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Abstract— Drone teleoperation is usually accomplished using
remote radio controllers, devices that can be hard to master
for inexperienced users. Moreover, the limited amount of
information fed back to the user about the robot’s state, often
limited to vision, can represent a bottleneck for operation
in several conditions. In this work, we present a wearable
interface for drone teleoperation and its evaluation through a
user study. The two main features of the proposed system are
a data glove to allow the user to control the drone trajectory
by hand motion and a haptic system used to augment their
awareness of the environment surrounding the robot. This
interface can be employed for the operation of robotic systems
in line of sight (LoS) by inexperienced operators and allows
them to safely perform tasks common in inspection and search-
and-rescue missions such as approaching walls and crossing
narrow passages with limited visibility conditions. In addition
to the design and implementation of the wearable interface, we
performed a systematic study to assess the effectiveness of the
system through three user studies (n = 36) to evaluate the users’
learning path and their ability to perform tasks with limited
visibility. We validated our ideas in both a simulated and a real-
world environment. Our results demonstrate that the proposed
system can improve teleoperation performance in different cases
compared to standard remote controllers, making it a viable
alternative to standard Human-Robot Interfaces.

Supplementary video: https://youtu.be/ol7UT1ApLpM

I. INTRODUCTION

Despite the remarkable advancements in the autonomy
level of industrial and service robotic systems, the ability
for robots to be fully autonomous is still a far goal [1].
Telerobotics, the branch of robotics studying systems in
which a human partially or fully operates a robot, still finds
predominant applications for tasks such as navigation in
challenging environments, or minimally invasive surgery [2]–
[4]. As a consequence, the need for intuitive and efficient
Human-Robot Interfaces (HRIs) is vital to allow a larger
population of individuals to control these robots, a task
typically restricted to highly trained professionals [5], [6].
Body-Machine Interfaces (BoMIs), a subfield of HRIs, raised
relevant interest in the field of robotics in recent years as
they find foundation in the intuitive control humans can exert
on their body motion [7]. Moreover, wearable technologies
allow for a closer physical bond between the human and
the machine, which can be strengthened through the sense
of touch. Haptic interfaces are notably capable of increasing
the user’s awareness of the robot’s state and improve teleop-
eration performance [8]–[10]. The combination of these two
components, body motion for control and haptics for state
feedback, is a fascinating, still partially unexplored technique
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Fig. 1: System Setup. A user controls the motion of a quadcopter
through the proposed wearable haptic interface.

that is showing promising perspective for telerobotics in a
multitude of fields [2], [11]–[14].

Small drones are attracting considerable and growing inter-
est in research labs with perspectives in several applications
[15]. These applications include, but are not limited to, trans-
portation, communication, agriculture, disaster mitigation,
and environment preservation [16]. For drone teleoperation,
commonly employed interfaces can represent a non-intuitive
and sophisticated control device for naive users. This kind of
interfaces requires a high concentration and cognitive effort
for long-term use [17].

Motion-based systems have already been successfully im-
plemented and demonstrated to be superior to remote con-
trollers for aerial robots [18], [19]. Haptic feedback has also
been employed both to increase operational performance and
represent air pressure during flight for enhanced immersion
[11], [12]. Several solutions have been proposed, mainly
based on a set of discrete gestures to control the flight
of a quadrotor in the user’s line of sight (LOS). Motion-
based systems for flying robots have been implemented
using stereo vision devices for tracking the motion of the
operator’s full body or their hands [20]–[22]. The restriction
to a predefined vocabulary of command inputs, such as take
off, go left, despite alleviating the user from continuous
interaction with the robot, is not suited for fine control
of its trajectory. A BoMI based on pointing gestures for
drone teleoperation has shown comparable performance with
respect to joysticks for landing maneuvers [23]. However,
this work is limited to a motion on a plane, and cannot
thus cope with 3D trajectories. Hand-worn interfaces have
also been considered for the control of quadrotor teams,
both based on muscular activity and, recently in a pioneering
work on motion [24]–[27]. Additionally, Tsykunov et al., in
[25], [26], used vibrotactile feedback on the user’s hand to
represent the drone swarm behaviour. This approach, though,
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includes autonomous obstacle avoidance on a 2D surface,
through a motion capture system, making the user passive
towards this task. The use of vibrating tactors has also been
proposed for drone obstacle avoidance in 2D, in a simulated
environment [28].

Despite the recent scientific and industrial interest for
motion-based interfaces and haptic feedback for the control
of aerial robots, a study of the real usability of such systems
in real-world cases is still lacking. To fill this gap, we
present a systematic approach to provide more insights on
how effective is controlling a drone through hand motion
and the role of haptics in augmenting the performance in
particular tasks, which are fundamental in several scenarios
such as search-and-rescue or inspection [29]–[31]. In this
paper, we first investigate the effects of a paradigm shift
for robot teleoperation consisting of mapping the position
of the user’s hand into a position command for the robot,
as in Fig. 1. Towards this goal, we developed a wearable
interface based on a haptic data glove. We want not only
to inform the user about the state of the drone but augment
their exteroceptive capabilities with haptic cues to allow a
finer and safer operation of the robot. Generally, none of
the above solutions can collect environmental information
from onboard sensors. Instead, we equipped the drone with
six distance sensors to allow onboard obstacle detection.
This makes our system a viable solution for ’non-trivial’
environments (e.g., inside buildings, in urban canyons) where
centralized sensing facilities, such as GNSS, are not avail-
able, and the robots can only rely on local sensors.

Finally, through user studies, we evaluated the human
learning capabilities for the developed wearable HRI first
without the haptic feedback, and, subsequently, with the
haptic feedback to test its effectiveness in a navigation task
in cluttered environments. To our knowledge, our solution
proposes the first haptic device capable of representing the
presence of obstacles in the three dimensions on the same
wearable system used for teleoperation, and at the same time,
the first approach based on onboard sensing. We validated
our ideas with both simulation and experiments with real
quadrotors.

II. METHOD

In this section, we present the proposed human-robot
interface, focusing on three main parts: the motion-based
controller allowing the user to control a drone in simulation
by hand motion, the wearable haptic device used to represent
the presence of obstacles through vibrotactile feedback, and
the implementation on a real quadrotor.

Motion-based controller: the first part of our implemen-
tation consists of a wearable interface used to control a
quadrotor remotely. The 3D position of the operator’s hand is
tracked with a motion capture system (MoCap)1. The MoCap
streams the hand position at a rate of 120Hz to a drone
simulator implemented in Unity3D. The simulator is based

1https://optitrack.com/

on a third-party model2 which reproduces the dynamics of a
quadrotor and the corresponding attitude control system. A
PID controller was used to control the position of the robot.
The simulation environment was designed to reproduce the
MoCap room appearance and size. The goal position is set
to correspond to the hand position, with a scaling factor of 8,
chosen to match the user’s arm reachable space with the size
of the room. We included a clutch mechanism to activate and
deactivate the interface. The interface is activated by pressing
the left button of a mouse, and the drone will move according
to the user’s hand position. Releasing the button will allow
the user to move freely without affecting the drone motion.
At the start of the simulation, the goal position is reset to
the drone’s initial location.

Wearable haptic device: the second component of the
presented solution is a haptic glove, capable of streaming
to the user information about the environment surrounding
the robot. The glove embeds six tactors, corresponding to
each axis of motion of the quadrotor (up-down, left-right,
front-back), placed as in Fig. 2. This configuration allows for
omnidirectional coverage. Each tactor is implemented using
a vibrating motor, installed on the external surface of a fabric
glove. We programmed a BeagleBone Green Wireless board
to interface with an H-bridge driver to regulate the vibration
of the six tactors as in Fig. 3 (left). When the quadrotor
is located near an obstacle, the tactor installed on the corre-
sponding direction will vibrate with an intensity proportional
to the obstacle’s proximity. We can express the vibration
intensity i as i = MT/d where M is the maximum possible
intensity, T an arbitrary threshold, set to 0.5m, and d the
obstacle distance. To estimate the distances, we implemented
in the simulator a model of an omnidirectional laser sensor,
installed on the drone, reproducing the characteristics of a
commercial device3.

Fig. 2: Location of tactors on the upper (left) and lower (right) side
of the wearable teleoperation interface.

Hardware Implementation: as a final step, we imple-
mented the wearable interface on a real quadrotor to test
its real-world capabilities. The platform of choice was the
centimeter-scale Crazyflie 2.1 drone [32]. This quadrotor is

2Berkeley drone simulator GitHub: https://github.com/UAVs-at-
Berkeley/UnityDroneSim

3Crazyflie multiranger deck: https://www.bitcraze.io/multi-ranger-deck/

https://optitrack.com/
https://github.com/UAVs-at-Berkeley/UnityDroneSim
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Fig. 3: Wearable interface with hardware control device (left) and
CrazyFlie 2.1 equipped with proximity sensors (right).

well suited for testing the newly designed interface, for its
robustness and simplicity of deployment. Moreover, being
small-sized and lightweight, these platforms are indicated
for indoor flight in limited space, such as a Motion Tracking
Hall. The Crazyflie platform supports a set of expansion
decks, designed for different use. For this paper, we equipped
the drone with two different decks, the multi-ranger deck,
and the Z-ranger deck, providing proximity measurements
on the three axes. For all these reasons, and because it
comes with open source software and hardware, this platform
recently gained much attention among researchers [33], [34].
It is shown in Fig. 3 (right). The selected sensors are the
same that we modeled in the simulator, as described in the
previous section. The quadrotor receives control commands
from a ground station on a dedicated radio channel through
the manufacturer’s official radio interface. The radio commu-
nication provides position setpoints to the drone and receives
its state and sensor information. The drone position is tracked
through an Optitrack motion capture system and controlled
through a PID controller. We used the Crazyswarm library
to implement the control system through ROS [35].

III. RESULTS

In this section, we summarize the experimental protocols
and results obtained through our study4. We conducted both
extensive user tests in simulation and qualitative ones in
hardware. We always show results for the simulation phase
in the top row and results from the hardware implementation
in the bottom of the figures. All the performed experiments
consist of a statistical analysis of the impact of using the
proposed interface on human subjects compared with the use
of a standard remote controller . We consider 3 experimental
conditions, corresponding to the use of 3 different interfaces:

• A standard remote controller (hereafter “R”)
• The wearable interface without haptic feedback

(hereafter “W”)
• The wearable interface with haptic feedback

(hereafter “H”)
We employed the Kruskal-Wallis test to assess the sig-
nificance of our results (T-test) and the Levene test to
assess the variances equality (F-test) [36], [37]. Statistical
significance was tested only on the simulation results due
to the limited number of participants who took part in the

4The experiments were approved by the École Polytechnique Fédérale de
Lausanne Human Research Ethics Committee.

hardware experiment. First, we tested the users’ perception
of the haptics component of the interface. In a second
step, we evaluated the subject’s learning capabilities of the
motion-based interface. Later, we proposed a practical case
to appreciate the effectiveness of the haptic interface. It
is important to remark that many participants had prior
experience using remote controllers (7.28/10± 2.24), while
all of them tested our wearable system for the first time.

I - Validation of the haptic glove: The validation for
the design of the haptic glove consisted of two different ex-
periments. The first experiment was performed to determine
the mean response time of different subjects to a vibration
stimulus. 5 subjects took part in the experiment. As they were
wearing the tactile glove, a vibrating pulse was randomly sent
to one of the 6 different motors. The subjects were asked to
press the spacebar key on a computer whenever they felt
the pulse. The response time was recorded, and this entire
process was repeated 20 times per subject, recording their
response time. After each pulse, the system randomly waited
between 6 and 12 seconds to send the next one.

In a second step, we validated the tactors placement. First,
a sample of all the 6 directional pulses was applied sequen-
tially for 1 second to introduce the subjects to all the different
options. During this part, the subjects were informed about
the pulse direction. After, a pulse was randomly sent to one
of the six motors for a given amount of time, corresponding
to the observed average response time. After each impulse,
the subjects were asked to say which direction they thought
the pulse was coming from. 5 subjects experimented 20
pseudo-random pulses.

Haptic cues are easy to decode for operators: In the
first phase of this experiment, we identified an average
response time of 0.45±0.086s. The accuracy of the subjects’
perception is summarized in the confusion matrix in table I.
Overall, 98% of the tactile cues were correctly decoded.

back front left right up down
back 100 0 0 0 0 0
front 0 100 0 0 0 0
left 0 0 100 0 0 0
right 0 0 0 100 0 0
up 0 4.76 0 4.76 90.48 0
down 0 0 0 0 0 100

TABLE I: Confusion matrix for the recognition of the haptic cues.
Participants were able to distinguish different directions with an
overall success rate of 98%.

II - Learning the motion-based interface (simulation):
9 participants were recruited to perform the learning experi-
ment. We tested condition R vs W. The experiment consisted
of the repetition of a navigation task where the participants
controlled a simulated drone through a path composed of
six gates, shown in Fig. 4. The subjects were asked to
navigate the quadrotor in simulation through the path five
times for two runs, for a total of ten repetitions. Four subjects
started with the remote and the remaining ones with the
wearable device in a pseudo-random fashion, in order to



balance out possible biasing effects. After five runs, we let
them use the second interface. All subjects wore a Head-
Mounted Display (HMD) and performed the task in a 3D
virtual environment to make the experiment more similar
to a real teleoperation experience. We collected subjective
feedback to estimate the perceived workload during the
experiment, through the NASA-TLX test [38], after the first
and last run of each trial. Moreover, participants were asked
to fill a subjective feedback questionnaire, as in table II.
We considered three metrics to evaluate the teleoperation
success: time of completion, travelled distance, and number
of collisions.

Fig. 4: Simulation environment for the learning task. In the figure
the user’s hand position, the drone and the path composed of 6
obstacles are shown.

III - Learning the motion-based interface (hardware):
4 subjects controlled the flight of a quadrotor through six
gates in the MoCap room, in a setup similar to Fig. 4, in order
to qualitatively validate the results obtained in simulation.
The quadrotor commands were set to reproduce the hand
motion with a scaling factor of 6 to prevent instabilities. We
run our experiments on a Bitcraze Crazyflie 2.1 quadrotor.
During the experiments, we approximated the quadrotor
dynamics with the ones of a point-mass (as often done in
the literature [39]).
Wearable interface shows promising results compared to
a remote controller: Fig. 5 shows experimental results. In
simulation, during the first run, Group W presented a smaller
time variance (p < 0.01) than Group R. During the last run,
performance is comparable between the two interfaces, but
while Group W shows no significant improvements, Group
R performed significantly better (p = 0.047) from the first
run. We can see a substantial difference in remote users
with training, while wearable users can perform in less time
from the start. Also, the traveled distance shows substantial
differences: in the first attempt, Group W traveled over
shorter paths (p < 0.01) than Group R, saving on average
33% of travelling distance. Similarly, remote users had to get
used to the interface to improve their performance from the
first to the last attempt (p < 0.01). Finally, Group W incurred
in fewer environment collisions (52 vs 35). This can be due
to the more natural control interface, similar to a common
manipulation task. Time and distance metrics do not show a
significant difference in the hardware scenario. Nonetheless,
wearable interface users collided with the obstacles fewer

times, showing improved control over the drone trajectory.
In Fig. 6, we show the responses to the feedback ques-

tionnaire. After the first run, the population’s opinion on the
ease of use was equally spread between remote and motion-
based interface. At the end of the experiment, instead, 78%
of the participants (7 out of 9) declared to find the motion-
based interface easier. Moreover, 8 of them declared to prefer
the proposed interface over a standard remote. The NASA-
TLX test shows significant differences results for questions 1
and 2, respectively, relative to mental and physical workload.
Participants found significantly more mentally demanding
the use of a remote both for the first (p = 0.033) and
the last (p = 0.019) run, and the wearable system more
tiring (p = 0.040) only in the first run. In hardware, the
feedback responses are coherent, even if obtained from a
smaller subject pool. To the individual feedback question QL
4, six participants declared to prefer the wearable system due
to its intuitiveness, in terms of faster operation confidence
and less time spent thinking about “how to use it”. Also,
three subjects defined it as a more engaging solution.
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Fig. 5: Time, distance, and collisions for Experiments II-III, for
remote users (R) and wearable interface users (W), runs 1 (R1,W1)
and 5 (R5,W5). In simulation, results show a significant improve-
ment in time for Group R, which is not present for Group W,
demonstrating the faster performance of Group W from the first run.
Group W also showed a significantly reduced traveling distance in
the first run and fewer overall collisions. In hardware, results are
less evident for the first two metrics, while the collision number is
consistent. (*p < 0.05, **p < 0.01,++ p < 0.01 for F-Test)

QL 1 Which interface was easier to use in the FIRST run?
QL 2 Which interface was easier to use in the LAST run?
QL 3 Which interface did you prefer?
QL 4 Why?

TABLE II: Subjective feedback form for Experiments II-III

IV - Haptic navigation test (simulation): 9 participants
were recruited to test the effectiveness of the haptics in
augmenting the user’s perception of the environment. We
specifically wanted to address and correct depth percep-
tion errors [40], commonly affecting teleoperation [41]. We
consider condition R vs W vs H. Instead of operating the
drone through a path, the participant was asked to perform
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Fig. 6: Subjective survey (QL 1-2-3) and NASA-TLX (QN) test re-
sponse for Experiments II-III. Most participants found the proposed
solution easier to use after training and preferred it over the remote
in both cases. Moreover, they found the use of a remote controller
more mentally demanding during the whole test and the wearable
interface more tiring only in the first run in simulation. (*p < 0.05)

three specific tasks depicted in Fig. 7. Task 1 consists of
approaching a flat object, placed in front of the user, as
much as possible without colliding with it. We chose this
scenario because it is particularly hard for an observer to
accurately estimate the distance from a featureless object in
front of them. Nonetheless, ordinary tasks such as inspection
and navigation in confined environments require to approach
walls to examine them while preventing collisions [29]. Task
2 and 3 consist, respectively, of going through a lateral
or vertical opening, placed perpendicularly to the user’s
sight. Shadows rendering was deactivated in the simulator
for this stage, as they can improve a user’s perception skills
[42]. This is a plausible assumption: during teleoperation,
illumination conditions and altitude can affect or cancel
shadows from the sight. The choice of this task is also related
to the common case in which an operator is required to steer
a drone through an opening, which is in LoS (e.g., passage
through a window or a door). The first device to be used
was chosen in a pseudo-random fashion. Each subject was
allowed to train for one minute for each task. After training,
they performed each task five times consecutively. At the
end of each task, each participant filled the NASA-TLX test.
Moreover, participants were asked to fill a subjective feed-
back questionnaire consisting of 4 questions, as in table III.

Fig. 7: Simulation environment for the haptics task. In the figure the
three different experimental conditions are shown (Task 1: approach
a wall in front of the user, Task 2: go through a lateral passage and
Task 3: go through a vertical passage).

V - Haptic navigation test (hardware): Similarly to
experiment III, 4 new subjects were asked to control the
drone in a real-world implementation of the three scenarios
depicted in Fig. 7. Here, only conditions R and H were tested.
Haptic feedback improves performance in the given tasks:
Fig. 8 illustrates the number of collisions that occurred with
the environment during the three phases of the experiment.
In each task, participants using the proposed interface had
less than half the accidents of remote users (p = 0.036 in
Task 1, p < 0.01 in Tasks 2,3). In the real-world test,
results are coherent with what seen in simulation. In Fig. 9,
we show the approach distance to the front obstacle and
crossing point during the tests. Fig. 9 (left) summarizes the
average wall distance for the three cases. Here, Group H
outperformed Groups R and W and could reach a closer
position to the wall while preventing collisions (pRH =
0.035). Fig. 9 (center, right) illustrates the distribution of the
drone position while crossing the lateral and vertical gates,
respectively. Independently from the success rate, the use of
the glove (Groups W and H) provided a smaller variance
both in simulation (pRW , pRH < 0.01) and hardware on
the X-axis, corresponding to the frontal facing orientation
of the participant. In Fig. 10, we show the responses to
the final feedback questionnaire. Most of the participants
agreed on the superiority of the haptic interface for the three
tasks, and all participants preferred this solution over the
remote. The effectiveness of the haptic feedback was given
a score of 8.7/10 in simulation and 9.7/10 in hardware.
Here, the NASA-TLX test showed significant differences
results for questions 1, 4, and 5, respectively relative to
mental workload, perceived success in the task, and feeling of
insecurity and stress. Participants found the test less mentally
demanding, perceived to have achieved better results on aver-
age, and felt less stressed and insecure (pRW , pRH < 0.01).
During the hardware test, the responses to our feedback
survey were coherent with the ones obtained in simulation.
The final individual feedback question QH 4 showed results
similar to QL 4. Four subjects mentioned the intuitiveness
and engaging appeal of the haptic device. Nearly everyone
(11/13 subjects) felt that the proposed device strongly aided
their depth perception.

QH 1 Which interface was easier to use for the task?
QH 2 Which interface did you prefer?
QH 3 How useful was the haptic inteface?
QH 4 Why?

TABLE III: Subjective feedback form for Experiments IV-V

IV. CONCLUSIONS

This work presents a systematic approach used to investi-
gate the viability of controlling a drone with a haptic-enabled
data glove with respect to a canonical user interface, such
as remote controllers. The motion-based interface allows a
natural control over the robot’s trajectory, and the tactile
feedback conveys information about the environment sur-
rounding the drone. This choice is finalized to provide an
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Fig. 8: Collisions per subject during the haptics test (Experiment
IV-V), for Groups R,W and H. Results show a clear advantage
in the adoption of vibrotactile feedback (Group H) for obstacle
avoidance, reducing the number of collisions by more than 50%
overall. These results are consistent in the hardware experiment.
(*p < 0.05, **p < 0.01)
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Fig. 9: Distances from the front obstacle for Task 1 and crossing
position for Tasks 2 and 3. Group H was able to approach the wall
more closely on average. The distribution of the crossing location
shows a significantly lower variance on the axis of visual restriction.
Results are consistent in both simulation and hardware tests.
(*p < 0.05,++ p < 0.01 for F-Test)

augmented sensory stream to the operator and allow them
to efficiently avoid obstacles during flight, preventing the
need for an automatic collision avoidance system. The haptic
glove was designed, implemented, and evaluated in three
subsequent steps. First, the haptic feedback was tested. It was
shown that users can accurately (98% of the times) identify
the cue direction on their hand thanks to the placement of
six tactors in strategical positions of the glove. Subsequently,
we investigated the learning ability of users approaching for
the first time this system. We realized that, in a simulated
environment, this interface can outperform a standard remote,
providing a shorter time for completing a mission, a lower
traveled distance, and fewer occurred collisions. This, despite
the fact that most users had prior experience in the use of
remote controller, and no training with the proposed one.
Finally, we let participants test the haptic feedback function
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Fig. 10: Subjective survey (QH 1-2) and NASA-TLX (QN) re-
sponses for Experiments IV-V. Participants consistently preferred
the haptic interface, and found it less mentally demanding, per-
ceived to have achieved better results and felt less stressed and
insecure with respect to an interface not providing tactile cues.
(*p < 0.05, **p < 0.01)

in three different simulated tasks, where the drone was set to
fly close to obstacles and in confined spaces. The experiment
demonstrated that adding haptic information to simple visual
feedback in LoS significantly improves the success of such
missions, making the user able to fly in closer proximity with
obstacles without colliding with them.

Once the design of the glove was validated and tested in
simulation, it could be tested in a real environment. We repro-
duced our experiments in a MoCap room with an additional
set of participants and observed that the wearable interface
can be a viable substitution to a remote for the teleoperation
of a real drone. In this case, the augmented feedback from
the haptic device showed convincing improvements also
when working on the real quadrotor. Participants stated in
a subjective feedback survey that they found the proposed
interface more intuitive and easy to learn, more engaging, and
that it improved their perception of depth through haptics.

This work is a first step towards the design and implemen-
tation of motion-based, haptic-enabled HRIs, and it opens
to important questions towards exciting future directions.
First, validating our system on a larger pool of subjects
would surely be beneficial to provide greater insight of
its effectiveness. We are currently working to integrate our
system and making it smaller to be easily worn by users.
Also, our clutch mechanism was perceived as nonintuitive
by some participants in the initial stage. One way to free
the users from using a clutch system would be to switch
from mapping the hand pose from position to velocity drone
commands. The human-robot mapping, as it is implemented
at the moment, is a simple scaling of the hand position. It
could be improved to data-driven mappings, as in [43] to help
the users to learn it faster. Moreover, to allow the deployment
of our system in environments in which a MoCap is not
available, the use of wearable sensors to track hand motion
should be investigated.



REFERENCES

[1] T. Gibo, “The ”Shared Control” Committee [Society News],” IEEE
Systems, Man, and Cybernetics Magazine, vol. 2, no. 2, pp. 51–55,
Apr. 2016.

[2] M. A. Diftler, J. S. Mehling, M. E. Abdallah, N. A. Radford, L. B.
Bridgwater, A. M. Sanders, R. S. Askew, D. M. Linn, J. D. Yamokoski,
F. A. Permenter, B. K. Hargrave, R. Platt, R. T. Savely, and R. O.
Ambrose, “Robonaut 2 - The first humanoid robot in space,” in IEEE
Intl. Conf. on Rob. and Aut. (ICRA), May 2011, pp. 2178–2183.

[3] O. Khatib, X. Yeh, G. Brantner, B. Soe, B. Kim, S. Ganguly, H. Stuart,
S. Wang, M. Cutkosky, A. Edsinger, P. Mullins, M. Barham, C. R.
Voolstra, K. N. Salama, M. L’Hour, and V. Creuze, “Ocean One: A
Robotic Avatar for Oceanic Discovery,” IEEE Robotics Automation
Magazine, vol. 23, no. 4, pp. 20–29, Dec. 2016.

[4] J. Bodner, H. Wykypiel, G. Wetscher, and T. Schmid, “First experi-
ences with the da Vinci operating robot in thoracic surgery,” European
Journal of Cardio-Thoracic Surgery, vol. 25, no. 5, pp. 844–851, May
2004.

[5] J. Casper and R. Murphy, “Human-robot interactions during the robot-
assisted urban search and rescue response at the World Trade Center,”
IEEE Trans. Syst., Man, Cybern. B, vol. 33, no. 3, pp. 367–385, Jun.
2003.

[6] J. Y. C. Chen, M. J. Barnes, and M. Harper-Sciarini, “Supervisory
Control of Multiple Robots: Human-Performance Issues and User-
Interface Design,” IEEE Transactions on Systems, Man, and Cyber-
netics, Part C (Applications and Reviews), vol. 41, no. 4, pp. 435–454,
Jul. 2011.

[7] M. Casadio, R. Ranganathan, and F. A. Mussa-Ivaldi, “The Body-
Machine Interface: A New Perspective on an Old Theme,” Journal of
Motor Behavior, vol. 44, no. 6, pp. 419–433, Nov. 2012.

[8] B. Hannaford, L. Wood, D. A. McAffee, and H. Zak, “Performance
evaluation of a six-axis generalized force-reflecting teleoperator,” IEEE
Transactions on Systems, Man, and Cybernetics, vol. 21, no. 3, pp.
620–633, May 1991.

[9] B. Hannaford and A. M. Okamura, “Haptics,” in Springer Handbook
of Robotics, B. Siciliano and O. Khatib, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 719–739.

[10] M. Aggravi, F. Pausé, P. Robuffo Giordano, and C. Pacchierotti,
“Design and evaluation of a wearable haptic device for skin stretch,
pressure, and vibrotactile stimuli,” IEEE Robotics and Automation
Letters, vol. 3, no. 3, pp. 2166–2173, 2018.

[11] C. Rognon, S. Mintchev, F. DellAgnola, A. Cherpillod, D. Atienza,
and D. Floreano, “FlyJacket: An Upper Body Soft Exoskeleton for
Immersive Drone Control,” IEEE Robot. Autom. Lett., vol. 3, no. 3,
pp. 2362–2369, Jul. 2018.

[12] C. Rognon, M. Koehler, C. Duriez, D. Floreano, and A. M. Okamura,
“Soft Haptic Device to Render the Sensation of Flying Like a Drone,”
IEEE Robot. Autom. Lett., vol. 4, no. 3, pp. 2524–2531, 2019.

[13] A. Wang, J. Ramos, J. Mayo, W. Ubellacker, J. Cheung, and S. Kim,
“The HERMES humanoid system: A platform for full-body teleoper-
ation with balance feedback,” in 2015 IEEE-RAS 15th International
Conference on Humanoid Robots (Humanoids), 2015, pp. 730–737.

[14] J. Bimbo, C. Pacchierotti, M. Aggravi, N. Tsagarakis, and D. Prat-
tichizzo, “Teleoperation in cluttered environments using wearable
haptic feedback,” in IEEE Intl. Conf. on Intell. Rob. and Sys. (IROS).
IEEE, 2017, pp. 3401–3408.

[15] SESAR, “European Drones Outlook Study,” 2016.
[16] D. Floreano and R. J. Wood, “Science, technology and the future of

small autonomous drones,” Nature, vol. 521, no. 7553, pp. 460–466,
May 2015.

[17] J. M. Peschel and R. R. Murphy, “On the Human-Machine Interac-
tion of Unmanned Aerial System Mission Specialists,” IEEE Trans.
Human-Mach. Syst., vol. 43, no. 1, pp. 53–62, Jan. 2013.

[18] J. Miehlbradt, A. Cherpillod, S. Mintchev, M. Coscia, F. Artoni,
D. Floreano, and S. Micera, “Data-driven bodymachine interface for
the accurate control of drones,” Proc Natl Acad Sci USA, vol. 115,
no. 31, pp. 7913–7918, Jul. 2018.

[19] M. Macchini, F. Schiano, and D. Floreano, “Personalized telerobotics
by fast machine learning of body-machine interfaces,” IEEE Robot.
Autom. Lett., vol. 5, pp. 179–186, Jan. 2020.

[20] K. Ikeuchi, T. Otsuka, A. Yoshii, M. Sakamoto, and T. Nakajima,
“KinecDrone: enhancing somatic sensation to fly in the sky with
Kinect and AR.Drone,” in Proceedings of the 5th Augmented Human
International Conference on - AH ’14. ACM Press, 2014, pp. 1–2.

[21] A. Sanna, F. Lamberti, G. Paravati, and F. Manuri, “A Kinect-based
natural interface for quadrotor control,” Entertainment Computing,
vol. 4, no. 3, pp. 179–186, Aug. 2013.

[22] A. Sarkar, K. A. Patel, R. K. G. Ram, and G. K. Capoor, “Gesture
control of drone using a motion controller,” in 2016 International
Conference on Industrial Informatics and Computer Systems (CIICS).
Sharjah, Dubai, United Arab Emirates: IEEE, Mar. 2016, pp. 1–5.

[23] B. Gromov, G. Abbate, L. M. Gambardella, and A. Giusti, “Proxim-
ity Human-Robot Interaction Using Pointing Gestures and a Wrist-
mounted IMU,” IEEE Intl. Conf. on Rob. and Aut. (ICRA), p. 8.

[24] A. Stoica, F. Salvioli, and C. Flowers, “Remote control of quadrotor
teams, using hand gestures,” in Proceedings of the 2014 ACM/IEEE
international conference on Human-robot interaction - HRI ’14.
Bielefeld, Germany: ACM Press, 2014, pp. 296–297.

[25] E. Tsykunov, L. Labazanova, A. Tleugazy, and D. Tsetserukou,
“SwarmTouch: Tactile Interaction of Human with Impedance Con-
trolled Swarm of Nano-Quadrotors,” in IEEE Intl. Conf. on Intell.
Rob. and Sys. (IROS). Madrid: IEEE, 2018, pp. 4204–4209.

[26] E. Tsykunov, R. Agishev, R. Ibrahimov, L. Labazanova, A. Tleugazy,
and D. Tsetserukou, “Swarmtouch: Guiding a swarm of micro-
quadrotors with impedance control using a wearable tactile interface.”
IEEE Trans. Haptics, 2019.

[27] R. Ibrahimov, E. Tsykunov, V. Shirokun, A. Somov, and D. Tset-
serukou, “Dronepick: Object picking and delivery teleoperation with
the drone controlled by a wearable tactile display,” arXiv preprint
arXiv:1908.02432, 2019.

[28] S. Spiss, Y. Kim, S. Haller, and M. Harders, “Comparison of Tactile
Signals for Collision Avoidance on Unmanned Aerial Vehicles,” in
2016 IEEE AsiaHaptics, S. Hasegawa, M. Konyo, K.-U. Kyung,
T. Nojima, and H. Kajimoto, Eds. Singapore: IEEE, 2016.

[29] A. E. Jimenez-Cano, P. J. Sanchez-Cuevas, P. Grau, A. Ollero, and
G. Heredia, “Contact-based bridge inspection multirotors: Design,
modeling, and control considering the ceiling effect,” IEEE Robotics
and Automation Letters, vol. 4, no. 4, pp. 3561–3568, 2019.

[30] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza,
“The foldable drone: A morphing quadrotor that can squeeze and fly,”
IEEE Robotics and Automation Letters, vol. 4, no. 2, pp. 209–216,
2018.

[31] J. Delmerico, S. Mintchev, A. Giusti, B. Gromov, K. Melo, T. Horvat,
C. Cadena, M. Hutter, A. Ijspeert, D. Floreano et al., “The current
state and future outlook of rescue robotics,” Journal of Field Robotics,
2019.

[32] Bitcraze, “Crazyflie 2.0,” 2018. [Online]. Available: http://ieeexplore.
ieee.org/document/6392969/

[33] W. Hönig, J. A. Preiss, T. S. Kumar, G. S. Sukhatme, and N. Ayanian,
“Trajectory planning for quadrotor swarms,” IEEE Trans. Robot.,
vol. 34, no. 4, pp. 856–869, 2018.

[34] B. Gabrich, D. Saldana, V. Kumar, and M. Yim, “A flying gripper
based on cuboid modular robots,” in IEEE Intl. Conf. on Rob. and
Aut. (ICRA). IEEE, 2018, pp. 7024–7030.

[35] J. A. Preiss, W. Honig, G. S. Sukhatme, and N. Ayanian, “Crazyswarm:
A large nano-quadcopter swarm,” in IEEE Intl. Conf. on Rob. and Aut.
(ICRA), 2017, pp. 3299–3304.

[36] W. H. Kruskal and W. A. Wallis, “Use of ranks in one-criterion
variance analysis,” vol. 47, no. 260, pp. 583–621.

[37] M. B. Brown and A. B. Forsythe, “Robust tests for the equality of
variances,” vol. 69, no. 346, pp. 364–367.

[38] S. Hart, G. and L. E. Staveland, “Development of NASA-TLX (task
load index): Results of empirical and theoretical research,” vol. 52,
pp. Pages 139–183.

[39] F. Schiano and R. Tron, “The dynamic bearing observability matrix
nonlinear observability and estimation for multi-agent systems,” in
IEEE Intl. Conf. on Rob. and Aut. (ICRA), 2018, pp. 3669–3676.

[40] R. D. Walk and E. J. Gibson, “A comparative and analytical study of
visual depth perception.” vol. 75, no. 15, pp. 1–44.

[41] J. Y. C. Chen, E. C. Haas, and M. J. Barnes, “Human Performance
Issues and User Interface Design for Teleoperated Robots,” IEEE
Trans. Syst., Man, Cybern. C, vol. 37, no. 6, pp. 1231–1245, Nov.
2007.

[42] A. M. Puerta, “The power of shadows: shadow stereopsis,” Journal of
the Optical Society of America A, vol. 6, no. 2, p. 309, 1989.

[43] R. P. Khurshid and K. J. Kuchenbecker, “Data-Driven Motion Map-
pings Improve Transparency in Teleoperation,” Presence: Teleopera-
tors and Virtual Environments, vol. 24, no. 2, pp. 132–154, May 2015.

http://ieeexplore.ieee.org/document/6392969/
http://ieeexplore.ieee.org/document/6392969/

	I Introduction
	II Method
	III Results
	IV Conclusions
	References

