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Abstract— We consider the task of autonomously unloading
boxes from trucks using an industrial manipulator robot.
There are multiple challenges that arise: (1) real-time motion
planning for a complex robotic system carrying two articulated
mechanisms, an arm and a scooper, (2) decision-making in
terms of what action to execute next given imperfect infor-
mation about boxes such as their masses, (3) accounting for
the sequential nature of the problem where current actions
affect future state of the boxes, and (4) real-time execution
that interleaves high-level decision-making with lower level
motion planning. In this work, we propose a planning, learning,
and reasoning framework to tackle these challenges, and
describe its components including motion planning, belief space
planning for offline learning, online decision-making based on
offline learning, and an execution module to combine decision-
making with motion planning. We analyze the performance of
the framework on real-world scenarios. In particular, motion
planning and execution modules are evaluated in simulation
and on a real robot, while offline learning and online decision-
making are evaluated in simulated real-world scenarios. Video
of our physical robot experiments can be found at https:
//www.youtube.com/watch?v=hRiRhS0kgSg

I. INTRODUCTION

Industrial automation has improved efficiency and de-
creased costs for modern industries, owing largely to the
introduction of robots into factories [1]. In this work, we
consider warehouse automation and tackle the problem of
automated truck unloading. Unloading boxes from trucks
is a daily operation in warehouses that requires manual
labor and could benefit from automation [2], which can help
increase throughput, i.e., rate of unloading boxes, and reduce
employee work-related injuries. To achieve this goal, we
propose a framework to plan robust actions for a custom-
built truck-unloading robot (Fig. 1a) equipped with a mobile
omnidirectional base referred to as base and two articulated
mechanisms–a manipulator-like tool with suction grippers
and a scooper-like tool with conveyor belts, referred to
as arm and nose, respectively. The objective of the task
is to unload boxes as quickly and efficiently as possible,
without damaging the boxes or the robot in realistic truck
environments (Fig. 1b.)

Achieving high-level goals such as unloading a trailer
involves both high-level decision making and low-level mo-
tion planning. Typically, such problems are formulated in
deterministic settings where states are fully observable and
outcomes of actions are deterministic. Task planning is then
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Fig. 1: (a) Truck-unloader robot with its manipulator-like (arm) and scooper-like (nose)
end effectors. (b) Examples of different trailers that need to be unloaded.

performed on logical predicates which require geometric
reasoning to be applicable to real-world problems [3]. Due to
the complexity that comes from hierarchical planning, these
approaches often suffer from long computational times and
thus are not well suited for time-critical applications such as
truck unloading. Kaelbling and Lozano-Pérez [4] accounted
for uncertainty when planning in non-deterministic settings
but this comes at a cost of additional computational overhead.
The computational complexity can be reduced, to some
degree, by learning to predict solution constraints on the
planner [5]. This approach allows to prune the search space
but does not reason about the high-level sequential decision
making for multi-step tasks. In contrast to these approaches,
we use offline planners to precompute offline strategies
and then use online decision making techniques to choose
appropriate strategies in real time. This approach is similar
to using slow offline planners to generate data to train online
policies [6], [7].

Our domain is non-deterministic as we do not have perfect
information about the world (e.g., box masses). Thus, we re-
quire planners capable of handling uncertainty. Planning un-
der observation and model uncertainty is usually framed as a
Partially Observable Markov Decision Process (POMDP) [8],
[9]. Many POMDP solvers use point-based value iteration
that requires explicit models for the probability distribu-
tions [10], [11]. Another approach to solving POMDPs is by
running Monte-Carlo searches on a simulator [12] that does
not rely on explicit probability distributions. In our work,
we combine this approach with advanced heuristic-search
methods [13] to efficiently plan robust actions.

There are several challenges in automated truck unloading:
(1) requiring real-time motion planning capabilities to ensure
high throughput, (2) dealing with imperfect information
about the world, such as box masses, (3) accounting for
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sequential nature of the task where current actions affect
future box configurations, and finally (4) ensuring real-time
execution on the robot interleaving high-level decision mak-
ing and low-level motion planning. The proposed framework
is designed to tackle these challenges.

We employ a high-fidelity simulator V-REP [14], that is
capable of simulating the robot, the trailer and boxes. This
simulator is used by the Strategy Generator module in the
offline phase to compute high-level plans, strategies, for
sampled environments accounting for uncertainty regarding
the box masses while maximizing throughput. However, the
space of environments is too large to use these precom-
puted strategies online without any adaptation. To this end,
we learn a mapping, which we call the Strategy Chooser,
that chooses the most relevant strategy among precomputed
strategies given current boxes configuration. This enables our
framework to generalize to previously unseen environments
online. During execution, the Motion Planner module re-
ceives queries, and uses a state-of-the-art motion planner to
plan joint trajectories for the robot minimizing execution
time. Finally, the task of instantiating high-level planned
strategies into low-level motion planning queries to move
the robot’s end-effectors is done by the Strategy Executor
module which ensures real-time execution. The framework is
briefly summarized in Fig. 4. While the framework described
above is general and we anticipate that it can be applied to
many domains, we focus on its performance for our specific
application of automated truck unloading.

II. PLR FRAMEWORK
The planning, learning and reasoning (PLR) framework

is tasked with planning collision-free motions of the robot
that will maximize the throughput i.e., rate of boxes un-
loaded, while avoiding damage to boxes and the robot.
It continuously receives as an input, the current perceived
world state W of the environment provided by the robot’s
perception system, and outputs a trajectory to be executed
by the robot’s actuators. The world state W , contains (1) a
voxel grid estimating the volume occupied by the trailer’s
walls, ceiling and floor, and (2) an estimate of the position
and orientation of all the perceived boxes in the trailer. Box
masses are not provided, and they are the main sources of
uncertainty in W . We will also use the notion of the true
world state Wt, which contains information about all the
boxes in the trailer including their masses.

The robot is equipped with a wide suite of sensors, such as
RGB and depth sensors, that allow it to estimate occupancy
of the trailer’s walls, and estimate box poses which are
used to construct W . In addition to the real robot, we
also employ a simulation of the robot, trailer, and boxes
to estimate the outcomes of actions, and perform offline
learning. The sensors are not simulated and we assume
ground truth box poses and trailer occupancy for simulation
results. A discussion of robot’s sensor suite and perception
module is outside the scope of this paper.

Before we detail the framework’s modules, we introduce
two key notions that drive our framework—strategies, and
abstract actions.
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Fig. 2: (a) Depiction of a belief tree constructed over actions (u1 through u4)
and observations (z1 and z2) from an initial belief b0. (b) Example of a decision
tree, or strategy, that specifies the best actions (red arrows) along the possible
action/observation histories from the initial belief b0.

(a) Pick action parameters. (b) Sweep action parameters.

Fig. 3: Illustration of abstract action parameters for picking and sweeping. An abstract
Pick action is specified by the height and side parameters, and an abstract Sweep
action is specified by the height parameter. These abstract actions are instantiated
based on the latest observation at runtime, which makes the action execution to be
adaptive to the percieved world state.

A. Strategies and Abstract Actions

We represent a robust plan as a decision tree of sequential
actions and observations which is referred to as a strategy
hereinafter (Fig. 2b). Due to the imperfect control and limited
sensing capabilities of the robot, and the stochastic nature
of environment dynamics, execution of the same action
sequence may result in different outcomes. Thus, a strategy
should specify which action to take on each possible outcome
along the sequence, and the decision tree is an adequate data
structure to encode such information.

More specifically, a strategy is a mapping that describes
which action to take given a world state W . Since the robot
does not have access to the true state Wt, it has to infer
the state from the initial belief (probabilistic estimation of
the initial state) and the history of the executed actions
and obtained observations. Given a strategy that contains
the initial belief and the history of previous actions and
corresponding observations, the robot can effectively infer
the current true state and execute the best action.

We present another important notion in our framework,
abstract action. Note that a strategy is described by actions
and observations at a semantic level. Since the task is highly
complex, we adopt a hierarchical motion planning scheme to
reduce the complexity of the problem, and an abstract action
serves as a macro in the architecture.

Abstract actions are primitive actions at a semantic level,
but they are instantiated at runtime according to the latest
world state. In this work, we have two types of abstract ac-
tions, Pick and Sweep, and each abstract action has additional
parameters for instantiation (Fig. 3). For example, Pick with
height and side parameter values of high and left
will be instantiated with real values at runtime as a sequence
of actions to pick the boxes from the high, left part of the



wall. This enables our framework to learn offline strategies
that are applicable for a wide variety of environments.

B. PLR Framework Modules

The PLR framework uses an offline phase to design
strategies which are then used in the online, truck-unloading
phase. The framework is depicted in Fig. 4.

1) Motion Planner: The Motion Planner receives as an
input a world state W as well as a motion-planning query
and plans a collision-free trajectory. The planner is capable
of planning in both configuration and Cartesian spaces. All
the modes that the motion planner receives queries for are
listed in Table. I

In our system, minimizing execution time is of utmost
importance to unload a large volume of boxes efficiently.
Additionally, short planning times are desired to enable
the framework to rapidly evaluate many potential motions,
when determining the best way to accomplish an abstract
action. Finally, planning times and generated plans should be
consistent. Namely, similar queries should roughly take the
same amount of planning time and result in similar plans.
Unfortunately, sampling-based planners such as RRT [15]
often have a large variance in their planning times and
solutions due to the stochastic nature of the algorithm.

To this end, we chose ARA* [16] as our planner. ARA* is
an anytime heuristic search-based planner which tunes solu-
tion optimality based on available search time. Specifically,
it computes an initial plan quickly and refines its quality
as time permits. Our search space consists of a uniformly-
discretized state lattice with motion primitives [17], which
are short, kinematically feasible motions for the robot. It
also employs adaptive motion primitives that rely on an
analytical IK solver similarly to the ones described in [17]
To produce efficient-to-execute paths, we use a cost function
that approximates the time to perform each motion primitive.
The heuristic function that we use for the ARA* search is the
Euclidean distance to the goal pose for the arm end-effector,
and Euclidean distance in joint space for nose and base. The
planner checks for robot self-collisions using mesh-to-mesh
collision checking and checks for robot collisions with boxes
and trailer using Octree collision geometry. We use Flexible
Collision Library [18] for collision checking.

2) Strategy Executor: The Strategy Executor executes a
strategy by continually evaluating the current state of the
world W as received from the robot’s sensors and instanti-
ating abstract actions (Fig. 3) into specific motion-planning
queries which are then executed by the robot (in simulation
or real world). This is done until the strategy is completed or
an alternative one is provided by the Strategy Chooser. The
robot is capable of executing two high level actions—Pick
and Sweep, both depicted in Fig. 5. Pick action works well
in unloading boxes in structured walls, whereas the Sweep
action is geared towards boxes lying in unstructured piles on
the trailer floor. In general, Sweep action has higher mean
unloading rate than Pick action.

Once the Strategy Executor receives a strategy (see Fig. 2b
for an example), the execution starts from the root of the

strategy tree and goes down, executing actions ui at each
level of the tree, corresponding to the observations zi made
from the world state W . It instantiates the abstract actions
into geometric motion planning queries which are sent to the
Motion Planner. It then receives the planned trajectories from
the Motion Planner and sends them to the robot controller
or the simulator for execution.

3) Strategy Generator: The Strategy Generator is tasked
with precomputing a set of robust and efficient strategies L
for a small set of sampled environments such as those
depicted in Fig. 1b. Note that the generator only has access
to the perceived world state W , but not to the ground truth
Wt. Box masses, which affect the environment’s dynamics
and the choice of best strategy, are unknown to the generator.
To understand why box masses matter, consider a truck in
which boxes are heavy. In such a case, picking large number
of boxes at once might not be feasible as suction grippers
have limited strength, so a better strategy might be to pick
few boxes at a time. This robust planning problem under
uncertainty, also known as belief space planning, can be
formulated as a POMDP [8], [9]. In this work, we employ
a recent search-based POMDP solver, Partially Observable
Multi-Heuristic Dynamic Programming (POMHDP), which
incorporates multiple heuristics from the domain knowledge,
particle filtering for belief representation, and iterative for-
ward search for faster convergence [13].

The goal for this belief space planning problem is to
unload all boxes in the truck. Heuristic functions are used
to guide the search to the goal, so that the algorithm does
not need to exhaustively evaluate all the possible action
sequences. For this application, we used three heuristic
functions, which are simple yet effective in practice as an
ensemble: (1) a constant value if there are any boxes left in
the truck, (2) the total number of boxes left in the truck, and
(3) the maximum height of the box stacks in the truck.

The action set for the Strategy Generator consists of 12
parameterized abstract actions (Fig. 3). The observation set
consists of 18 semantic observations which describe the
world state at a semantic level, e.g., BoxPileLowLeft
is observed if the pile of boxes in front of the robot is lower
than a threshold and its topmost box is in the left-hand side.

The belief, i.e., probabilistic estimation of the true state,
is represented by a set of particles, encoding a probability
mass function. Each particle is a sampled world state, thus,
the masses of the boxes may differ between particles. For
the given initial belief, POMHDP evaluates the possible
sequences of abstract actions and observations (up to a finite
horizon), and returns a decision tree with the best abstract
actions and the corresponding observations.

4) Strategy Chooser: The Strategy Chooser is tasked
with learning a mapping M that is used in the online
phase to choose the strategy to execute for a given W .
As described before, the Strategy Generator precomputes
robust and efficient strategies L only for a small set of world
states and during the online phase the system encounters new
world states and needs to generalize one of the precomputed
strategies in L to ensure high throughput.
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(c) Online phase.

Fig. 4: Truck unloading PLR framework. The offline phase is done completely in simulation and the online phase can be executed either on the real robot or in the simulation.
Offline phase has two steps: strategy generation, and learning to choose the most-appropriate strategy. Online phase involves executing the chosen strategy given current world
state. PLR has the following components. (1) The Motion Planner, used in both phases, generates collision-free trajectories for the robot. (2) The Strategy Executor, used in both
phases, is tasked with executing the strategy by instantiating the abstract actions. (3) The Strategy Generator, used in Offline phase step 1, generates a library L of strategies
by evaluating different abstract actions. (4) The Strategy Chooser learns a mapping M offline which is used in the online phase to decide which strategy to use given current
world state.

(a) The Pick action is composed of six subactions depicted in the pictures sequenced top left to bottom right. Each subaction invokes the suitable planning
mode. (1) The nose is lowered down until it touches the ground to clear the way for the arm (M3). (2) The arm is moved to a pre-grasp pose and suction
cups are activated (M2). (3) The arm is moved to the grasp pose (M4) (4) The arm is retracted to a pregrasp pose (M4). (5) The arm is moved to the
drop-off pose and suction cups are deactivated (M1). (6) The nose is stowed back to its home configuration (M3). In addition to these six subactions the
robot base also moves back and forth before and after the Pick action (M5 queries).

(b) The Sweep action is composed of five subactions sequenced top left to bottom right. (1) The robot backs up to allow the nose to be lowered (M5)
(2) The nose is lowered down until it touches the ground (M3). (3) The base is moved forward to perform the sweep (M5). (4) The robot backs up to the
home configuration (M5). (5) The nose is stowed back to the home configuration (M3).

Fig. 5: Strategy Executor—Examples of action execution at runtime.
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Sweep hW > hmin

Pick Sweep

YES
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dpiledmin

hpile
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Fig. 6: The hardcoded strategy for deciding between Pick and Sweep actions uses three
parameters hpile, hmin and dmin (highlighted in blue). The right figure shows the side
view of a possible configuration of boxes. Boxes are categorised as either “pile” or
“wall” based on the threshold height hpile. The decision tree in the left explains the
logic. If the depth of the pile dpile is greater than the threshold depth dmin, it chooses
to sweep. Otherwise it checks whether the height of the first wall hW is greater than
the threshold height hmin and if so, performs a Pick. Pick action is instantiated by
choosing a pick point preferring boxes that are closer to the robot and as high as
possible. Sweep action is instantiated by choosing the depth of the sweep to be dpile.

One solution to tackle this problem is to use a hardcoded
strategy H, created by a human expert that encodes domain
knowledge. The hardcoded strategy employed in our experi-
ments is described in Fig. 6. However, encoding satisfactory
behavior by a single strategy, hardcoded or automatically
generated, for the large set of environments that will be
encountered is extremely challenging. In contrast, we present
a learning-based solution to train M as a binary classifier
that chooses either the hardcoded strategy H or one of the

Features
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Strategy

Chooser M

State

Hardcoded
Strategy H

Nearest

Neighbor NN

Chosen Strategy

Strategy

Library L

NN

Strategy

Fig. 7: (left) World state discretization to compute features (right) Learning framework.

precomputed strategies in L which is chosen using a simple
1-nearest neighbor classifier NN. After training, M chooses
a pre-computed strategy for a W that is similar to sampled
states during strategy generation, and chooses H for world
states that are far. This ensures that our framework never
performs worse than H, and in some cases, significantly
better than H.

To aid in generalization, we extract features of the world
state using a set of hand-designed features including heights
of each column in the wall of boxes, and difference in heights
of successive columns where the world state is discretized
into a 3D grid with a fixed discretization length. The 3D
discretization is shown in Fig. 7 (left) for an example world
state. The features are inspired from similar features that
were used to learn efficient policies to solve the game



of Tetris [19]. In our experiments, the number of features
extracted is 85. The binary classifier M, in our case, is a
support vector machine [20] with a Gaussian kernel. The
entire learning framework is summarized in Fig. 7 (right).

Observe that the task of truck unloading is a sequential
decision-making problem where current actions influence
future world states. To keep the sample complexity required
tractable, we formulate it as a supervised learning problem
where the objective at every time step is to predict the
strategy that will unload the largest number of boxes, given
the current world state. In spite of the simplification, we
find that this objective results in good long-term unloading
performance. To train M, we need large amounts of data D
consisting of pairs of world states and corresponding best
strategies. This data is obtained in the offline phase iteratively
by initializing a random world state, executing (1) the strat-
egy in L as predicted by the nearest-neighbor classifier NN
using the designed features and (2) the hardcoded strategyH.
This allows us to determine which strategy performs the
best in terms of box unloading rate for the initialized world
state. Once the best strategy is recorded in D, we retrainM
using D and execute the strategy predicted by M to obtain
the subsequent world state. Crucial to such a data-collection
procedure is the capability to reset the world state in the
simulator to execute both strategies. We continue this training
for a large number of iterations to obtain M that achieves
high performance on a held-out validation dataset. This
iterative training procedure is similar to DAgger [21].

III. EXPERIMENTAL ANALYSIS

We present experimental analysis that highlights our de-
sign choices. All results were obtained using a C++ im-
plementation of our PLR architecture. We used Intel Xeon
Gold 3.40GHz CPU machine for all our experiments. All
simulation environments used for evaluation were motivated
by real-world scenarios (see Fig. 1b). To verify the validity
of our basic modules, the Strategy Executor and Motion
planner were also run on the real robot with the hardcoded
strategy described in Fig. 6. In our simulated experiments,
we used four different environments termed Env. A1, A2
and Env. B1, B2 (see Fig, 8). Env. A1 and A2 contain
nicely-stacked boxes with varying masses and different sizes.
In contrast, Env. B1 and B2 contain unstructured piles of
boxes on the truck floor with a wide variety of box masses
and sizes, which makes the unloading problem significantly
harder. Env. A1 and A2 are significantly different from
Env. B1 and B2 and thus would require very different
strategies for efficient unloading. We used Env. A1 and B1
to generate the library L and train M, according to the
procedure described in Sec. II-B.3, II-B.4. Env. A2 and B2
were used only to evaluate the system’s performance. Video
of our physical robot experiments can be found at https:
//www.youtube.com/watch?v=hRiRhS0kgSg.

A. Motion planner.

To demonstrate the extent to which each motion planning
mode is invoked by the Strategy Executor within the PLR, we

Plan mode DOF No. queries Planner times [ms] Failures [%]
M1: Arm 4 10.9 ± 5.7 90.9 ± 12.8 0 ± 0
M2: Arm + Base 5 11.1 ± 5.9 1104.8 ± 708.1 0.2 ± 0.4
M3: Nose 3 47.6 ± 30.8 374.6 ± 535.1 2.2 ± 1.1
M4: Arm 1 22.6 ± 12.6 6.1 ± 0.7 1.4 ± 2.7
M5: Base 1 154.7 ± 56.3 2.8 ± 3.6 3.2 ± 5.2
M6: Pre-planning 6 85.2 ± 31.7 70.9 ± 465.2 5.1 ± 16.1

TABLE I: The different Motion-planner modes, corresponding plannning DOF and
the statistics for the online phase of Env. A1 averaged over 10 different runs and
reported with standard deviation. There are different motion planner modes used by
the Strategy Executor. The modes M1-M3 run ARA* search, M4 and M5 are Cartesian
planners and M6 runs Dijkstra’s search. The queries for which the start configuration
is in collision, M6 is run as a pre-planning step to find the closest valid state (to snap
onto it). This happens quite often as the robot makes contacts with the environment
during operation. Note that the planning times are to obtain the first solution returned
by ARA*.

Type No. of execs. Plan time [s] Exec. time [s] Rate [boxes/s]
Pick 16.8 ± 7.3 2.2 ± 1.7 38.9 ± 6.3 0.2 ± 0.1

Sweep 15.3 ± 5.5 1.7 ± 3.3 59.9 ± 31.4 0.4 ± 0.5

TABLE II: Strategy executor statistics for Env. A1 in simulation averaged over 10
different runs. The total duration of the runs was 26.76 ± 4.46 [mins]

start by reporting on the number of queries per mode and the
respective planning times and failure rate for the online phase
of the PLR (Table I). The timeout for the motion planner was
set to five seconds. To execute the Pick and Sweep actions the
executor makes multiple calls to these modes as detailed in
Fig. 5. We also report the overall planning times for the Pick
and Sweep actions (Table II) which come from accumulated
planning times for all the subactions.

As we can see, most planning queries are for relatively
low-degree of freedom planning problems (less than five)
and the planner efficiently finds the plans with almost no
timeouts. The only exception is planning the coordinated
motion for the arm and base (M2) which takes on average
almost 1.1 seconds. M5 is the most frequent planning query
as the robot base moves back and forth in each action.

B. Strategy Executor.

We evaluated the Strategy Executor module in simulation
and in the real world. Table II shows the simulation results
for each action, Pick and Sweep, the number of executions,
planning and execution times and the box unloading rate. For
Env. A1, the frequency of the two actions, Pick and Sweep,
is fairly even. The execution times dominate the planning
times for both actions. Note that even though it takes more
time to sweep than to pick, the mean unloading rate of the
Sweep action is about twice as much as the pick action.

For the real world experiment, we ran the motion planner
and the executor modules with the hardcoded strategy for
10 minutes and 32 seconds. The real world environment is
shown in Fig. 8e. The boxes in the scene vary in sizes. We
extract the pile and the walls by fitting planes to the depth
values from the point cloud obtained using our sensors. Once
we extract the pile and the walls, we use the hardcoded
strategy as described in Fig. 6. A total of 128 boxes were
unloaded in the entire run which results in an unloading rate
of 0.2 boxes/sec (see video.)

C. Strategy Generator

To assess the performance of the Strategy Generator, we
report the strategy generation time in the offline phase.
Strategies are generated for Env. A1 and B1 using five

https://www.youtube.com/watch?v=hRiRhS0kgSg
https://www.youtube.com/watch?v=hRiRhS0kgSg


(a) Env. A1. (b) Env. A2. (c) Env. B1. (d) Env. B2. (e) Env. real world

Fig. 8: Screenshots of the environments in simulation and real world for experimental analysis.
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Fig. 9: Number of boxes unloaded by different methods on training environments A1, B1, and test environments A2, B2) To evaluate our framework, we compared PLR with
several alternatives, (1) Hardcoded strategy: Run the hardcoded strategy H (Fig.6) that is manually written by a human expert (no offline phase), (2) Nearest-Neighbor
strategy: Use the strategy predicted by the nearest-neighbor classifier NN from L for any environment online. Note that here we do not use the binary classifier M or the
hardcoded strategy H, (3) Open-loop offline planner: Run precomputed strategies that are generated by Strategy Generator. Since a strategy is not a full decision tree, it may
either reach a point where the strategy has no more actions to execute or the strategy encounters a world state that was not planned for. This is only possible for training
environments, and (4) Expected offline planner: Run precomputed strategies that are generated by Strategy Generator. However, we reset the world state at the end of a strategy
to the world state corresponding to the start of the next precomputed strategy. Although this is infeasible to use in real world, it serves as an upper bound on the effectiveness
of precomputed strategies. This is only possible for training environments.

particles, and a planning horizon of six sequential actions.
The approximation factors, ε1 and ε2, in POMHDP are set
to 10, respectively. Note that we employed a high-fidelity
slow-speed robot simulator to properly simulate the vacuum
suction cups, compliant suction cup joints/plungers, conveyor
belts, as well as the complex robot body shapes. As a result,
an abstract action of 40 seconds for execution with the real
robot takes about 400-600 seconds for simulation on the
aforementioned machines. To reduce the strategy generation
time, we used 25 simulators running in parallel on separate
CPU cores. For Env. A1 and Env. B1, it took 3.2±0.32 hours
and 4.1± 0.87 hours to generate a strategy, respectively.

D. Overall Framework with the Strategy Chooser

We start by comparing the performance of the different
methods (See Fig. 9 caption) for the case where there is
no need for generalization, namely, where the environment
used to compute strategies in the offline phases is identical
to the one tested in the online phase. In our setup, these are
Env. A1 and B1. Fig. 9 (left two plots) shows the number of
unloaded boxes as a function of time on these environments
averaged over 10 independent runs (with the shaded region
depicting standard error). For both environments, we see
that that all the methods other than NN show comparable
performance to the hardcoded strategyH which demonstrates
that the offline phase effectively computes efficient unloading
strategies. The improvement is more prominent in Env. B1
than A1, since the hardcoded strategy is highly tailored
for environments such as Env. A1. Also, note that open-
loop execution of precomputed strategies often performs
poorly as the unloading process is highly stochastic and we
need online adaptation, like the chooser M, to ensure good

performance. The nearest-neighbor strategy NN starts with
high unloading rates but degrades later as the world states
start to diverge from the ones observed in the offline phase
due to compounding errors from stochastic dynamics. The
chooser M, however, accounts for this by switching to the
hardcoded strategy H. Thus, it ensures that our system never
performs worse than H, and in some cases, significantly
better than H (like in Env. B1 and B2.)

We observe similar trends when we evaluate the perfor-
mance on environments which have not been seen in the
offline phase (Fig. 9 right two plots) Env. A2 and B2.
For Env. A2, the NN strategy degrades in the later stage
of the unloading task whereas the chooser M switches
to H. In contrast, NN performs the best in Env. B2 where
the learned strategies generalize well but the chooser M
cannot attain the same performance due to misclassifications.
However, M still has a significantly better performance
than H, demonstrating the benefit of our PLR framework
in terms of generalization.

IV. CONCLUSION AND FUTURE WORK

In this work, we proposed a planning, learning, and rea-
soning framework that accounts for uncertainty in the world,
generates robust motion plans offline that are adapted for
online real-time execution in previously unseen environments
for automated truck unloading. Our real world experiments
show the real-time performance of our motion planning and
execution modules, while the simulation experiments show
the capabilities of our framework in learning robust offline
strategies that generalize online with better throughput when
compared to hardcoded strategy designed by a human expert.

Future work includes evaluating planned strategies and



online adaptation on the real robot, learning features that are
informative in choosing the appropriate strategy from raw
sensor data using end-to-end learning techniques [22], effi-
cient motion planning for recurring actions such as pick [23],
and planning with adaptive simulation accuracy which would
enable quicker generation of strategies [24], [25].
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