
Spin Detection in Robotic Table Tennis*

Jonas Tebbe1, Lukas Klamt1, Yapeng Gao1, and Andreas Zell1

Abstract— In table tennis, the rotation (spin) of the ball plays
a crucial role. A table tennis match will feature a variety of
strokes. Each generates different amounts and types of spin.
To develop a robot that can compete with a human player, the
robot needs to detect spin, so it can plan an appropriate return
stroke. In this paper we compare three methods to estimate
spin. The first two approaches use a high-speed camera that
captures the ball in flight at a frame rate of 380 Hz. This camera
allows the movement of the circular brand logo printed on the
ball to be seen. The first approach uses background difference
to determine the position of the logo. In a second alternative,
we train a CNN to predict the orientation of the logo. The
third method evaluates the trajectory of the ball and derives
the rotation from the effect of the Magnus force. This method
gives the highest accuracy and is used for a demonstration. Our
robot successfully copes with different spin types in a real table
tennis rally against a human opponent.

I. INTRODUCTION

One of the most difficult tasks when playing table tennis
is judging the amount of spin on a ball. To achieve the goal
of beating human players of different levels, a table tennis
robot needs to be able to accurately predict spin. A lot of
prior knowledge is required to assign the right spin to a
shot. The major factor used by human players to judge spin
is the opponent’s stroke. It is, however, difficult to detect
stroke movement with a camera. Such an approach would
also require training with a number of different people and
rackets.

Some professional players with excellent eyesight are able
to see the rotation of the ball from the movement of the
brand logo. By recording the ball with high-speed cameras,
it is possible to identify markers on the ball and detect its
rotation. This is the most common approach in the literature.
Tamaki et al. [1] use black lines on the ball for tracking.
Zhang et al. [2], [3] use the logo printed on the ball.

Another promising approach is to use measurements of
the ball’s trajectory to determine spin. Huang et al. [4] used
a similar approach, involving a physical force model which
included the Magnus force, to determine the rotation of the
ball. Zhao et al. [5], [6] replace the norm of the velocity
necessary to calculate the air resistance. Thus, a differential
equation can be solved and one can fit the speed and spin
values. Blank et al. [7] capture stroke motion using an IMU
mounted on the bat to predict the rotation of the ball. Gao et

*This work was supported in parts by the Vector Stiftung and KUKA
1Jonas Tebbe, Lukas Klamt, Yapeng Gao and Andreas Zell are

with the Cognitive Systems group, Computer Science Department,
University of Tuebingen, 72076 Tuebingen, Germany [jonas.tebbe,
yapeng.gao, andreas.zell]@uni-tuebingen.de,
lukas-raphael.klamt@student.uni-tuebingen.de

Fig. 1. Spin Detection used to return balls with high rotation on a real
robot. Supplementary Video: https://youtu.be/SjE1Ptu0bTo

al. [8] track the table tennis bat using stereo cameras and use
a neural network to classify the different types of strokes.

Our goal is to develop a table tennis robot that can
successfully return spin strokes from a human opponent.
To achieve this we introduce and evaluate three different
methods for spin detection using the movement of the ball’s
logo or its trajectory. Our key contributions are summarized
by the following:
• State of the art spin detection using logo extraction is

improved by circular segment fitting.
• A CNN is trained on ball images outperforming stan-

dard logo extraction methods. For training and evalua-
tion of the CNN a dataset of 4656 images with manual
logo orientation label is created.

• Fitting the different forces to the ball trajectory gives a
robust spin estimation independent of the ball’s logo.

• The trajectory fitting is employed on a real robot
system and gives convincing results playing against a
human opponent, featuring a diversity of strokes (and
corresponding spin types) from both human and robot.
To our knowledge this level of stroke adaption has not
yet been shown by any other robot.

Going beyond the topic of this research work, these
methods could have an impact on spin detection in other
research areas, especially research focusing on sports with
fast flying and strongly rotating balls, like tennis, baseball
or football. As well as developing robots for these sports,
spin detection can also be used for match analysis or
for evaluating and improving player technique. There are
various general robotic applications where it is necessary
to determine the rotation of objects. In the case of table
tennis, processing time is the key factor in determining
whether or not the application will be successful. In modern
highly-dynamic robotic systems, time-optimized object pose

ar
X

iv
:1

90
5.

07
96

7v
2

 [
cs

.C
V

]
 1

6
O

ct
 2

01
9

https://youtu.be/SjE1Ptu0bTo

detection is essential, e.g. when grasping objects in human-
robot collaboration or during autonomous driving in high-
speed traffic.

II. SPIN ESTIMATION FROM THE BRAND LOGO BY
BACKGROUND SUBTRACTION

A PointGrey Grasshopper3 camera is mounted on the
ceiling above the center of the tablet tennis table. The camera
can achieve 162 fps at full resolution (1920 x 1200). A very
high ball spin exceeds 100 revolutions per second. In this
case the ball’s brand logo would be visible only every second
frame. We therefore selected a ROI of 1920 x 400 and record
at 380 fps, which is possible with this camera type. The
exposure time was 0.25 ms.

A. Ball Detection

The ball is extracted from the image using a frame differ-
ence method taken from [9]. Figure 2 presents two example
sequences of cropped ball images showing the movement of
the brand logo.

Fig. 2. Top row: A sequence of ball images in which the rotation of the
brand logo is fully visible. Bottom row: The logo is also visible throughout
the sequence, but the movement at the edge of the ball’s image is more
difficult to see.

B. Logo Contour Detection

Ball detection yields an image containing only the ball at
a size of around 70 x 70 pixels. The process of marking all
the pixels that belong to the brand logo is described in figure
3. For all pixels of the logo contour, we want to know the
3D positions on the ball.

(a) (b) (c) (d) (e) (f)

Fig. 3. logo detection process using motion and color features: (a) current
frame, (b) ball without logo, (c) color threshold of a, (d) difference of a
and b (e) binary threshold of d, (f) bitwise or of (c) and (e)

C. 3D Projection

The ball extraction also gives the radius of the ball in
pixels. This is calculated by fitting a circle to the ball blob.
For each contour pixel, we first calculate its position relative
to the ball’s center. The x and y components are then divided
by the ball’s radius. Since our 3D point must lie on the unit
sphere, the z component can be derived from

1 = x2 + y2 + z2.

D. Brand Logo Center

The next step involves calculating the logo center. In our
first approach, we simply normalize the average of all 3D
contour points. This does not take into account the fact that
contour points closer to the ball’s center in the image are
more frequent. The centroid can also be calculated iteratively
using Ritter’s bounding sphere [10] on the 3D contour points.
Normalization projects the centroid onto the unit sphere. As
this did not significantly boost accuracy, we used the first
approach, which was faster.

Fig. 4. Left: 3d projected logo contour for a partially visible ball seen
from the top. Right: Schematic representation of a circular segment

On the camera images only one side of the ball is visible.
Therefore, brand logos may be only partially in view when
they are located at the edge of the shown area. The left
of figure 4 shows a contour transformed into the 3D ball
coordinate space for such an edge case. In this case the
contour does not form a circle but a 2D circle segment, so
the center position cannot be obtained as before.

We approximate the area A as π times the average distance
from the contour (green crosses in figure 4 left) to the
centroid. We know the actual radius r of the logo from
measurements. We can therefore derive the distance from
the centroid c to the real center x from the area A [11]:

A =
r2

2
(2α− sin(2α))

d(x, c) =
4r sin3(α)

3(2α− sin(2α))
.

To get the real 3D center we rotate the centroid c by
angle β = 360◦d(x, c)/2πr around the axis (0, 0, 1). The
circular segment fitting stabilizes the spin detection for the
challenging edge case compared to the original approach of
Zhang et al. [2].

E. Fitting Rotation

After processing 10 to 30 images captured every 1/380s
from the ball’s trajectory as described above, we can estimate
the ball’s spin. For this purpose, we fit a plane through the
center points. The fitted plane should minimize the distance
to the points. Additionally, the distance of the points to
the circle created by intersecting the plane with the ball,
represented as the unit sphere, should be minimized. An
example is shown in figure 5.

To get the angular velocity, we project the logo positions
onto the plane and calculate the angle ω between two
consecutive logo positions. If the logo was not found on
two or more successive images, the ball has made a half

Fig. 5. Detected ball positions displayed in chronological order. The fitted
plane is visualized by a grid of lines.

revolution. The rotation is therefore described not by the
short angle ω between the points before and after but by the
large angle 360◦−ω. At the end we have a sequence of the
accumulated angles and fit a regression line to the sequence.
The gradient of that line gives us the angular velocity.

III. SPIN ESTIMATION BY CNN ON BALL IMAGE

Our second approach uses a Convolutional Neural Net-
work (CNN) to estimate the visibility of the logo and the
3D pose of the ball. We then use the same algorithm as in
section II-E to estimate the rotation axis and angular velocity.

A. Dataset

To train and test the network, a total of 4656 images were
recorded using our PointGrey Grasshopper3 camera. The
images were cropped around the table tennis ball to have
a fixed size of 60 x 60 pixels. 46.7% were labeled as having
no visible brand logo. The ball’s pose was labeled with the
help of a 3D scene containing a ball with realistic logo
texture. The 3D scene was modeled with the open-source
3D computer graphics software Blender [12]. Each real ball
image was placed transparently over the scene. Next, the 3D
ball model can be optimized to fit the actual image and the
pose can be read out by the Blender Python API.

B. Network Architecture

Related work on pose detection with neural networks [13],
[14] favours the residual network architecture from He et al.
[15]. To use the information for our robot, the model has to
run approximately in real-time. Therefore we use the smallest
of the ResNet architectures from [15] having 18 layers.

Expanding the idea of Mahendran et al. [13] we tested
networks with two additional fully-connected layers (FC)
with 512 neurons each right before the final regressor. This
modification should improve the transformation from feature
space to pose space. The effectiveness of the additional layers
at various dropout rates can be observed in table I.

C. Network Output

There are several mathematical representations of a rota-
tion. One can use rotation matrices, Euler angles, axis angles
representation, or quaternions. Matrices do not fit as output
of our network, as more parameters need to be estimated
and one needs to ensure that the result is within the matrix

subgroup SO(3) of rotation matrices. With Euler angles it
is difficult to represent continuous rotations. As a result,
we trained networks to predict the pose of the table tennis
ball in either axis angle representation or in quaternions. For
either representation, the output is concatenated with a real
number for the visibility of the brand logo. The range of the
visibility value is [−1, 1] to match the z-positions away from
the camera. In the dataset non-visible logos are labeled as
−1.

D. Loss Functions

The proposed neural network has to learn two tasks
simultaneously. It needs to classify whether the brand logo of
the ball is visible and predict the pose of the ball. If the logo
is not visible, the pose cannot be determined. In this case,
the network should not learn any incorrect poses. Hence, we
define a conditional loss function that splits the loss into the
two tasks:

L = Lclassification + tv Lorientation

where tv denotes the binary ground truth visibility value. For
a visible logo, the value is 1. Otherwise it is 0. Therefore,
we call it conditional loss.

When outputting in axis angle or quaternion represen-
tation, we adjust the pose losses for ambiguity. In both
representations, the negative value gives the same orientation
since the rotation in the opposite direction about the negative
axis corresponds to the original rotation. We tested both L1

and L2 norms to get the following conditional losses:

L1 = (ov − tv)2 + tv min

(
n∑

i=0

(oi − ti)2,
n∑

i=0

(oi + ti)
2

)

L2 = |ov − tv|+ tv min

(
(

n∑
i=0

|oi − ti|,
n∑

i=0

|oi + ti|

)
where o = (o1, · · · , on, ov) is the output vector of the
network and t = (t1, · · · , tn, tv) is the target vector.

A more complex, but fairly exact measurement of the
accuracy of rotations is the geodesic distance in SO(3). For
two rotations this metric returns the angle (from axis-angle
representation) of the rotation aligning them both. If R1, R2

are rotation matrices the geodesic distance is calculated as

dGD(R1, R2) = arccos

(
tr
(
RT

1 R2

)
− 1

2

)
For quaternions q1, q2 the geodesic distance is computed by

dGD(q1, q2) = 2arccos(| < q1, q2 > |)

where | · | denotes the absolute value and < ·, · > is the inner
product of 4-dimensional quaternion vectors. As before, we
define a new loss function

LGD = |ov − tv|+ tv dGD (o, t) .

The best performance was achieved by training quater-
nions with the conditional L2 loss (see table II).

GAP FC dropout train. loss test loss classification geodesic vector angle
cond.-L1 cond.-L1 accuracy in deg. in deg.

1 - - 0.0309 0.3028 0.974 33.97 7.72
- 3 - 0.0342 0.3212 0.975 36.32 8.01
- 3 0.5 0.2674 0.4288 0.974 49.86 19.81
- 3 0.8 0.1347 0.3162 0.974 34.55 13.74
1 3 - 0.1006 0.2199 0.975 24.01 5.08
1 3 0.5 0.0976 0.2215 0.974 23.90 5.16
1 3 0.8 0.1022 0.2161 0.974 23.06 4.89

TABLE I
ALL MODELS ARE RESNET ARCHITECTURES. THE CLASSIFICATION COLUMN SHOWS THE ACCURACY OF THE BINARY CLASSIFICATION TASK.

GEODESIC DESCRIBES THE GEODESIC DISTANCE BETWEEN GROUND TRUTH LABEL AND PREDICTION. VECTOR ANGLE DENOTES THE METRIC FROM

CHAPTER III-D. THE BEST RESULTS ARE MARKED IN BOLD.

loss rotation geodesic vector angle
function representation in deg. in deg.
cond.-L1 quaternions 23.06 4.89

axis angle 27.40 9.93
quaternions 27.92 6.69

cond.-L2 axis angle 30.90 11.20
quaternions 43.38 13.54

L2 axis angle 37.63 17.90
Geodesic quaternions 23.49 5.97

TABLE II
NETWORK METRICS EVALUATED ON NETWORKS TRAINED WITH

DIFFERENT LOSS FUNCTIONS AND ROTATION REPRESENTATIONS.

E. Metrics

The most difficult part of the rotation for the networks
to determine is the logo’s orientation about its center. We
therefore also want to evaluate the accuracy of the network’s
prediction of the position of the logo on the ball only, i.e.
without considering whether it is rotated in itself. For that
we need an additional metric not affected by the orientation.
We convert the rotation of the ball to logo positions, rep-
resented by points on the unit sphere, by rotating the base
logo position (0, 0, 1). The metric is then the vector angle
describing the angle between two positions.

The network is used on several images of the ball trajec-
tory. For the final spin estimation the poses outputted from
the networks are converted to logo positions as described in
the previous paragraph. We then use the same algorithm as
in section II-E to estimate rotation axis and angular velocity.

F. Training Setup

The dataset from section III-A was split into training and
test set with a 4 : 1 ratio. As a result, 3725 images were
used for training and 931 for testing. The networks were
trained with Tensorflow using an Nvidia GeForce GTX 1080
Ti graphics card.

G. Inference Time

In our scenario it is not just accuracy that matters -
time for the evaluation (inference time) is also important.
From the camera we get images at 380 Hz. This gives
us a processing time of 2.6 ms per image for real-time

performance. Segmenting the ball out and cropping takes
0.5 ms, leaving 2.1 ms for the network. The best network
has an inference time of 3.7 ms on a GTX1080 Ti graphics
card. We solve the problem by processing in batches of 5
images, taking only 5.5 ms in total due to reduced overhead.

Our best performing network is an 18-layer ResNet plus
global average pooling and two fully connected layers trained
to output quaternions with conditional L2 loss. Augmenting
the data with 90◦ rotations and Gaussian noise with standard
deviation of 5% achieves the following result:

class. acc. geodesic vector angle
0.96 20.14◦ 4.23◦

IV. SPIN ESTIMATION FROM THE TRAJECTORY

In this section we introduce a way of estimating the spin
from the trajectory of the ball. We utilize the fact that the
rotation of the ball acts on the ball via the Magnus force.
Similar work on the topic has been done by Huang et al. [4].

flight direction

rotation axis

gravitation Fg

air resistence Fd

Magnus force Fm

Fig. 6. The graphic visualizes the three forces acting on the ball: gravitation
pointing downwards, air resistance or drag force in the opposite direction
to the flight, and Magnus force perpendicular to the spin axis and flight
direction.

The forces are depicted in figure 6. The gravitational force
Fg is directed towards the ground. The drag force coming
from the air resistance acts in the opposite direction to the
flight of the ball. The Magnus force is perpendicular to the
rotation axis and the flight direction. The acceleration of the

ball is therefore calculated by

v̇ = −kD ‖v‖ v + kM ω × v −

0

0

g

 . (1)

The notation is shortened with kD = − 1
2CDρaA/m and

kM = 1
2CMρaAr/m, where the constants are the mass of

the ball m = 2.7g, the gravitational constant g = 9.81m/s2,
the drag coefficient CD = 0.4, the density of the air ρa =
1.29kg/m3, the lift coefficient CM = 0.6, the ball radius
r = 0.02m, and the ball’s cross-section A = r2π. For a
ball with medium to heavy spin the forces all have similar
magnitudes, as can be seen in figure 8.

A. Fitting

0 50 100 150 200 250 300 350
0

100

200

300

400

Time in ms

B
al

l H
e

ig
ht

 in
 m

m

0 50 100 150 200 250 300 350
-4
-3
-2
-1
0
1
2

Time in ms

Z
-V

el
oc

ity
 in

 m
/s

Fig. 7. The top diagram shows the height or z-positions for an example
trajectory. For the same trajectory the z-velocity, calculated between each
pair of neighbouring points, is shown below.

Given 3D observations b1, ..., bn of the ball with ball posi-
tions bi = (xi, yi, zi) at times t1, ..., tn we need to estimate
velocity and acceleration of the ball to derive the Magnus
force. Calculating the velocity between two points is error
prone as seen in figure 7. The problem is solved by fitting
a third degree polynomial P (t) = (Px(t), Py(t), Pz(t)) for
each axis using a standard least-squares algorithm. At time
step t the velocity is approximated by P ′(t) and the total
acceleration by P ′′(t). Rewriting equation (1) with these
approximations yields

kM ω × P ′(t) = P ′′(t) + kD ‖P ′(t)‖P ′(t) +

0

0

g

 .

Here we assume that the rotation vector ω is constant within
the time of flight. We get this equation for each t = t1, ..., tn.
All the equation can be transformed into the equation system
Mω = a with a m × 3 matrix M and an m-dimensional
vector of accelerations a. We then get a least-squares solution
for ω. Note that the acceleration caused by drag force is
perpendicular to the Magnus acceleration on the left. As an
effect our fitting of ω does not depend on the coefficient
kD but only on kM in contrast to other work [4], [6]. In
figure 8 the forces in each step are displayed for an example
trajectory.

0 50 100 150 200 250 300 350
0

0.01

0.02

0.03

0.04

drag force

gravitational force

Magnus force

Time in ms

F
or

ce
s

in
 N

Fig. 8. In the diagram the three involved forces for the Magnus fitting are
displayed for an example trajectory of a topspin ball.

B. Preprocessing: Outlier filtering

The process is error prone to outliers. Even for a slight
impact for the fitted trajectory these outliers can produce
unrealistic fitted spin values. Especially at the beginning of
the trajectory incorrect recognitions can occur when a part
of the human body, e.g. the hand, is detected instead of
the ball due to its roughly circular shape. For the first 20
balls we select the last 5 balls and make a polynomial fit
as above. If the error for the ball #14 is below a specific
threshold we start again with balls #14 to #19 otherwise
we remove ball #14 as outlier. Repeating this process we
remove detected objects which do not belong to the trajectory
at the beginning.

With the position b = P (tn), speed v = P ′(tn) and spin
ω we predict the future trajectory. The improvement for the
prediction can be seen in table III. We tested backspin, side
spin and topspin at three different speed settings with our
TTmatic ball throwing machine. For comparison a Kalman
filter is used to only predict position and speed without
considering the angular velocity of the ball. The statistic
includes 90 trajectories in total divided into 10 trajecto-
ries each. The estimated spin values significantly improves
bounce estimation. In contrast to the first two approach using
the ball’s logo, the spin can used for predicting the future
trajectory without adjusting the Magnus coefficient CM . As
we divide by it for spin estimation we multiply again for
prediction. For the other methods, we found no constant CM

independent of the spin type, which gave good results.

With fitted spin Without spin value
in mm Error Stddev Error Stddev

Backspin Low 10.28 5.09 36.78 6.57
Medium 27.02 11.22 125.76 17.08
High 43.37 32.14 170.75 25.15

Sidespin Low 9.68 5.56 43.15 7.99
Medium 16.35 10.47 82.74 13.82
High 27.99 9.80 108.24 11.23

Topspin Low 19.01 5.62 90.10 16.96
Medium 23.36 11.24 167.17 14.76
High 86.84 52.70 338.28 31.00

TABLE III
RESULTS ON BOUNCE POINT PREDICTION FOR BALLS SERVED FROM A

BALL THROWING MACHINE WITH DIFFERENT SETTINGS. FOR EACH

SETTING WE RECORDED 10 TRAJECTORIES.

V. COMPARISON

In this paper, we looked at three algorithms to detect the
spin of a table tennis ball. The first two can be compared
by evaluating the angular error between the actual and the
predicted logo position. The original background subtraction
method gives an angular error of 5.77◦. We improved it
to 5.06◦ by using circular segment fitting. Our best con-
volutional neural network reached an error of only 4.23◦.
However, both background subtraction methods are faster,
with an average processing time of 0.3 ms, compared to the
network inference at 3.7 ms per image. Batch processing
accelerates inference slightly (section III-G).

For the final spin prediction there are no ground truth
values available. Therefore we evaluate how good the al-
gorithms are for the classification of spin types. Using a
TTmatic ball throwing machine we recorded 50 trajectories
each for 3 spin types and 3 different powers, 9 settings in
total. Unfortunately the machine does not allow the speed
and rotation of balls to be set independently. Faster spin is
therefore accompanied by a higher velocity. The median spin
is calculated for each algorithm and setting. This 3D vector
defines a cluster in three-dimensional space. Each spin value
is then assigned to the nearest cluster center. The accuracy
values in table IV show how many of the trajectories were
correctly classified for each setting.

Surprisingly, the algorithms are similar in accuracy,
slightly in favor of the trajectory fitting. A drop in per-
formance is noticeable for balls with a lot of side spin.
For this spin type the logo often rotates around itself at
the top and hardly changes position. Then the first two
variants reached their limit. For the same case appearing
on the invisible side the logo cannot be seen and evaluated
with these methods. The third algorithm does not suffer
from brand logo dependence. However, it had difficulty
distinguishing between the medium and high backspin. For
these, the trajectories were not different enough leading to
two median values relatively close to each other. All in
all, a good classification can be achieved with all methods.
An improvement would probably achieved by combining an
approach using the brand logo with the Magnus force fitting.

Spin type Background Bg. sub. + CNN Trajectory
subtraction segment fit fitting

Backspin
Low 88.0% 94.0% 96.0% 100.0%
Medium 84.0% 92.0% 94.0% 58.0%
High 70.0% 86.0% 80.0% 60.0%

Sidespin
Low 94.0% 98.0% 98.0% 100.0%
Medium 68.0% 58.0% 74.0% 94.0%
High 60.0% 68.0% 66.0% 100.0%

Topspin
Low 84.0% 90.0% 88.0% 86.0%
Medium 78.0% 86.0% 88.0% 96.0%
High 90.0% 96.0% 96.0% 100.0%

in total 79.6% 85.3% 86.7% 88.2%

TABLE IV
CLUSTERING ACCURACY OF ALL THE ALGORITHMS.

VI. EVALUATION ON A TABLE TENNIS ROBOT

The success of spin detection is demonstrated on a KUKA
Agilus KR6 R900 robot arm. The table tennis robot system
has to respond to different spin types generated by a human
opponent. For this demonstration we decided to go with the
trajectory Magnus force fitting. It is more accurate, easier
to set up and uses fewer resources. No additional camera
hardware is necessary since the ball’s positions are already
captured to predict the trajectory.

We originally developed a table tennis robot system to play
without spin [9]. In short, the ball position is extracted from a
multi-camera system using color and movement information.
Then the ball’s 3D position is triangulated. To track the
position and velocity of the ball we use an extended Kalman
filter. The future trajectory is predicted from this using the
force equation (1). As soon as we roughly know, where to hit
the ball, we move the robot to this position with predefined
bat orientation and velocity using a custom driver software
and the KR-C4 controller.

In the new spin scenario the return strokes use a different
bat orientation. It is given in Euler angles in the order
zyx. The z- and x-angle are still only dependent on the
y-position of the hitting point. However, the y-angle β is
linearly dependent on the y-component βspin of the fitted
rotational velocity of the ball. For a topspin or backspin
ball with βspin = ±360◦/s, we use a β of 28◦ and −40◦,
respectively. For other values of βspin we interpolate linearly.
At the time of hitting the table tennis racket has a velocity of
approximately 1 m/s in the direction of the human opponent.

A video demonstration of the experiment is available
online1. The rubber of the bat is a professional table tennis
rubber with high friction. A lot of spin therefore acts on the
ball after contact with the bat and our robot is still able to
return the ball consistently. As far as we are aware, no other
table tennis robot has yet achieved the feat of returning the
ball under such challenging conditions.

VII. CONCLUSION AND FUTURE WORK

Three methods for spin detection of a table tennis ball
were introduced or further enhanced. These approaches were
compared. Yielding the best accuracy, the trajectory fitting
method is used to generate consistent returning strokes
with our KUKA Agilus robot in cooperative, but highly
challenging spin-play against a human opponent.

In future, we plan to go from cooperative to competitive
strokes. Although our robot control approach is effective
for cooperative spin play, it clearly has limits in terms of
adaptability. Only the angle of the bat while hitting is adapted
using a basic linear model. In a next step, the predicted spin
may help to train the speed and orientation of the bat in a
more sophisticated way using reinforcement learning.

1https://youtu.be/SjE1Ptu0bTo

https://youtu.be/SjE1Ptu0bTo

REFERENCES

[1] T. Tamaki, H. Wang, B. Raytchev, K. Kaneda, and Y. Ushiyama,
“Estimating the spin of a table tennis ball using inverse composi-
tional image alignment,” in 2012 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), March 2012, pp.
1457–1460.

[2] Y. Zhang, Y. Zhao, R. Xiong, Y. Wang, J. Wang, and J. Chu, “Spin
observation and trajectory prediction of a ping-pong ball,” in 2014
IEEE International Conference on Robotics and Automation (ICRA),
May 2014, pp. 4108–4114.

[3] Y. Zhang, R. Xiong, Y. Zhao, and J. Wang, “Real-time spin estimation
of ping-pong ball using its natural brand,” IEEE Transactions on
Instrumentation and Measurement, vol. 64, no. 8, pp. 2280–2290, Aug
2015.

[4] Y. Huang, D. Xu, M. Tan, and H. Su, “Trajectory prediction of spin-
ning ball for ping-pong player robot,” in 2011 IEEE/RSJ International
Conference on Intelligent Robots and Systems, Sept 2011, pp. 3434–
3439.

[5] Y. Zhao, Y. Zhang, R. Xiong, and J. Wang, “Optimal state estimation
of spinning ping-pong ball using continuous motion model,” IEEE
Transactions on Instrumentation and Measurement, vol. 64, no. 8, pp.
2208–2216, Aug 2015.

[6] Y. Zhao, R. Xiong, and Y. Zhang, “Model based motion state
estimation and trajectory prediction of spinning ball for ping-
pong robots using expectation-maximization algorithm,” Journal of
Intelligent & Robotic Systems, vol. 87, no. 3, pp. 407–423, Sep 2017.
[Online]. Available: https://doi.org/10.1007/s10846-017-0515-8

[7] P. Blank, B. H. Groh, and B. M. Eskofier, “Ball speed and spin
estimation in table tennis using a racket-mounted inertial sensor,” in
Proceedings of the 2017 ACM International Symposium on Wearable
Computers, ser. ISWC ’17. New York, NY, USA: ACM, 2017, pp.
2–9. [Online]. Available: http://doi.acm.org/10.1145/3123021.3123040

[8] Y. Gao, J. Tebbe, J. Krismer, and A. Zell, “Markerless racket pose
detection and stroke classification based on stereo vision for table
tennis robots,” in 2019 Third IEEE International Conference on
Robotic Computing (IRC), Feb 2019, pp. 189–196.

[9] J. Tebbe, Y. Gao, M. Sastre-Rienietz, and A. Zell, “A table tennis robot
system using an industrial kuka robot arm,” in Pattern Recognition,
T. Brox, A. Bruhn, and M. Fritz, Eds. Cham: Springer International
Publishing, 2019, pp. 33–45.

[10] J. Ritter, “Graphics gems,” A. S. Glassner, Ed. San Diego,
CA, USA: Academic Press Professional, Inc., 1990, ch. An
Efficient Bounding Sphere, pp. 301–303. [Online]. Available:
http://dl.acm.org/citation.cfm?id=90767.90836

[11] Wikipedia contributors, “List of centroids — Wikipedia, the
free encyclopedia,” 2019, [Online; accessed 27-February-2019].
[Online]. Available: https://en.wikipedia.org/w/index.php?title=List
of centroids&oldid=883001666

[12] Blender Online Community, Blender - a 3D modelling and rendering
package, Blender Foundation, Blender Institute, Amsterdam, 2016.
[Online]. Available: http://www.blender.org

[13] S. Mahendran, H. Ali, and R. Vidal, “3D Pose Regression
using Convolutional Neural Networks,” Tech. Rep., 2017. [Online].
Available: https://shapenet.cs.stanford.edu/media/syn

[14] S. S. M. Salehi, S. Khan, D. Erdogmus, and A. Gholipour,
“Real-time Deep Pose Estimation with Geodesic Loss for Image-
to-Template Rigid Registration,” Tech. Rep. [Online]. Available:
https://github.com/SadeghMSalehi/DeepRegistration

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” Tech. Rep. [Online]. Available: http:
//image-net.org/challenges/LSVRC/2015/

https://doi.org/10.1007/s10846-017-0515-8
http://doi.acm.org/10.1145/3123021.3123040
http://dl.acm.org/citation.cfm?id=90767.90836
https://en.wikipedia.org/w/index.php?title=List_of_centroids&oldid=883001666
https://en.wikipedia.org/w/index.php?title=List_of_centroids&oldid=883001666
http://www.blender.org
https://shapenet.cs.stanford.edu/media/syn
https://github.com/SadeghMSalehi/DeepRegistration
http://image-net.org/challenges/LSVRC/2015/
http://image-net.org/challenges/LSVRC/2015/

	I INTRODUCTION
	II Spin Estimation from the Brand Logo by Background Subtraction
	II-A Ball Detection
	II-B Logo Contour Detection
	II-C 3D Projection
	II-D Brand Logo Center
	II-E Fitting Rotation

	III Spin Estimation by CNN on ball image
	III-A Dataset
	III-B Network Architecture
	III-C Network Output
	III-D Loss Functions
	III-E Metrics
	III-F Training Setup
	III-G Inference Time

	IV Spin Estimation from the Trajectory
	IV-A Fitting
	IV-B Preprocessing: Outlier filtering

	V Comparison
	VI Evaluation on a table tennis robot
	VII Conclusion and future work
	References

