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Abstract— We describe a mobile manipulation hardware and
software system capable of autonomously performing complex
human-level tasks in real homes, after being taught the task
with a single demonstration from a person in virtual reality.
This is enabled by a highly capable mobile manipulation robot,
whole-body task space hybrid position/force control, teaching
of parameterized primitives linked to a robust learned dense
visual embeddings representation of the scene, and a task graph
of the taught behaviors. We demonstrate the robustness of
the approach by presenting results for performing a variety
of tasks, under different environmental conditions, in multiple
real homes. Our approach achieves 85% overall success rate
on three tasks that consist of an average of 45 behaviors each.
The video is available at: https://youtu.be/HSyAGMGikLk.

I. INTRODUCTION

Robotic capabilities that assist people with tasks in their
homes can play a critical role in enabling them to age in
place longer and live a higher quality life. However, the
tasks people perform in their homes vary widely, and home
environments, objects, and tasks are highly unstructured and
extremely diverse. But one advantage a robot operating in a
home has is that it only needs to work well in that home,
and its actions can be specialized to that environment.

Based on these observations, we have developed a unique
solution to enabling a general purpose robot to perform
human-level tasks in diverse and complex human environ-
ments. Rather than program or train a robot to recognize a
fixed set of objects or perform pre-defined tasks, we enable
the robot to be easily taught new objects and tasks, with
inherently robust behaviors, from a single human demonstra-
tion, which can then be executed autonomously in naturally
varying conditions. Our system uses no prior object models
or maps, and can be taught to associate a given set of
behaviors to arbitrary scenes, objects, and voice commands
from one demonstration of the behavior. Because tasks are
graphs of behaviors linked to dense visual features, the
system is easy to understand and failure conditions are easy
to diagnose and reproduce.

Our solution consists of several key contributions:

1) We developed a mobile manipulation robot that is very
physically capable, with high end-effector manipula-
bility and a wide instantaneous visual field-of-view,
which makes teaching from human demonstration easy.

Fig. 1. We have developed a highly capable general purpose mobile
manipulation robot (top) capable of being taught human-level tasks by
linking what it sees (bottom left) to robust parameterized behaviors, through
dense learned visual features (whose first three dimensions are shown on
the bottom right), from a single human demonstration of the behavior.

2) Rather than teach direct task space motions, we use
virtual reality (VR) to teach a set of parameterized be-
haviors, which combine collision-free motion planning
and whole-body hybrid (position, velocity, admittance)
Cartesian end-effector control, minimizing the taught
parameters and ensuring robustness during execution.

3) We compute task specific learned dense visual pix-
elwise embeddings (keyframes), which link the pa-
rameterized behaviors to the scene and enable it to
compute a 6-DOF transform of taught behaviors at
execution time. While robust to viewpoint change,
lighting variations, and light clutter, we do not attempt
to generalize beyond specific taught situations.

4) The behaviors of a task are taught independently, with
visual entry conditions, and success-based exit criteria,
which enable behaviors to be chained together in a
dynamic task graph, allowing the robot to reuse taught
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behaviors to perform task sequences.
Our approach applies to both manipulation tasks, as well

as navigation, where a taught trajectory is identified by
keyframes along the path, and followed with a reactive path
follower. Since actions are taken with respect to taught
keyframes, an explicit global map is not used for either
navigation or manipulation. The approach achieves a success
rate of 85% on a set of challenging tasks that have an
average of 45 behaviors per task. The use of learned dense
embeddings makes the system robust to expected daily
changes in the environment, including lighting and clutter.
The use of parameterized hybrid control behaviors makes
the system robust to limited accuracy mechanisms.

A. Related Work

There are many research mobile manipulation robots in-
cluding those with a wheeled base, linear stage torso, and
a single arm [1], [2], [3] or dual arms [4], an arm on a
quadruped legged base [5], or a more humanoid form factor
on wheels [6] or legs [7], among others. None that can be
acquired provide a form factor that allow for performing
tasks in real homes.

The 2015 DARPA Robotics Challenge Finals [8] presented
a snapshot of many fully integrated mobile manipulation
systems being remotely operated with semi-autonomous ca-
pabilities. Prior to that, the DARPA Autonomous Robotic
Manipulation Software (ARM-S) program demonstrated per-
forming complex dual-arm manipulation tasks fully au-
tonomously [9], [10], [11]. However, these approaches relied
heavily on prior models of objects and took significant
engineering effort to perform new tasks.

Some core elements of our approach are commonly used in
industrial manipulation applications, such as parameterized
behaviors [12], hybrid position-force control [13] [14], task
graph formulations including Petri nets and hierarchical state
machines, and kinematic teach and repeat, but have been
limited to structured and controlled environments.

Visual teach and repeat has been used in less structured
environments for outdoor ground navigation [15] and aerial
localization [16]. For manipulation, a related approach is
trajectory transfer [17], where pixel-level correspondences
between a reference scene and the current environment are
used to warp a taught sequence to a new initial state. Unlike
this approach, we apply registration at the behavioral level
as opposed to the whole trajectory. We extend the idea to
associate behaviors using generic learned dense pixelwise
visual embeddings for feature matching [18], rather than
estimating constraints from semantic class specific sparse
keypoints [19].

Imitation learning from VR demonstration can also learn
a mapping of images to control, such as using behavioral
cloning [20], but still requires a large amount of data. Ap-
proaches to single-shot learning from demonstration include
variants of model-based and model-free inverse reinforce-
ment learning, online reinforcement learning, and meta learn-
ing, [21], [22], [23], [24] but these all still require significant
amounts of data for training similar tasks, or a large number

of policy executions, before being able to perform well on
a new task. Some approaches also automatically generate
the task graph [25]. Training behaviors in simulation and
transfering to reality has shown some promise [26] but still
requires some online refinement and is limited to what can
be simulated.

II. HARDWARE SYSTEM

We have developed a custom prototype mobile manipula-
tion robot physically capable of performing a wide variety of
household tasks, and specifically designed to make teaching
of tasks easy. Making the system low cost was not a
priority, but recent advances in sensors and actuators [27]
[6] indicate that doing so is possible, and our approach is
designed to be robust to low precision mechanisms. The
choice of components was based on making the overall
system lightweight, compact, and power efficient enough to
perform tasks in real homes. We have experimentally found
that a person in VR, seeing only what the robot sees and
controlling its end-effectors, can do many household tasks,
except highly dexterous or very high payload tasks.

1) Morphology and Actuation: The 100kg robot consists
of a total of 31 degrees-of-freedom (DOFs). The chassis con-
sists of four driven and steerable wheels (eight total DOFs)
that enable “pseudo-holonomic” mobility. The drive/steer
actuator package is a custom modular design using brush-
less Maxon motors and planetary gearheads. The torso is
five DOFs (yaw-pitch-pitch-pitch-yaw) built using a Motiv
Robotics RoboMantis limb, which is derived from the JPL
RoboSimian limb [28]. Each arm is a seven DOF Kinova
Jaco2 arm. The two DOF pan/tilt head also uses Kinova
actuators. Each arm also has a single DOF Sake Robotics
gripper with under-actuated fingers. We modified the Sake
gripper fingers to have 3D printed hooks that greatly improve
the ability to pull handles or knobs with high force, without
any observed impact on snagging in high clutter situations
or other negative side effects. We can also manually replace
the gripper with custom tools, such as a sponge or a wiping
pad, to enable different tasks.

2) Sensing: We use an ATI mini-45 force/torque sensor
at the wrist of each arm to measure interaction forces with
the environment. Our perception sensors are consolidated on
the pan/tilt head of the robot, with a very wide field-of-view,
giving the robot and a person in VR significant context to
perform the task. They consist of four Intel RealSense depth
cameras, a pair of 5MP Basler cameras with a 7cm baseline,
and a VectorNav IMU. The RealSense cameras are arranged
in a 2x2 configuration to produce a depth image with a total
field-of-view (FOV) of 110◦x80◦and the Baslers each have
an FOV of 146◦x123◦. The cameras use USB 3.0 and are
hardware triggered and timestamped by the computer. The
six cameras are calibrated using Kalibr [29], with a double-
sphere fisheye model [30] for the stereo pair.

3) Compute: All computation is performed on-board the
robot. The compute system consists of an 18 core Intel i9
CPU and an Nvidia TitanV GPU. We use a Linux kernel
with the Preempt RT patch applied. This compute system



Fig. 2. Our software architecture enables robust autonomous execution
of taught tasks by processing visual and audio data, building up a world
model, mapping visual inputs to taught behaviors, and executing sequences
of behaviors.

allows us to use a single computer for all of our processes,
including both real-time control and perception. All of our
inference is done on the GPU using TensorRT models.

4) Power: We use six standard BB2590 Li-Ion batteries,
each with 294Wh of capacity. While running and performing
tasks, the system draws between 650W and 750W. We devel-
oped a custom power board that handles power distribution,
on-board battery charging, and emergency stopping.

III. SOFTWARE SYSTEM

Our software system (Figure 2) is designed to leverage
our highly redundant and capable hardware safely and ef-
fectively. It is specifically architected to enable teaching
of behaviors. It is also designed to enable fast iterative
development and deployment, debugging, and visualization
of the system.

A. Software Architecture

1) Infrastructure: The system is architected like many
standard robotic systems [31] [32], with independent pro-
cesses communicating via messages over a custom interpro-
cess communication (IPC) implementation. The system is
organized as a set of modules, one or more of which run
in a system process, which handle a set of input messages
and publish a set of output messages. All messages are
logged and modules or sets of modules can be replayed
deterministically in a single process, or as if it were running
on the robot, in parallel.

2) Visualization, Commanding, and Teaching: We devel-
oped a custom visualization tool that subscribes to messages
and can display 2D, 3D, text, and temporal information.
It can also be used to command the robot and inspect
and modify the task sequences that the robot is capable of
executing. The robot state and RGB-D data is also streamed
live into a VR system, enabling a person to teach the robot
parameters of behaviors. We define these parameters by using
an HTC Vive VR headset with two hand controllers. This
allows an operator to see the world from the perspective of
the robot, annotate the 3D point cloud, and float detached
robot end-effectors in space to define end-effector poses.

B. Control Architecture
Our system provides several key levels of abstraction for

controlling the robot, specifically making it easy to teach and
execute robust task sequences.

1) Real-time Control: The lowest levels provide real-time
coordinated control of all of the robot’s DOFs. Real-time
control consists of two processes working in coordination
at 200Hz: Joint Control and Part Control. Joint Control
implements low-level device communications and exposes
the device commands and statuses in a generic way. It also
provides the lowest level of safety checks. If an incoming
command violates center of mass constraints, causes a self-
collision, or violates joint state limits, a fault is triggered and
the robot is brought to rest safely.

Part Control handles higher level coordination of the robot
by dividing the robot into parts (right arm, head, etc.)
and providing a set of parameterized controllers for each
part. Commands from non-realtime processes set the desired
controllers and parameters to be running at a given time.
Arbitrary combinations of controllers are supported as long
as their controlled parts do not overlap. It provides controllers
for joint position and velocity, joint admittance, camera look-
at, chassis position and velocity, and hybrid task space pose,
velocity, and admittance control.

2) Whole-body Planning: The next level of abstraction
for controlling the robot is commanding end-effector task
space control and automatically solving for the robot pos-
ture to achieve these desired motions. Whole-body inverse
kinematics (IK) for hybrid Cartesian control are formulated
as a quadratic program (QP) [33] and solved in real-time
at 200Hz. Parts are subject to linear constraints on joint
position, velocity, acceleration, and torque due to gravity,
center of mass, and self-collisions and quadratic costs on
Cartesian tracking, regularization, and distance to preferred
postures.

Whole-body IK are used for non-realtime motion plan-
ning of Cartesian pose goals. Occupied environment voxels
(Section III-C.2) are fit with spheres and capsules and voxel
collision constraints are added to the QP IK to prevent
collisions between the robot and the world. Motion planning
is performed using a rapidly-exploring random tree (RRT)
[34], sampling in Cartesian space with the QP IK as the
steering function between nodes. Planning in Cartesian space
results in natural and direct motions, and using the QP IK
as the steering function makes planning more reliable, as the
same controller is used to plan and execute, reducing the
possible discrepancies between the two.

3) Parameterized Behaviors: The next level of abstraction
defines parameterized behaviors, which are primitive actions
that can be parameterized and sequenced together to accom-
plish a complex task. We have found that a small set of
parameterized behaviors are sufficient to perform many tasks,
however the software architecture supports quick addition
of new behaviors as and when they are necessary. Our
behaviors include (1) manipulation actions such as grasp,
lift, place, pull, retract, wipe, joint-move, direct-control; (2)
navigation actions such as drive with velocity commands,



drive-to with position commands and follow-path with active
obstacle avoidance [35]; and (3) other auxiliary actions such
as look at and stop.

Each behavior can have single or multiple actions of
different types such as joint or Cartesian moves for one
or more parts of the robot. Each action can use different
control strategies such as position, velocity or admittance
control, and can also choose to use motion planning to
avoid external obstacles or not. All motions, whether they
use motion planning or not, ensure that there is no self-
collision and that all motion control constraints are satisfied.
Each behavior is parameterized by the different actions,
which in turn will have their own parameters. For example,
a grasp behavior consists of four parameters: gripper open
angle, 6D approach, grasp and (optional) lift poses for the
gripper. These four parameters define the following pre-
defined sequence of actions: (1) open the gripper to desired
gripper angle, (2) plan and execute a collision-free path for
the gripper to the 6D approach pose, (3) move the gripper to
the 6D grasp pose and stop on contact, (4) close the gripper,
and (5) move the gripper to the 6D lift pose, if provided.

4) Task Graphs: The final level of control abstraction
is a task. A task is a sequence of sub-tasks made up of
taught behaviors. A task graph is a directed, cyclic or acyclic
graph with different sub-tasks as nodes and different transi-
tion conditions as edges, including fault detection and fault
recovery. Edge conditions include the status of each behavior
execution, checking for objects in hand using force/torque
sensors, voice commands, and keyframe matches to handle
different objects and environments. The task graph is created
at teach time by manually specifying nodes and transitions.

C. Perception Architecture

Our perception pipeline is designed to provide the robot
with an understanding of the environment around it and
to recognize what actions to take, given the task it has
been taught. A single fused RGB-D image is created by
projecting the four depth images into the wide field-of-view
left image of the high resolution color stereo pair. The system
runs a set of deep neural networks to provide various pixel
level classifications and feature vectors (or “embeddings”)
which are then both accumulated into a temporal 3D voxel
representation (Figure 2), as well as used to recall actions to
perform, based on the visual features from a taught sequence.

1) Learned Dense Pixel Embeddings: Based on experi-
ence testing in highly unstructured and diverse (“long tailed”
[36]) environments, like homes, a key aspect of our system
is that we do not pre-define object categories or assume any
models of objects or the environment. Rather than explicitly
detect and segment objects [37], and explicitly estimate 6-
DOF object poses [38], we instead produce dense pixel level
embeddings for object semantic classes and instances, and
viewpoint invariant correspondences, and use the reference
embeddings from a taught reference behavior to perform
classification or pose estimation.

All of our learned models are fully convolutional, and
map every pixel in the input RGB image to a point in an

embedding space with a metric that is implicitly defined by
a loss function and training procedure specific to each model.
All models use a common feature extractor, which consists
of a ResNet [39] 101 encoder, and a variant of the Feature-
Pyramid Network [40] decoder. Given an input RGB image
of size height×width×3, the feature extractor produces an
output of size 1

8 height× 1
8 width× 2048, which is fed to a

final 1× 1 convolution with an output depth that is chosen
depending on the output. We use models trained for:

• Semantic class: We detect all objects of a semantic
class given a single annotated example by comparing
the embeddings on the annotation to the embeddings
we see everywhere else. We train this model using a
discriminative loss function as described in [41], on the
MSCOCO data set [42].

• Object instance: This model is necessary for identifying
or counting individual objects. We train the model to
predict a vector (2D embedding) at each pixel, pointing
to the centroid of the object containing that pixel. At
run-time, we group all pixels that point to the same
centroid to segment the scene.

• 3D correspondence: This model produces per pixel
embeddings that are invariant to view and lighting, so
that any view of a given 3D point in a scene will map
to the same embedding. We train this model using the
same approach and loss function described in [18], on
the ScanNet data set [43].

All of our models are written in TensorFlow, and converted
and run on-board the robot with Nvidia TensorRT using 16-
bit floating point precision on an Nvidia Titan-V GPU, with
multiple processes coordinated using Nvidia’s Multi-Process
Service (MPS), achieving about 90 megapixels per second.

2) Voxel Mapping: The pixelwise embeddings (and depth
data) for each RGB-D frame is then fused into a dynamic
3D voxel map [44]. Each voxel accumulates first and second
order position, color, and embeddings statistics. Expiration
of dynamic objects is based on back projection of voxels
into the depth image. The voxel map is segmented using
standard graph segmentation based on the semantic and
instance labels, and geometric proximity. The voxel map is
also collapsed down into a 2.5D map with elevation and
traversability classification statistics.

The voxel map is used for collision free whole-body
motion planning, while the 2.5D map is used for collision
free chassis motions. The segmented objects are used by the
behaviors to attach objects to hands when they are grasped.

3) Keypoint Pose Estimation: Central to our one-shot
teaching approach is being able to recognize features in
the scene (or of a specific manipulation object) that are
highly correlated to features recorded from a previously
taught task. When a task is demonstrated by the user, features
are saved throughout the task in the form of a keyframe, a
saved RGB image containing a multi-dimensional embedding
with depth (if valid) per pixel. The embeddings act as a
feature descriptor that is ideally unique enough to establish
per pixel correspondences at run-time, assuming that the
current image or object is visually similar enough to the



Fig. 3. We use dense learned embeddings and geometric constraints to
match a current scene (top) or part of a scene (bottom) to a previously
taught one. For behavior sequences or various entry conditions, the best
keyframe is computed and selected from a set (top right).

reference that existed at teach time. The keypoints are trained
to be viewpoint invariant, but not semantically meaningful,
and tend to latch onto specific textures or visual features.
Since depth exists at (mostly) each pixel, correspondences
can be used to solve for a delta pose between the current
and reference images. Our keyframe matcher detects inliers
using Euclidian constraints [45] and applies the standard
Levenberg-Marquardt least-squares algorithm with RANSAC
to solve for a 6-DOF pose. This delta pose serves as a
correction that can be applied to adapt the taught behavior
sequence to the current scene. Because we have embeddings
defined at each pixel, we can define keyframes including
every pixel in the image or only using pixels in a user-defined
mask (where we selectively annotate regions of the image to
be relevant for the task) or on an object (Figure 3). Our
approach also allows for multiple keyframes to be passed to
the matching problem, which chooses the best keyframe at
run-time based on the number of correspondences found.

4) Audio Processing: In addition to visual sensing, we
also collect and process audio input. Ultimately, the audio
provides another set of embeddings as input for teaching the
robot, but for now we only train the system to recognize
specific spoken words. The robot acquires input by asking
questions and understanding spoken language responses from
a person.

Spoken questions are produced using the eSpeak syn-
thesizer. Spoken responses are understood using a custom
keyword-detection module. The robot can understand a cus-
tom wakeword, a set of objects (e.g., “mug” or “bottle”)
and a set of locations (e.g., “cabinet” or “fridge”) using
a fully-convolutional keyword-spotting model. The input to
the model is single-channel 16-bit audio captured at 16 kHz,
from which a spectrogram and MFCC features are extracted.
The input audio clip duration is 1300 ms, the spectrogram
window is 30 ms, and the number of MFCC bins is 40.

Fig. 4. A person in virtual reality (upper left) can teach a variety
of parameterized behaviors (shown in the menu on the lower left) by
visualizing a robot model, what the robot is seeing, and flying tools around
in 3D (right) to define the parameters of the behavior.

The model is trained using cross-entropy loss, and consists
of three layers of convolutions, with max pooling after each
layer, and ReLU activation functions.

The model listens for the wakeword every 32 ms; when the
wakeword is detected, it looks to detect an object or location
keyword in the following 2500 ms. A keyword must have
been detected at least three times with at least probability 0.5
in order to be recognized. During training, noise is artificially
added to make recognition more robust. The offline accuracy
at identifying individual keywords is 98%.

5) Teaching: To teach the robot a task, the operator
uses a set of VR modes (Figure 4). Each behavior has a
corresponding VR mode for setting and commanding the
specific parameters of that behavior. Each behavior mode has
customized visualizations to aid in setting each parameter,
dependent on the type of parameter. For example, when
setting the parameters for a pull door motion, the hinge axis
is labeled and visualized as a line and candidate pull poses
for the gripper are restricted to fall on the arc about the
hinge. When appropriate, force vector setpoints are specified
during teaching to define interaction forces desired during
execution of the behavior.

IV. EXPERIMENTAL RESULTS

To evaluate the robustness of our system and approach,
experiments were performed with the mobile manipulation
robot in multiple real homes. Here we present three tasks,
performed ten times, in two homes for a total of 60 exper-
iments in order to obtain a measurement of task robustness
across natural variations (e.g. lighting conditions during
different times of the day, minor variations in initial object
poses, wheel slippage, etc.). No software or parameter value
changes were made across any of the 60 experiments, and
each task was taught only once for the 10 experiments done
for each task in each home. The homes were not modified
in any way, except for removing personally identifiable
information from the scene. The robot operated entirely au-
tonomously for each of the 60 experiments. Additionally, ad
hoc experiments were performed with intentional variations
of the home in order to test the robustness of the system.



A. Task Descriptions

The three tasks that we evaluated were:
1) Task 1: Bottle from Refrigerator: The robot starts in a

different room than the kitchen, drives to the kitchen, opens
the refrigerator, grasps a bottle, closes the refrigerator, and
then drives back to the original room with the bottle. The
experiment is considered a success if the robot returns to the
original location with the bottle.

2) Task 2: Cup from Dishwasher: The robot opens the
dishwasher, removes a cup, closes the dishwasher, and places
the cup on the countertop. The experiment is considered a
success if the cup ends on the countertop.

3) Task 3: Moving Multiple Objects to Multiple Locations:
The robot asks the user which object to put away, grasps
that object, asks the user where to put the object, then drives
to the specified location and puts the object away. In these
experiments, we used two objects (a cup and a bottle) and
two locations (a table and a cabinet). Voice commands were
used to specify the object and location. Additionally, the
cabinet door could be in any of three states: open, closed,
or partially open. The experiment is considered a success if
the object ends in the specified location.

In addition to the 60 experiments performed for measure-
ment of natural variation robustness, several more experi-
ments for each task were performed to test the bounds of the
robustness of the system using intentional variations. Task 1
variations included: putting the bottle on a different shelf
than it was taught on, adding obstacles along the path, adding
pictures/magnets to the refrigerator, and varying the lighting
conditions by closing blinds and turning lights on/off. Task 2
variations included: varying the lighting conditions. Task 3
variations included: swapping the initial positions of the
two objects, opening adjacent cabinet doors, re-arranging the
items in the cabinet, adding obstacles along the path, and
adding a placemat to the table.

B. Task Results

Of the 60 end-to-end task experiments perfomed in two
homes (with examples shown in Figure 5), 51 were success-
ful in completing the task, resulting in an overall success
rate across all three tasks and both homes of 85%. A
significant contributor to the end to end success rate of
our tasks was fault detection and recovery within the task
graph. On average, our three tasks consisted of 45 behaviors
each that are executed in series. This means that behaviors
result in success or recoverable failure 99.6% of the time
(or irrecoverable failure 0.4% of the time). For the three
tasks, the robot performs the task anywhere from 10x to
100x slower than a person performing the same task, with
the average being 20x slower.

The task failures are all the result of two different failure
modes. The first is that the pose estimate of the object or
affordance is inaccurate, resulting in the behavior positioning
the end-effector in such a way that the behavior fails (e.g.
the gripper slips off the handle). The second is that the scene
appears to look too much like a different keyframe than the
desired behavior (e.g. the partial open cabinet appears to be

Fig. 5. We performed a variety of tasks in multiple homes to evaluate the
robustness of our system. The images here show autonomous execution of
parts of the tasks in different homes.

closed), and so the wrong behavior is performed. For these
experiments, no task failure was catastrophic, so if the robot
had the error detection required for the failed cases, it could
have tried again and potentially succeeded at the task.

The system is quite robust to intentional variations of the
scene and task. For example, the robot was able to success-
fully grasp the bottle from a different shelf in the refrigerator
than it was taught on, it was able to avoid obstacles placed
along the taught paths, and the keyframe matcher showed
robustness to significant lighting changes and environmental
changes such as opening cabinet doors and adding pictures
to the refrigerator. There were a few systematic failures that
were found with these intentional variations, such as large
rotations of the objects to be grasped.

V. CONCLUSION

The combination of a highly capable and manipulable
mobile robot with the ability to teach robust parameterized
behaviors linked to dense visual embeddings from human
demonstration in VR has proven to be surprisingly effective
and robust to performing a wide variety of human-level tasks
in real homes. While not able to generalize beyond the taught
scenario, tasks are tolerant to natural variation that occurs in
home environments. Because perception and behaviors are
cleanly decoupled, much of the system could be tested and
evaluated (or even synthesized) in simulation, which is likely
key to eventually scaling a system to real users.

A key limitation of the current approach is that it requires
teaching every task in VR, including explicitly annotating
relevant parts of the scene, such as objects or articulated
regions, for all possible discrete states of the environment
(e.g. cabinet door open versus closed). Incremental improve-
ments, such as automatically determining the relevant parts
of the scene (based on what the robot picks up or moves,
for example), and teaching with multiple views of a scene
or object, could help alleviate some of these limitations.
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