol. 6, pp. 327–363,
Dec 2014.

[12] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” ArXiv e-prints,
Nov. 2017.

[13] T. Kröger, “Opening the door to new sensor-based robot applica-
tions—the reflexxes motion libraries,” in Robotics and Automation
(ICRA), 2011 IEEE International Conference on, pp. 1–4, IEEE, 2011.

[14] L. Muratore, A. Laurenzi, E. M. Hoffman, A. Rocchi, D. G. Caldwell,
and N. G. Tsagarakis, “Xbotcore: A real-time cross-robot software
platform,” in 2017 First IEEE International Conference on Robotic
Computing (IRC), pp. 77–80, April 2017.

http://ompl.kavrakilab.org


[15] “XBotCore GitHub repository.” https://github.com/
ADVRHumanoids/XBotCore/wiki/XBotInterface.

[16] M. L. Felis, “Rbdl: an efficient rigid-body dynamics library using
recursive algorithms,” Autonomous Robots, pp. 1–17, 2016.

[17] F. Nori, S. Traversaro, J. Eljaik, F. Romano, A. Del Prete, and
D. Pucci, “icub whole-body control through force regulation on rigid
noncoplanar contacts,” Frontiers in Robotics and AI, vol. 2, no. 6,
2015.

[18] D. Gossow, A. Leeper, D. Hershberger, and M. T. Ciocarlie, “Inter-
active markers: 3-d user interfaces for ros applications [ros topics],”
IEEE Robot. Automat. Mag., vol. 18, pp. 14–15, 2011.

[19] C. Zhou, Z. Li, X. Wang, N. Tsagarakis, and D. Caldwell, “Stabiliza-
tion of bipedal walking based on compliance control,” Autonomous
Robots, vol. 40, pp. 1041–1057, Aug 2016.

[20] L. Baccelliere et al., “Development of a human size and strength com-
pliant bi-manual platform for realistic heavy manipulation tasks,” in
Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ International
Conference on, pp. 5594–5601, IEEE, 2017.

https://github.com/ADVRHumanoids/XBotCore/wiki/XBotInterface
https://github.com/ADVRHumanoids/XBotCore/wiki/XBotInterface

	Introduction
	Related works
	Architecture and implementation
	Framework components
	The OpenSoT library
	Cartesian Interface
	Auto-generated ROS API
	Configurable OpenSoT implementation
	Real-time execution

	Experimental results
	Case study: stabilized box-picking task
	Case study: ground-level bimanual manipulation

	Conclusions
	References

