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Abstract— Imitation learning is a popular approach for
training effective visual navigation policies. However, collecting
expert demonstrations for legged robots is challenging as these
robots can be hard to control, move slowly, and cannot operate
continuously for long periods of time. In this work, we propose
a zero-shot imitation learning framework for training a goal-
driven visual navigation policy on a legged robot from human
demonstrations (third-person perspective), allowing for high-
quality navigation and cost-effective data collection. However,
imitation learning from third-person demonstrations raises
unique challenges. First, these demonstrations are captured
from different camera perspectives, which we address via a fea-
ture disentanglement network (FDN) that extracts perspective-
invariant state features. Second, as transition dynamics vary
between systems, we reconstruct missing action labels by either
building an inverse model of the robot’s dynamics in the
feature space and applying it to the human demonstrations
or developing a Graphic User Interface (GUI) to label human
demonstrations. To train a navigation policy we use a model-
based imitation learning approach with FDN and action-labeled
human demonstrations. We show that our framework can learn
an effective policy for a legged robot, Laikago, from human
demonstrations in both simulated and real-world environments.
Our approach is zero-shot as the robot never navigates the same
paths during training as those at testing time. We justify our
framework by performing a comparative study.

I. INTRODUCTION

Legged robots have a great potential as universal mobility
platforms for many real-world applications, such as last-mile
delivery or search-and-rescue. However, visual navigation of
legged robots can be considerably more challenging than
wheeled robots due to the limited availability of legged
robot navigation data: compared to over 1,000 hours for
self-driving cars [34], several kilometers [8] and 32 years in
simulation [3] for indoor mobile robot navigation. The reason
of the difficulty for legged robot large scale data collection is
that they are hard to control and operate continuously for a
long time due to the hardware limitations. This lack of data
makes it difficult to deploy deep learning methods, such as
reinforcement learning or imitation learning to the real world,
especially when the robot are required to navigate towards a
new goal unseen during training in the setting of zero-shot
visual navigation.

We choose an imitation learning approach that obtains a
navigation policy by mimicking human demonstrations, due
to its data efficiency and data collection safety. However,
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Fig. 1. We develop a learning framework that trains a visual navigation
policy for a legged robot (Left) from human demonstrations mounted with
three cameras (Right). The red circles indicate cameras.

for problems as complex as visual navigation, the amount
of data required is outside of the scope of what is available
for legged robots. Especially that the possible compositions
of initial and goal states can be infinite while we can only
collect limited data. In this work, our key insight is to
mitigate the data collection issue by building a learning sys-
tem that can learn to navigate from heterogeneous experts–
i.e., expert demonstrators that have different perspectives
and potentially different dynamics. Our assumption is that
these agents have better navigation capabilities than legged
robots and are more readily available, thus alleviating the
data collection bottleneck. Specifically, we focus on learning
visual navigation from human agents.

The idea of learning visual navigation from heterogeneous
agents imposes new challenges. One of the main issues is the
perspective shift between different agents’ vision, because
a robot may have different camera positions and viewing
angles from other robots or humans. Directly transferring
policies learned on human perspective demonstrations can
result in domain shift problems. Additionally, in some cases,
the demonstrations only contain raw state sequence, and do
not contain action labels. We thus need an effective planning
module that finds the optimal actions solely based on raw
images, without any additional information about the robot
and surroundings.

In this work, we propose a novel imitation learning frame-
work that trains a goal driven visual navigation policy for
a legged robot from human demonstrations. A human pro-
vides navigation demonstrations as videos that are recorded
by multiple body-mounted cameras. We extract relevant
state features from the temporally-aligned multi-perspective
videos by training a feature disentanglement network (FDN),
which disentangles state related features from perspective
related features. FDN achieves such disentanglement by
training with our proposed cycle-loss, that composing dis-
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entangled features should be able to generate images with
correspondence to the features. We consider two approaches
for labeling demonstrations with robot-compatible actions,
either via an efficient human labelling GUI or through a
learned inverse dynamics model. We then take a model-based
imitation learning approach for training a visual navigation
policy in the learned latent feature space. Our proposed
approach is zero-shot in that the robot training data does
not include the testing tasks and thus has to infer the policy
from the human demonstrations.

We demonstrate our proposed framework in both sim-
ulated and real environments. Our framework can train
effective navigation policies to guide a robot from the current
position to the goal position described by a goal image.
We also validate the feature disentanglement network by
comparing the prediction of the perspective-changed images
to the ground truth images. In addition, we analyze the
performance of the proposed framework by conducting a
comparative study and comparing with some baseline al-
gorithms for feature learning and imitation learning. We
observe that our approach achieves similar performance with
perspective changes to that of the oracle imitation learning
method without perspective change.

II. RELATED WORK

Robot Visual Navigation. Robot visual navigation is a
fundamental task for mobile robots, such as legged robots.
Traditional approaches such as simultaneous localization and
mapping (SLAM) first constructs a map of the environment
and then plan paths [2], [15], [13]. However, these methods
sometimes require a robot to navigate and gradually map the
environment. Though these methods may work in normal
navigation case, they may struggle in our case where the
robot has to learn from human demonstrations of different
perspectives and transition dynamics. Other approaches use
learning to enable visual navigation through either imitation
learning (next paragraph) or reinforcement learning (RL).
RL based approaches learn to navigate given a reward
function, either learned from demonstration [38], [12] or
defined manually by human expert [33]. Most existing work
on visual navigation with reinforcement learning is done in
simulation [7], [37]; a few are done on real robots [23], [9].
These approaches are limited in the legged robot case by
requiring actual trial-and-error on real robots, which can be
time intensive and dangerous as collisions on legged robots
can easily damage themselves and the environment.

Learning from demonstrations. Imitation learning [22],
[19], [27] learns a policy given labeled expert trajectories,
such as imitating a goal driven navigation policy [36], and
conditional imitation learning [4]. As mentioned previously,
imitation learning requires large quantities of labeled data
that are not practical for legged robots. The data could
come from either on-robot demonstration such as imitating
autonomous driving policy [26] or from human observation
such as third-person imitation learning [31], learning by
translating context [19] and using time-contrastive network
(TCN) to learn a reward function [28]. Though learning

with on-robot data is effective, it is very labor intensive
to collect large scale datasets for many robots, and some
of them may require special training to use. Learning from
human demonstrations of different perspectives is natural to
mimic the way humans (e.g. children) learn to perform many
control tasks by watching others (experts) performing the
same tasks [20]. However, the perspective shift between a
human and robots is non-trivial. In this approach, we propose
a novel feature extraction framework to solve this problem.
In addition, our work is related with model-based reinforce-
ment learning [21] and model-based imitation learning [30].
Our imitation learning framework is similar to that of the
universal planning network [30] (UPN), but differs in that
we perform the model learning and planning in our learned
feature space, rather than in the raw pixel space. Imitation
learning on visual navigation from human video has been
explored in [16], where they propose to train an inverse
dynamics model to learn an action mapping function from
robot dynamics to human video. While their work focuses
on learning subroutines for navigation, our work focuses on
learning a perspective-invariant feature space that is suitable
for path planning and model-based imitation learning. Our
work could be combined with their contributions to improve
the performance of visual navigation.

Feature Disentanglement. General feature disentangle-
ment involves a broad spectrum of related works. Most works
are done in image-to-image translation tasks such as [11]
and [17], where they apply a similar cycle-consistency loss
to achieve image translations across different domains. We
propose a similar model for feature disentanglement that
only uses the temporally aligned videos for feature learning,
without additional supervision.

III. PROBLEM

We consider learning goal-driven visual navigation policy
on a legged robot from human demonstrations. In our work,
a human expert mounts N cameras on the body and walks
in the training environment. Each demonstration yields a
sequence of images I1···N1···T ∈ I with the perspective index
(superscript) and time index (subscript). We assume that the
images with the same time indices are captured at the same
human state (their position in 2D and orientation).

The robots observation space at time t is defined by an
image from the robots perspective Irobott ∈ I. The action
space consists of five discrete actions a ∈ A: going forward,
going backward, turning left, turning right and staying in
place. Each action only provides high-level control over the
robot while low-level motor torques on legs are computed by
a traditional Raibert controller [24]. A goal image Ihumang is
specified from the humans perspective. Therefore, the policy
π : (Irobott , Ihumang ) → a maps the robot’s observation
Irobott and the specified goal Ihumang to the action a.

IV. METHOD

This section introduces a zero-shot imitation learning
framework for visual navigation of a legged robot. We
first introduce our feature disentanglement network (FDN)
that extracts perspective-invariant features from a set of
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Fig. 2. Overview of the proposed framework. The feature extractor
takes as inputs human demonstration trajectories from multiple perspectives
(indicated by p and q) and learns a perspective-invariant state feature
extractor. The imitation learning model takes in the extracted feature of
human demonstration data and learn to imitate the human action sequence
ahuman
i:i+h−1. During testing (indicated by red dash line), start image Irobot0

and goal image Ihuman
g are fed into the state feature extractor and the

imitation learning model takes in both the start feature f0 and goal feature
fg and optimizes an action sequence to minimize the difference between
final state feature and goal state feature.
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Fig. 3. Diagram of the feature disentanglement network (FDN). FDN
is composed of three sub-networks, the state feature extractor F , the
perspective feature extractor P and the decoder R. Given images of different
states (indicated by i, j) and of different perspectives (indicated by p, q),
the network first extracts and separates state/perspective information, then
composes them together to generate another image that corresponds to
the input state and perspective features. The blue lines indicate the feed-
forwarding path to generate Ipj,r and the yellow lines for Iqi,r .

temporally-aligned video demonstrations. Then we present
the imitation learning algorithm that trains a navigation
policy in the learned feature space defined by FDN. Figure 2
gives an overview of the framework.

A. Feature Disentanglement Network

We design a feature disentanglement network (FDN, Fig-
ure 3) to perform feature disentanglement from visual inputs.
More specifically, the FDN tries to separate state feature
from perspective feature, which is necessary for imitation
learning between the heterogeneous agents. The network
is composed of two parts: the state feature extractor Fθ
with parameters θ, which extracts state-only feature from
the input; and the perspective feature extractor Pφ with
parameters φ, which extracts perspective-only feature from
the input. For simplicity, we drop the parameters of the
functions unless necessary.

Denote the entire human demonstration dataset as D =
{Ipi }

p=1:N
i=1:T where T is the total length and N is the total

number of perspectives. For a given image input Ipi , both
networks extract one part of information from the visual
input: fi = F (Ipi ), g

p = P (Ipi ), where fi ∈ F and
gp ∈ G are the corresponding state features and perspective
features, respectively. For training FDN, we learn an image
reconstructor Rψ with parameters ψ that takes in fi and
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Fig. 4. Diagram of the model-based imitation learning. The model takes
in randomly initialized action sequence a0:h and predicts future state
latent representations. It optimizes the action sequence to minimize the
difference between the predicted final state fh+1 and the goal state feature
representation fg (gradient flow indicated by blue line). Model parameters
are updated by minimizing the imitation loss.

gp and reconstructs an image corresponding to the same
state specified by fi and the same perspective specified
by gp: Ipi,r = Rψ(F (I

p
i )), P (I

p
i )), where the subscript r

denotes reconstructed image. For any two images Ipi , Iqj
that correspond to different state features fi, fj and different
perspective features gp, gq , we define the cycle-loss function
of training the feature extractor as: Lcycle(I

p
i , I

q
j , θ, φ, ψ) =

‖Iqi −Rψ(Fθ(I
p
i ), Pφ(I

q
j ))‖+ ‖I

p
j −Rψ(Fθ(I

q
j ), Pφ(I

p
i ))‖.

Assuming access to temporally aligned images from multiple
perspectives, the feature extractor will learn to extract state
related information only in F and learn to extract perspective
information only in P . The total loss function for train-
ing FDN can be summarized by the following equation:
Ltotal(θ, φ, ψ) =

∑
∀i,j,p,q Lcycle(I

p
i , I

q
j , θ, φ, ψ).

We train FDN by randomly sampling two images from the
multi-perspective data. We use the CycleGAN [35] encoder
as the backbone of the feature extractor and convert the
last layer output as a flattened d dimensional vector. The
decoder or the image generator is inherited from CycleGAN
decoder. The Swish activation function [25] is used through
the network when necessary.

B. Imitation Learning from Human Demonstrations

Inspired by the Universal Planning Network [UPN], we
train the model-based imitation learning network (Figure 4)
in the latent feature space F . We process the given hu-
man demonstration data D into a sequence of the features
{f0, f1, · · · , fn} by applying the trained FDN to the data.
We label the robot-compatible actions {a0, a1, · · · , an−1}
by training an inverse dynamics model or using a developed
GUI to manually label actions. The inverse dynamics model
(IDM) takes in FDN state feature extractor processed images
that is temporally consecutive and predicts the robot action
that completes the transition. To get one episode of robot
data for training IDM, we randomly start the robot and walk
the robot in the environment until collision or the number of
steps exceeds 30. We collect multiple episodes of such data.

We define a model M that takes in the current obser-
vation’s feature encoding f0, and a randomly initialized
action sequence a0:h = {a0, a1, · · · , ah}, where h + 1 is
the prediction horizon of the model, and predicts future
states’ feature representation f1, · · · , fh+1. Then we update
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Fig. 5. Simulation environments. Left: NavWorld ; Right: OfficeWorld.

the action sequence by performing gradient descent on the
following plan loss:

a∗0:h = argmin
a0:h

LH(M(F (Irobot0 ), a0:h), F (I
human
g )), (1)

which minimizes the difference between the predicted final
future state feature M(F (Irobot0 ), a0:h) and the given goal
state feature F (Ihumang ). Here we use the superscript robot
to explicitly point out that Irobot0 is from the robot’s perspec-
tive while the superscript human means Ihumang is from
the human’s perspective. We use the Huber loss [10] (LH )
to measure the difference between the predicted feature and
goal feature as it was used in [30]. Then given the human
demonstrator’s expert action sequence ahuman0:h , we optimize
the model parameters so as to imitate the expert behavior:

M∗ = argmin
M

‖a∗0:h − ahuman0:h ‖, (2)

the loss function above could be a cross entropy loss when
the action space is discrete. Once we train the model M , Eq.
(1) implicitly defines the policy π. At each time step, the
policy replans the entire action sequence and only executes
the first action, which is similar to the way model predic-
tive control (MPC) [18] does. When training the imitation
learning model, the prediction horizon can change, and it
depends on the number of expert steps between the start and
goal state, a mask is applied on Equation 2 to only imitate
the corresponding action sequence. This is similar to the way
UPN [30] trains the policy. More details can be found in [30].

V. EXPERIMENTS AND ANALYSIS

We design our experiments to investigate the following
questions. 1) Is the proposed feature disentanglement net-
work able to disentangle features? 2) Can the proposed
model-based imitation learning find an effective action plan
in the learned feature space? 3) How does our approach
compare to other imitation learning methods?

A. Experiments and Results

a) Environment Setup and Data Collection: We select
Laikago from Unitree [32] as the real world robotic platform
to evaluate the proposed framework. For simulation, we
develop two simulation environments using PyBullet [5]
(Figure 5), one is called Navworld, the other OfficeWorld.
The latter one has more complex texture than the previous
one, and the space is larger. We put a simulated Laikago in
both simulation environments. The robot is 60cm tall and
we mount the camera 30cm above the body (See Figure 1
left). The frames are down-sampled to 128×128 pixels. The
discrete actions are defined as running a walking controller
with a constant linear and angular velocity for 1 second.

As a result, a robot can move for about 0.2m, which is
near one-third of its body length, and can turn left or right
for about 30 degrees in the NavWorld environment and 90
degrees in the OfficeWorld environment. We choose a small
room of size 4 × 4m2 for training and testing purposes for
real robots. For simplicity, we assume kinematic movements.
For all environments, we consider the task as given a goal
image from another perspective, the robot needs to navigate
towards the goal within limited number of steps (slightly
longer than the optimal path). An episode terminates when
the robot reaches the goal or when the maximum allowed
steps are taken.

In our experiments, each human demonstration is a first-
person view navigation video (human perspective). In the real
world case, we collect temporally-aligned multi-perspective
data by mounting three Go-Pro cameras on the person
(Figure 1 right) and let the person navigate certain paths. The
reason to mount the three cameras in these positions is to
get perspectives of different heights and viewing angles that
can interpolate the robot’s perspective. The videos are down-
sampled to 128× 128 pixels. We obtain multiple video clips
with the same state sequence but different perspectives and
extract perspective-invariant features. In total we collected
25 demonstration trajectories, each of length 20 steps in the
real world environment for 10 minutes. In simulation, we
automatically generate demonstrations using a path-planning
algorithm [6] on randomly sampled start and goal locations.
We collect 500 demonstration trajectories, each of length
20 steps. To improve the data efficiency, we perform data
augmentation by replaying the video and reversing the time
order both for the simulated and the real data. We add
in augmented stay in place demonstration sequences by
repeating randomly sampled observations for 20 steps.

In our framework, we need to obtain robot-compatible ac-
tion labels of human demonstrations since they have different
dynamics. In simulation, we trained an inverse dynamics
model that takes in two consecutive images processed by
FDN and predicts the robot action that completes the tran-
sition. Then we use the trained inverse dynamics model to
label the expert demonstration. In the real world experiment,
since the robot trajectory data especially the actions contain
significant noise, we develop a GUI that allows us to label
human actions manually within a short amount of time. Note
that this work’s focus is not on action labeling. In addition,
the manually labeled action is only a rough estimation of
where the robot is going, and it may still contain noise: for
example, when the robot is staying in place, it may still move
around a little bit due to drifting.

b) Training: We train the FDN and the imitation learn-
ing model both in the simulated environments and on the real
robot. Additionally, we train the inverse dynamics model in
the simulation for automatic human action labeling. For all
experiments, we use the Adam optimizer [14] with a learning
rate of 0.0035 and batch size of 32, and we set the feature
dimension d = 256. We evaluate the success (reaching the
goal) rate of our experiments in simulation by comparing the
robot’s state (location and orientation) to the goal state, and



TABLE I
RESULTS WITH DIFFERENT TASK DIFFICULTIES.

Env/Distance 2 5 10
NavWorld 79.66% 56.52% 21.81%

OfficeWorld 78.71% 54.00% 26.67%

TABLE II
RESULTS WITH DIFFERENT AMOUNT OF HUMAN DEMONSTRATIONS.

Env/# of Human Demos 100 300 500
NavWorld 21.81% 23.42% 25.23%

OfficeWorld 26.67% 31.00% 32.00%

the success rate on real robot by human visual evaluation.
c) Validation of Feature Disentanglement Network:

We present in Figure 6 the results of image generation by
composing state and perspective features using FDN. As
illustrated in the generated image, the feature extraction net-
work can compose state and perspective features to generate
an image that has the same correspondence as the input state
and perspective features. In particular, the difference in the
perspectives lies in the camera vertical position in simulation
and camera vertical and horizontal location in real robot
data. The results show that the network is able to learn such
perspective information from training FDN.

Ipi Iqj Iqi (target) Iqi,r (pred.)

Fig. 6. FDN image generation results. The first two columns are the
inputs: first one provides the state information and the second provides the
perspective information. The third column is the ground truth target image
and the last column is the prediction from FDN.

d) Simulation Results: First, we validate our frame-
work in the simulated environment. Our framework shows
a learned zero-shot robot visual navigation behavior from
human demonstrations with a success rate ranging from
20% to 80% depending on the task difficulty (see Table I
for more details). We observe that a robot is able to find
the goal position, specified from human’s perspective, even
when it is out of sight, indicating that the trained imitation
learning model already models the environment with human
demonstrations.

We evaluate the effect of task difficulty (by varying
the number of minimum steps between the start and goal
location) and the number of human demonstrations on the
success rate. For the latter, we fix the task difficulty to be
10 steps. Table I shows that with more distance between the
start and goal location, finding the correct path towards the
goal becomes harder. In a larger OfficeWorld environment,
we observe such decrease in success rate with increasing task

TABLE III
COMPARISON OF DIFFERENT FEATURE LOSS ON SUCCESS RATE.

Success Rate/Loss Ours Cycle-triplet Triplet
NavWorld, 4 Steps 54.55% 52.63% 8.77%

NavWorld, 10 Steps 21.81% 20.72% 2.70%
OfficeWorld, 10 Steps 26.67 % 27.30 % 25.08%

difficulty. Table II shows that with more demonstrations the
success rate indeed increases.

e) Hardware Results: We provide results on the real
legged robot, Laikago. We test the robot on three sets of
goal-driven navigation tasks. We consider three targets and
start locations to evaluate the robustness and consistency
of the policy. The distance from the target location to the
start location of the robot is around two meters. For each
testing start and goal location pair, we test for three times and
evaluate the success rate of the three trials. On these testing
tasks, we obtain a success rate of around 60%. We show one
of the successful goal-driven visual navigation trajectories in
Figure 7. In our experience, a robot shows a better accuracy
when the goal image is visually salient, such as a brown
chair; it struggles to reach an object of colors similar to the
background, e.g. a white desk in front of a white wall.
B. Analysis

a) Comparison with Different Loss Functions: To in-
vestigate whether our proposed cycle-loss is suitable for
training feature disentanglement, we compare with other
baseline loss functions. Specifically, we experiment with
several combinations of the proposed cycle-loss and triplet
loss [28]. In the first scenario, we train the feature extractor
with our cycle-loss. In the second case, we combine cycle-
loss with triplet loss. Given three images Ipi , I

q
i , I

p
j , where Ipi

and Iqi share their states and Ipi , I
p
j share their perspective,

the triplet loss can be defined as, Ltriplet(θ, I
p
i , I

q
i , I

p
j ) =

‖Fθ(Ipi ) − Fθ(I
q
i )‖ − ‖Fθ(I

p
i ) − Fθ(I

p
j )‖ + α. which min-

imizes state feature difference for the same state but from
different perspectives, and maximize state feature difference
for different states but from the same perspective. Here α is
the enforced margin typically used in triplet-loss and usually
the loss is cut to zero when it is negative. In the third case, we
use triplet loss only to learn the state feature representation.
The results are presented in Table III. It is clear that the
Triplet loss alone has consistently worse results than our
proposed Cycle loss. By combining Cycle-loss with Triplet
loss the performance improved a bit compared to the Triplet
loss. The triplet loss’s poor performance may be a result
of sensitivity to the data sampling process. Our proposed
Cycle-loss training is more stable and is not sensitive to data
sampling. Besides, triplet loss only learns the state feature
(perspective-invariant feature) and our network learns both
state and perspective feature and our decoder helps to verify
the learned feature has correct correspondence in terms of
states and perspectives.

b) Comparison with baselines: We compare the pro-
posed framework with a baseline algorithm, Universal Plan-
ning Networks (UPN) [30]. In particular, we test UPN in two
scenarios: without and with perspective changes between a
learner and a demonstrator. The former serves as the upper
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Fig. 7. Robot successful visual navigation trajectories. In each row, the final image is the goal image and the first to the last second image show the
robot navigation trajectory from the start to the goal location. Though captured from different perspectives, the goal specified by the human is the same
as the last state of the robot.

TABLE IV
COMPARISON OF SUCCESS RATE WITH UPN AND UPN-PERSPCHANGE.

Env/Methods Ours UPN UPN-PerspChange
NavWorld 54.55% 58.00% 7.88%

OfficeWorld 26.67% 27.00% 22.00%

bound of our method’s performance. We will call the first
method UPN and the second method UPN-PerspChange. In
the first method UPN, we train and test UPN under the
same perspective. In the second case, UPN is trained with
multiple perspective data while the training perspective does
not include the testing perspective.

We perform a comparative study on NavWorld with 4
steps of start-goal distance and on OfficeWorld with 10
steps of start-goal distance. We choose these numbers of
steps since one step in the environment can be a huge
distance and the robot can move in a few steps to a state
that is not visible from the starting state. The results are
presented in Table IV. The success rate of our method is
approaching UPN, the empirical upper bound, indicating
that FDN effectively handles the perspective shift. When
there is perspective change, UPN-PerspChange trained with
some perspective data can’t generalize to another unseen
perspective, and the result is worse than our method. This
indicates that the perspective shift is nontrivial and direct
transfer does not work.

We observe that the UPN-PerspChange works better in the
OfficeWorld environment than in NavWorld, this is because
that in the OfficeWorld environment, the turning angle is 90
degrees while in NavWorld the turning angle is 30 degrees.
Therefore, to reach a state in the OfficeWorld, most of the
actions are either moving forward or back. Even though the
texture in the OfficeWorld is more complicated, the task
difficulty with the same number of step between start and
goal location is smaller.

c) Scalability of the Proposed Approach: Though we
rely on a GUI to label human data as an alternative of
learning the robot inverse dynamics model, the real challenge
in the Laikago robot is the inaccurate robot action labels,
which results in inaccurate inverse dynamics model and
thus making it less feasible to use the inverse dynamics
model to label human data. To improve the scalability of the
current framework and the success rate of goal driven visual
navigation, we can improve the low-level control of the robot

such that the behavior of the robot is more controllable. In
addition, since we don’t need to have very accurate human
action labels (only in an abstract way indicating in which
direction the human is going), optical flow [29] methods can
be used to automatically label human data.

VI. CONCLUSION AND REMARKS

We propose a novel imitation learning framework for
learning a visual navigation policy on a legged robot from
human demonstrations. Since it is hard to collect human
data from the robot’s perspective, one major challenge is
to interpret the human demonstrations from different per-
spectives. To this end, we develop a feature disentanglement
network (FDN) that extracts perspective-invariant features
and a model-based imitation learning algorithm that trains a
policy in the learned feature space. We demonstrate that the
proposed framework can find effective navigation policies
in two simulated worlds and one real environment. We
further validate the framework by conducting ablation and
comparative studies.

The bottleneck for deploying the current framework to
real-world scenarios is the manual action labeling process of
human demonstrations. However, automated action labeling
is not straightforward at the required high accuracy (> 90%).
One possible approach is to collect a small amount of the
robots navigation data to build an inverse dynamics model
that takes in two consecutive images and predicts the robots
action. In our experience, this approach works in simulation
but not on the real robot because a legged robots gait blurs
the camera images. In addition, the robots discrete actions
are often not well-matched with real human demonstrations.
In the future, we want to investigate more stable gaits with
continuous control commands.

Although we tested the framework for learning a legged
robot policy from human demonstrations, the framework is
designed to support general imitation learning between any
heterogeneous agents. In the future, we hope to build a
general system that can learn navigation policies for data-
expensive robots, such as legged robots or aerial vehicles,
from easy-to-operate robots, such as mobile robots, au-
tonomous cars or humans. If we can fully exploit a large
navigation data sets, such as Google Streetview [1], there is
great potential to significantly improve the performance on
real robots.
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[4] F. Codevilla, M. Miiller, A. López, V. Koltun, and A. Dosovitskiy,
“End-to-end driving via conditional imitation learning,” in 2018 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2018, pp. 1–9.

[5] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” GitHub repository,
2016.

[6] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959.

[7] K. Fang, A. Toshev, L. Fei-Fei, and S. Savarese, “Scene memory trans-
former for embodied agents in long-horizon tasks,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 538–547.

[8] A. Francis, A. Faust, H. L. Chiang, J. Hsu, J. C. Kew, M. Fiser, and
T. E. Lee, “Long-range indoor navigation with PRM-RL,” CoRR, vol.
abs/1902.09458, 2019.

[9] S. Gupta, J. Davidson, S. Levine, R. Sukthankar, and J. Malik, “Cog-
nitive mapping and planning for visual navigation,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2017, pp. 2616–2625.

[10] P. J. Huber, “Robust estimation of a location parameter,” in Break-
throughs in statistics. Springer, 1992, pp. 492–518.

[11] A. H. Jha, S. Anand, M. Singh, and V. Veeravasarapu, “Disentangling
factors of variation with cycle-consistent variational auto-encoders,”
in European Conference on Computer Vision. Springer, 2018, pp.
829–845.

[12] F. Justin, K. Anoop, L. Sergey, and G. Sergio, “From language to
goals: Inverse reinforcement learning for vision-based instruction fol-
lowing,” in 7th International Conference on Learning Representations,
ICLR, 2019.

[13] C. Kerl, J. Sturm, and D. Cremers, “Dense visual slam for rgb-d
cameras,” in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 2013, pp. 2100–2106.

[14] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” in 3rd International Conference on Learning Representations,
ICLR 2015, Y. Bengio and Y. LeCun, Eds., 2015.

[15] K. Konolige, J. Bowman, J. Chen, P. Mihelich, M. Calonder, V. Lepetit,
and P. Fua, “View-based maps,” The International Journal of Robotics
Research, vol. 29, no. 8, pp. 941–957, 2010.

[16] A. Kumar, S. Gupta, and J. Malik, “Learning navigation subroutines
by watching videos,” in Conference on Robot Learning, 2019.

[17] H.-Y. Lee, H.-Y. Tseng, J.-B. Huang, M. Singh, and M.-H. Yang, “Di-
verse image-to-image translation via disentangled representations,” in
Proceedings of the European conference on computer vision (ECCV),
2018, pp. 35–51.

[18] I. Lenz, R. A. Knepper, and A. Saxena, “Deepmpc: Learning deep
latent features for model predictive control.” in Robotics: Science and
Systems. Rome, Italy, 2015.

[19] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from ob-
servation: Learning to imitate behaviors from raw video via context
translation,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2018, pp. 1118–1125.

[20] A. N. Meltzoff, “Born to learn: What infants learn from watching us,”
The role of early experience in infant development, pp. 145–164, 1999.

[21] X. Pan, X. Chen, Q. Cai, J. Canny, and F. Yu, “Semantic predictive
control for explainable and efficient policy learning,” in 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2019,
pp. 3203–3209.

[22] Y. Pan, C.-A. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, and
B. Boots, “Agile autonomous driving using end-to-end deep imitation
learning,” in Robotics: science and systems, 2018.

[23] D. Pathak, P. Mahmoudieh, G. Luo, P. Agrawal, D. Chen, Y. Shentu,
E. Shelhamer, J. Malik, A. A. Efros, and T. Darrell, “Zero-shot visual
imitation,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2018, pp. 2050–2053.

[24] M. H. Raibert, Legged robots that balance. MIT press, 1986.
[25] P. Ramachandran, B. Zoph, and Q. V. Le, “Swish: a self-gated

activation function,” arXiv preprint arXiv:1710.05941, vol. 7, 2017.
[26] N. Rhinehart, R. McAllister, and S. Levine, “Deep imitative mod-

els for flexible inference, planning, and control,” arXiv preprint
arXiv:1810.06544, 2018.

[27] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[28] P. Sermanet, C. Lynch, Y. Chebotar, J. Hsu, E. Jang, S. Schaal,
S. Levine, and G. Brain, “Time-contrastive networks: Self-supervised
learning from video,” in 2018 IEEE International Conference on
Robotics and Automation (ICRA). IEEE, 2018, pp. 1134–1141.

[29] S. P. Singh, P. J. Csonka, and K. J. Waldron, “Optical flow aided
motion estimation for legged locomotion,” in 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems. IEEE, 2006,
pp. 1738–1743.

[30] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
planning networks: Learning generalizable representations for visuo-
motor control,” in Proceedings of the 35th International Conference
on Machine Learning, ICML, vol. 80, 2018, pp. 4739–4748.

[31] B. C. Stadie, P. Abbeel, and I. Sutskever, “Third person imitation
learning,” in 5th International Conference on Learning Representa-
tions, ICLR, 2017.

[32] Unitree. (2019) Laikago. [Online]. Available: http://www.unitree.cc/e/
action/ShowInfo.php?classid=6&id=1

[33] X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang,
W. Y. Wang, and L. Zhang, “Reinforced cross-modal matching and
self-supervised imitation learning for vision-language navigation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 6629–6638.

[34] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell,
“Bdd100k: A diverse driving video database with scalable annotation
tooling,” arXiv preprint arXiv:1805.04687, 2018.

[35] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-
to-image translation using cycle-consistent adversarial networks,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2223–2232.

[36] Y. Zhu, D. Gordon, E. Kolve, D. Fox, L. Fei-Fei, A. Gupta, R. Mot-
taghi, and A. Farhadi, “Visual semantic planning using deep successor
representations,” in Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 483–492.

[37] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in 2017 IEEE international conference
on robotics and automation (ICRA). IEEE, 2017, pp. 3357–3364.

[38] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in AAAI, vol. 8. Chicago,

IL, USA, 2008, pp. 1433–1438.

http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1
http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1

	I INTRODUCTION
	II Related Work
	III Problem
	IV Method
	IV-A Feature Disentanglement Network
	IV-B Imitation Learning from Human Demonstrations

	V Experiments and Analysis
	V-A Experiments and Results
	V-B Analysis

	VI Conclusion and Remarks
	References

