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Abstract—Previous work on emotion recognition demon-
strated a synergistic effect of combining several modalities such
as auditory, visual, and transcribed text to estimate the affective
state of a speaker. Among these, the linguistic modality is crucial
for the evaluation of an expressed emotion. However, manually
transcribed spoken text cannot be given as input to a system
practically. We argue that using ground-truth transcriptions
during training and evaluation phases leads to a significant
discrepancy in performance compared to real-world conditions,
as the spoken text has to be recognized on the fly and can
contain speech recognition mistakes. In this paper, we propose
a method of integrating an automatic speech recognition (ASR)
output with a character-level recurrent neural network for sen-
timent recognition. In addition, we conduct several experiments
investigating sentiment recognition for human-robot interaction
in a noise-realistic scenario which is challenging for the ASR
systems. We quantify the improvement compared to using only
the acoustic modality in sentiment recognition. We demonstrate
the effectiveness of this approach on the Multimodal Corpus
of Sentiment Intensity (MOSI) by achieving 73,6% accuracy
in a binary sentiment classification task, exceeding previously
reported results that use only acoustic input. In addition, we
set a new state-of-the-art performance on the MOSI dataset
(80.4% accuracy, 2% absolute improvement).

I. INTRODUCTION

Speech emotion and affect recognition are crucial aspects
for a coherent human-robot interaction and have recently
received growing interest in the research community [1].
The quality of human-robot interaction could be improved
significantly if a robot was able to consistently evaluate the
emotional state of a person and its dynamics. For instance,
if a robot was able to detect that a person is speaking in an
angry way, it could use this information as a sign to adjust
its behavior [2].

Humans integrate information from several input modali-
ties, such as acoustic and visual, to estimate the emotional
state of the speaker [3]. Recent computational models fuse
different sources of information to yield better and more
robust results. For example, combining visual, linguistic and
acoustic modalities resulted in state-of-the-art performance
on sentiment and emotion recognition tasks and it can be
observed that the linguistic modality has the biggest contri-
bution in the overall blend [1]. However, most experiments
assume that the ground-truth (manually transcribed) spoken
text transcriptions are available during training and testing
phases. We argue that this setup differs from the real-life
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“I heard it"”

“I heard it”

“I hate it”

Fig. 1: Tllustration of the core issue that we address in the
paper. Sentiment recognition models are usually trained and
evaluated using the manually transcribed text. In practice, we
have to use automatic speech recognition systems to extract
spoken text, which can contain errors affecting the overall
performance.

condition, as we usually do not have access to the transcribed
text in real time. In practice in the best case, we only extract
an approximation of it: multiple hypotheses of the speech
recognition system. Also, training on clean texts might result
in overstating of the model’s performance and degradation
during testing when we use even state-of-the-art speech
recognition models.

This paper is built on our previous work [2], [4] on
the application of neural emotion recognition models in
the context of human-robot interaction. In this work, we
conduct several experiments to address the discrepancy in
the performance of a spoken sentiment recognition when
the manually transcribed spoken text is not available. Our
contribution is two-fold: a) We evaluate the performance of
neural joint acoustic-linguistic sentiment recognition models
in a human-robot interaction setup when the spoken text
transcriptions are not available; b) We propose and evaluate
the incorporation of recurrent character-level language model
representations of spoken text for sentiment modeling to
adapt to situations when the ASR output might produce word
outputs with mistakes due to noise. We also analyze the
models’ performance in acoustically clean conditions and
when re-recorded on a robotic head, for the Multimodal
Corpus of Sentiment Intensity (MOSI) dataset for sentiment
identification. We compare three setups for spoken text
extraction: 1) training our own end-to-end character-level
neural speech recognition system, 2) using Google ASR API,
3) using ground-truth transcriptions, which we consider as
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the upper bound in our experiments.

The paper is organized as follows: section II introduces
related work and section III describes our neural sentiment
recognition model. Section IV outlines the methodology
including the description of our neural ASR and the data used
to train it. Section V introduces the conducted experiments
on the original MOSI data and on the robot head recorded
data in noise-realistic conditions.

II. RELATED WORK

Integration of multiple modalities like vision, auditory and
linguistic with deep neural networks significantly boosted the
overall performance of sentiment and emotion recognition
[5]. For instance, individual modalities’ representations and
their paired combinations were fused by an outer tensor
product [1]. The multi-attention recurrent network employs
an attention method to model the integration of different
modalities as has been done in multiple other works [6].
Conditioning on the context was shown beneficial on emo-
tion and sentiment recognition [7]. As some modalities can
have different contributions a certain time step, a gating
mechanism which is trained with reinforcement learning, is
introduced to switch on or off a particular modality’s input
[8].

In this work, we are focusing on the acoustic and linguistic
modalities, considering situations when the speaker might not
be directly observable. Jin et al. [9] used various hand-crafted
acoustic and lexical features followed by late decision fusion
for classification. Multimodal word-level alignment produced
state-of-the-art results on the emotion and sentiment recogni-
tion tasks [10]. Automatic generation of ensemble trees with
SVM classifiers as nodes was applied for affective analysis
[5]. Hybrid attention mechanism was introduced to fuse
acoustic and linguistic information [11]. Aldeneh et al. [12]
evaluated several end-to-end approaches of pooling lexical
and acoustic features extracted by recurrent neural networks,
which encode each modality separately for speech valence
estimation. Attention-based convolutional neural networks
were proposed for acoustic-only emotion recognition [13].
Etienne et al. [14] achieved state-of-the-art results among
systems using only audio modality combining convolutional
and recurrent layers. However, Schuller et al. [15] compared
off-the-shelf acoustic feature extractors with end-to-end ap-
proaches and demonstrated that end-to-end methods still do
not consistently surpass the handcrafted representations on
the paralinguistic tasks. Several ways of transfer learning to
encode acoustic signals were proposed recently: tuning audio
representations trained initially for other auxiliary tasks, like
gender and speaker identification [16] or speech recognition
[17], [18].

The main difference between our work and the previous
research is that we do not assume that the ground-truth
transcriptions are given as input to the model. We observe
that the linguistic modality makes the biggest contribution
to the overall classification [19]. In this work, we assume to
have access only to the acoustic input, and spoken text is
therefore extracted by a separate module.
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Fig. 2: Our sentiment recognition model based on the ASR
character output. The multiplicative LSTM model is used to
encode spoken text to a fixed-length vector with a logistic
regression on top modeling the sentiment. The mLSTM
model is pretrained in an unsupervised way on the Amazon
reviews with a language-modelling objective.

III. SENTIMENT RECOGNITION MODEL

This section describes our sentiment recognition model.
Firstly, we outline the neural spoken text representation net-
work, followed by our proposed methods to extract transcrip-
tions. We conclude with acoustic features description, which
we used for joint acoustic-linguistic sentiment analysis.

A. Model Architecture

The essential part of our architecture is the character-level
recurrent neural network for spoken text encoding. We use
a single layer multiplicative LSTM [20] (mLSTM) model
with 4,096 nodes and we use the hidden state corresponding
to the last input character to represent the whole textual
input. The mLSTM model is trained on the vast amounts of
Amazon reviews in a language modelling setup [21]. This
model with a linear classifier on top showed state-of-the-
art performance on the Stanford Sentiment Treebank outper-
forming more complex architectures. This indicates that even
though the mLSTM model was trained fully unsupervised,
it was capable to capture the concept of sentiment just by
learning to predict the next character given the context. Our
main intuition to use this character-level model for spoken
sentiment recognition opposes to the majority of previous
work incorporating word-level processing is two-fold: a) a
character-level model is capable of dealing with the spelling
mistakes or out-of-vocabulary words produced by the ASR
model, b) the representations learnt by the mLSTM on the
reviews could be useful as well in the spoken sentiment
analysis.

The overall architecture is shown in Figure [2| We feed
the input text representation to an L2-regularized logistic
regression for binary sentiment classification. The same
architecture is used to train the acoustic model, where we use
off-the-shelf acoustic feature descriptors (see section III.C)
instead of the pre-trained mLSTM as a feature extractor. In
addition, we fuse sentiment predictions of acoustic and lin-



guistic classifiers by computing their weighted combination.
We tune hyperparameters (logistic regression regularization
strength and classifiers fusion weight) on the validation data.

B. Spoken Text Extraction

In our experiments, we train our own end-to-end ASR
model (see section IV). Our ASR model computes character
probabilities for each timestep and the final transcription
is extracted by simply taking the most probable character
for each frame (greedy decoding). The only post-processing
steps we perform are a) we merge together blank symbols
(used by the ASR model to denote a non-speech character or
a change between different characters and displayed here as
’_’) and character repetitions (aaa__bbb - a_b), b) capitalized
characters are lowercased with a space imputed in front
(H.i_HowA_re_Y_o_u - hi how are you). We do not apply
any language model to correct the potential spelling mistakes
of the model. For comparison, we extract the most probable
transcription using Google Web Speech AP]FJ

C. Acoustic Feature Extraction

We use the COMPARE 2016 feature set extracted by the
OpenSMILE toolkit [22]. This feature set contains 6,373 fea-
tures resulting from the computation of various functionals
(for example mean, standard deviation, maximum value) over
low-level descriptors (like mel cepstral coefficients, pitch,
loudness, etc.) described in [23].

IV. SPEECH RECOGNITION MODEL

To extract spoken text from the acoustic signal we train
an end-to-end neural automatic speech recognition system.
In this section, we outline the ASR architecture, describe
the data preprocessing and feature extraction pipeline, and
datasets used for training.

A. Architecture

Our ASR model (see Figure 3 is based on several stacked
Long Short Term Memory (LSTM) [24] recurrent layers [25].
The model contains five bi-directional LSTMs with batch
normalization layers in between [25] processing log mel-
spectrograms extracted from input audio. We use 40 mel co-
efficients, extracted using a Hamming window of 25ms width
and 10ms stride. We stack three consecutive speech frames
resulting in 120 features for each timestep. Frame stacking
greatly speeds up the training and makes it more stable as the
input and output are three times shorter. Recurrent layers are
followed by a fully connected layer with a softmax activation
on top, modelling the character probability distribution for
each speech frame. Along with the standard 26 English
characters, we introduce capital characters to the overall set
denoting the beginning of words for the model. Overall,
our model has around 61 million parameters. Connectionist
Temporal Classification (CTC) [26] is used as a loss criterion
to measure how the alignment produced by the network
matches to the ground-truth transcription.

Ihttps://pypi.org/project/SpeechRecognition/
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Fig. 3: Architecture of the ASR model used in this work. The
model is trained end-to-end by mapping mel-spectrograms
to characters using a stack of LSTM layers and CTC loss
function.

The Stochastic Gradient Descent optimizer is used in all
experiments with a learning rate of 0.0001 and a Nesterov
momentum value of 0.9, clipping the norm of the gradient
at the level of 400 with a batch size of 24. During the
training, we apply learning rate annealing with a factor of
1.1. We apply the SortaGrad algorithm [25] during the first
epoch by sorting utterances by their duration [27]. We select
the model with the best word error rate measured on the
LibriSpeech validation set (combined clean and noisy splits)
to prevent model overfitting. We train the model on two
GTX1080TI, and it takes around five days to train the model
until convergence.

B. Data Augmentation

Previous research in end-to-end speech recognition
demonstrated the importance of introducing random pertur-
bations into the speech signal like a change of pitch, tempo,
loudness, and adding noise [4], [25], [27], [28]. Since such
perturbations do not alter the target label (spoken text in the
case of speech recognition, or an emotion category), they can
be conveniently applied with some occurrence probability
during training. Data augmentation can be considered also as
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a way to increase the training data size. In the case of human-
robot interaction, it is crucial to have a noise-robust model
due to the presence of a robot’s ego-noise or background
noise.

In our experiments, we 1) change the tempo of the
recording by sampling the speed factor uniformly in a range
of [85, 120] percent, 2) change the loudness of the recording
by sampling gain uniformly in a range of [-6, 5] dB,
3) add random background noise, where non-speech noise
samples are selected from Google’s AudioSetEl by sampling
the noise-to-signal ratio uniformly in the range [0.1, 0.4]
and mixing it with the original utterances resulting in over
530,000 samples of 10 seconds in length, and 4) perturb
vocal tract length in the range [0.9, 1.1].

C. Speech Data

In our experiments, we use only freely available datasets.
We concatenate five datasets to train the ASR model: Lib-
riSpeech, TED-LIUM v3, Mozilla Common Voice, Google
Speech Commands v2 and VoxForge. LibriSpeech [29]
contains around 1,000 hours of English-read speech from
audiobooks. TED-LIUM v3 [30] is a dataset composed of
transcribed TED talks, containing 452 hours of speech and
2,351 speakers. VoxForge is an open-source collection of
transcribed recordings collected using crowd-sourcing. We
downloaded all English recordmgﬂ which are around 100
hours of speech. Common Vo1ceE| is a crowdsourced dataset,
where utterances were collected through a web interface.
Each participant was asked to pronounce a predefined text
and submit it to the website. In addition, other volunteers
were asked to check if the spoken text matches the actual
requested one. Overall, Common Voice contains around
300 hours of validated speech data. Google Speech Com-
mands contains 100,000 short recordings with only one
word pronounced (out of 30 possible ones) by a variety of
speakers. Overall, 850,000 utterances containing 1,600 hours
of speech from more than 3,000 speakers are used to train
the ASR model. We conduct no preprocessing other than the
conversion of recordings to WAV format with single-channel
16-bit signed integer format and a sampling rate of 16,000.
Utterances longer than 15 seconds are filtered out due to
GPU memory constraints.

V. EXPERIMENTS AND ANALYSIS

In this section, we outline the data used in our experiments
and the evaluation protocol and metrics, followed by the
evaluation results and comparisons to previous work.

A. Data and Evaluation Measure

1) CMU-MOSI: This dataset is a multimodal sentiment
intensity and subjectivity dataset consisting of 93 review
videos in English with 2,199 utterance segments collected

Zhttps://research.google.com/audioset/

3http://www.repository.voxforgel.org/downloads/
SpeechCorpus/Trunk/Audio/Original/48kHz_l6bit/

*https://voice.mozilla.org/
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Fig. 4: Histogram plot visualizing the dependency between

the character error rate of our trained ASR system and

the accuracy of the sentiment recognition model. We note

that even for samples with 20-30% character error rate the

accuracy score is greater than 70%.

from YouTube [32]. Each segment is labelled by five indi-
vidual annotators between -3 (strong negative) and +3 (strong
positive). We binarize the labels (positive and negative)
based on the sign of the annotations’ average to compare
to the previously published methods. We use an 80%-20%
training-testing speaker-independent split following the same
strategy as in previous work [1], leaving 10% of training
data for validation. Specifically, there are 1,279 utterances
for training, 233 for validation and 686 utterances for testing.
We report accuracy and macro Fl-score calculated over the
test set.

B. Human Robot Simulation

To simulate an acoustically close to real-life scenario,
we re-recorded the CMU-MOSI corpus in our lab. The
experimental setup [33], as shown in Fig. [3 consists of
loudspeakers which are placed around the Soundman wooden
head [34], behind the white display between 0° and 180°
along the azimuth plane with the same elevation. The Sound-
man head is 1.6 meters away from the speakers, designing
a far-field communication setup. We only use 4 speakers
out of 13 speakers. In our previous work [2], [4] we use
the iCub robotic head to test the robustness of our models
against the robot’s ego noise. However, in this paper, we
use the Soundman wooden head to focus on background
noise generated by the projectors, computers, air conditioner,
power sources as well as noise from airplanes frequently
passing nearby, and reverberation noise. The entire recording
was done in our lab.

C. Spoken Text Extraction Performance

We calculate Word Error Rate (WER) and Character Error
Rate (CER) for Google ASR and our ASR model evaluated
on the MOSI and MOSI-Soundman datasets. Google ASR
has on average 51.3% WER and 39.7% CER on the original
MOSI dataset, and 49.1% WER and 38.6% CER on the
MOSI-Soundman. Our ASR model has 53.2% WER and
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TABLE I: Sentiment prediction results on the CMU-MOSI test set. The best result of the model which does not use ground-
truth transcriptions is highlighted in bold. Text source denotes how the spoken text was extracted: either ground-truth from
the MOSI data or ASR output (Google Web Speech API or our ASR) was used. MOSI-Soundman is the MOSI dataset
re-recorded in our lab emulating human-robot interaction scenario.

Model Dataset Modalities Text Source Accuracy  F-Score

Tensor fusion network, Zadeh et al. [1] MOSI audio + text ground-truth 74.6% 74.5%
MARN, Zadeh et al. [6] MOSI text ground-truth 77.1% 77.0%

Word-level alignment, Gu et al. [10] MOSI text+audio+vision ground-truth 76.4% 76.8%
Recurrent multi-stage fusion, Liang et al. [31] MOSI text+audio+vision ground-truth 78.4% 78.0%
Ours char-RNN + LogReg MOSI text ground-truth 80.4% 79.8%

Ours, char-RNN + LogReg MOSI audio - 54.8% 54.1%

Ours, char-RNN + LogReg MOSI-Soundman audio - 53.6% 53.4%

Ours, char-RNN + LogReg MOSI text our ASR 69.9% 68.7%

Ours, char-RNN + LogReg MOSI text Google ASR 69.6% 69.3%

Ours, char-RNN + LogReg (2x models fused) MOSI text Google ASR + our ASR 72.3% 71.9%
Ours, char-RNN + IS16 + LogReg (3x models fused) MOSI text + audio Google ASR + our ASR 73.6 % 73.1%
Ours, char-RNN + LogReg MOSI-Soundman text our ASR 58.4% 58.2%

Ours, char-RNN + LogReg MOSI-Soundman text Google ASR 67.9% 67.7%

Ours, char-RNN + IS16 + LogReg (2x models fused) =~ MOSI-Soundman text + audio Google ASR 70.1% 69.7%
Ours, char-RNN + IS16 + LogReg (3x models fused) =~ MOSI-Soundman text + audio Google ASR + our ASR 70.2% 69.8%

Fig. 5: Lab setup of the Soundman head in front of loud-
speakers behind a screen. The positions of the speakers are
highlighted with external light. See also [33].
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Fig. 6: CER and WER density plots for our ASR (blue) and
Google ASR (red) evaluated on the MOSI (solid line) and
MOSI-Soundman datasets (dashed line).
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28.9% CER on the MOSI dataset, and 75.7% WER and
48.6% CER on the MOSI-Soundman. On the close-field
communication (original MOSI) our model shows competi-
tive results, while Google ASR being superior on the far-
field scenario. Figure [6| shows the density plots of CER
for our ASR and Google Web Speech API, demonstrating
the difference in the models: the latter system has a lower
WER on average and two peaks on the CER density plots,
where the right one occurring at the 75%+ CER area could
be explained by language model application. The language
model corrects spelling mistakes, but, on the other hand,
can change the word completely (for example, names) and
increase CER while having better WER.

D. Experimental Results

We present the results of our experiments in Table [ We
observe that the character-level mLSTM model pretrained
on the Amazon reviews with a simple logistic regression
can outperform all the previously published methods, which
are more complex and integrate multiple modalities. One
argument could be that this mLSTM model even though
trained unsupervised has seen significantly more textual data
than any work we compared it with. On the other hand, the
pretrained word embeddings used in [1], for instance, can
be an example of encoded external knowledge. Therefore,
we believe that this pre-trained mLSTM model is extremely
useful for the spoken sentiment recognition task. In addition,
we achieve 69.9% and 69.6% accuracy score using the
same model, but with the character output of our trained
ASR system and Google ASR respectively. Interestingly,
the fusion of these two models yields a significant gain in
performance, achieving 72.3% accuracy and 73.6% accuracy
by adding acoustic features. These ASR models make dif-
ferent and uncorrelated mistakes and this can explain the
boost of combining them. Overall, the performance gap
between the previous best-reported model using acoustic and
linguistic modalities and our setup is around 1% accuracy
and 1.3% F-score. However, in our experiments, we did not
use ground-truth transcriptions, but only raw and processed



TABLE II: Examples from the CMU-MOSI dataset. For each example, we show ground-truth transcription, our ASR model
output, sentiment ground-truth and model prediction, and ASR character error rate for this example.

ground-truth text ASR transcription Sentiment Model CER
output

a) I hated it I haved I neg pos 25%
b) its a pointless scene it’s appointmen seen from the 22.9%
for the audience and the characters audience tho the characters neg pos o
¢) anyway oh you can see im still ay ligt o you can see o stell speechlesses 35.6%
speechless this movie was just beautiful will be was beautiful pos pos e
d) who haye named themselves gfter t.he places sen who raee named themselves after the places and to
um to which they have traveled in which . . ) Lo . pos pos 32.2%
S ) which with travelling which i think is a really nice to or
i think is a really nice
e) yeah it really is good i mean really is good i mean pos pos 26%
f) it was terrible ws terrible 1 neg neg 30.7%
g) t.)m if you are a C.hlld whq grew up in .that time but if youere a child who grew up in that time cerrod
period youre not going to enjoy this movie s . . . . neg neg 13.9%
very much you’re not going to enjoy this movvie very much because
h) but nevertheless another really . L
cool thing about this movie but never was anoter really callring about this ruie pos neg 27.5%
i) um that being said you can tell that lot people that being said you can sell that lot people were pos neg 20.3%

were having fun with this

with ASR acoustic signal ones. Our results show that Google
ASR is robust to the change of recording conditions and
we get similar results on the MOSI and MOSI-Soundman
data, while our ASR system performs significantly better
on the original MOSI data. We hypothesize that our data
augmentation pipeline needs to be improved further by
simulating different room conditions during random training
to achieve better results in noisy and reverberant conditions
for far-field communication.

We provide several examples from the MOSI dataset in
table [lIl The examples b and i demonstrate a situation when
the ASR did not recognize correctly the key word, which
changes the sentiment of the phrase completely. However, the
examples d or e demonstrate that even with a relative high
CER value of 32% the character-level model can tolerate
those errors and correctly classify the sentiment.

E. Importance of ground-truth transcriptions for word-level
sentiment model

As we observed a significant drop in performance when
using spoken text extracted from Google ASR or our own
ASR system, we performed an additional experiment using a
word-level model with architecture similar to [35]. It consists
of a 1-dimensional convolution network with 100 filters of
sizes 2,3,4 and 5, followed by a fully connected layer with
400 units and an output node with a sigmoid activation for
binary sentiment modelling. We achieved 74.7% accuracy
on the MOSI test set, similar to spoken text-only results
[1]. However, if we substitute test set transcriptions with
the Google ASR results, we observe a drop to 56.8%
accuracy, which can be a sign of significant overfitting to
the specific words and text modality in general. This result
is the additional testimony that it is crucial to take into
account potential ASR mistakes during training to achieve
robust sentiment recognition in practice.

VI. CONCLUSIONS

We addressed spoken sentiment recognition in conditions
when ground-truth text is not available. Multiple previous

having to phumbl ois

works demonstrated that the linguistic features dominate
audio-visual input in sentiment and emotion recognition
tasks. However, we note that those systems were trained
and evaluated using human-transcribed text and, practically,
we are not able to use it, for example, during human-
robot interaction, when spoken text should be recognized in
real time. We demonstrated the discrepancy in performance
when ground-truth transcriptions are not present as input
and ASR output is used instead on two models: character-
level mLSTM with the linear classifier and word-level CNN.
However, we observe significant improvements over the
acoustic-only baseline on the original and re-recorded MOSI
data by adding the ASR hypothesis, which shows that
the linguistic modality is still crucial to achieving high-
performance sentiment recognition.

In future work, we plan to investigate further ways to
integrate multiple ASR hypotheses for robust sentiment
and emotion recognition. The ensemble of Google Web
Speech API and our ASR model show a significant boost
in performance indicating the need of having a diverse set
of hypotheses to make a better judgement of the affective
state of a speaker. Character-level representations learned
from the unsupervised language modelling task show very
promising performance and we plan to research further
whether a similar approach can be transferred to learning
robust acoustic representations.

The demo, our pre-trained ASR model and its
parameters are available at https://github.com/
EgorLakomkin/icra_2019_speech
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