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Non-Prehensile Manipulation in Clutter with Human-In-The-Loop

Rafael Papallas and Mehmet R. Dogar

Abstract— We propose a human-operator guided planning
approach to pushing-based manipulation in clutter. Most recent
approaches to manipulation in clutter employs randomized
planning. The problem, however, remains a challenging one
where the planning times are still in the order of tens of
seconds or minutes, and the success rates are low for difficult
instances of the problem. We build on these control-based
randomized planning approaches, but we investigate using them
in conjunction with human-operator input. In our framework,
the human operator supplies a high-level plan, in the form of
an ordered sequence of objects and their approximate goal
positions. We present experiments in simulation and on a
real robotic setup, where we compare the success rate and
planning times of our human-in-the-loop approach with fully
autonomous sampling-based planners. We show that with a
minimal amount of human input, the low-level planner can
solve the problem faster and with higher success rates.

I. INTRODUCTION

We propose a human-operator guided planning approach

to pushing-based manipulation in clutter. We present example

problems in Figs. 1 and 2. The target of the robot is to reach

and grasp the green object. To do this, however, the robot

first has to push other objects out of the way (Fig. 1b to

Fig. 1e). This requires the robot to plan which objects to

contact, where and how to push those objects so that it can

reach the goal object. We present an approach to this problem

where a human-in-the-loop provides a high-level plan, which

is used by a low-level planner to solve the problem.

These reaching through clutter problems are difficult to

solve due to several reasons: First, the number of objects

make the state space of high-dimensionality because the

planner needs to reason about the robot state and all the

movable objects. Second, this is an underactuated problem,

since the objects cannot be controlled by the robot directly.

Third, predicting the evolution of the system state requires

running computationally expensive physics simulators, to

predict how objects would move as a result of the robot

pushing. Effective algorithms have been developed [1]–[12],

however, the problem remains a challenging one, where the

planning times are still in the order of tens of seconds or

minutes, and the success rates are low for difficult problems.

Further study of the reaching through clutter problem is

important to develop approaches to solve the problem more

successfully and faster. It is a problem that has a potential
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Fig. 1: A human-operator guiding a robot to reach for the

green goal object, og . Arrows indicate human interaction with

the robot. In (a) the operator indicates o2 to be pushed to the

blue target region. From (a) to (c) the robot plans to perform

this push. In (d) the operator indicates to the robot to reach

for the goal object. From (d) to (f) the robot plans to reach

the goal object.

for major near-term impact in warehouse robotics (where

robots need to reach into shelves to retrieve objects) and

personal home robots (where a robot might need to reach

into a fridge or shelf to retrieve an object). The Amazon

Picking Challenge [13] was a competition which gained

particular attention for this potential near-term impact of

robotic manipulation to warehouse robotics. The algorithms

that we currently have, however, are not able to solve reaching

through clutter problems in the real world in a fast and

consistent way. Here, we ask the question of whether human-

operators can be used to provide a minimal amount of input

that results in a significantly higher success rate and faster

planning times.

Most recent approaches to the reaching through clutter

problem employs the power of randomized kinodynamic

planning. Haustein et al. [4] use a kinodynamic RRT [14],

[15] planner to sample and generate a sequence of robot

pushes on objects to reach a goal state. Muhayyuddin et al.

[5] use the KPIECE algorithm [16] to solve this problem.

(a) (b) (c) (d)

Fig. 2: Human-operator guiding a robot in the real-world.



These planners report some of the best performance (in terms

of planning times and success rates) in this domain so far.

We build on these kinodynamic planning approaches, but

we investigate using them in conjunction with human-operator

input. In our framework, the human operator supplies a high-

level plan to make the underlying planners solve the problem

faster and with higher success rates.

For example in Fig. 1a, the human operator supplies the

high-level action of first pushing the object o2 to the blue

region. A key point here is that pushing o2 in Fig. 1a to its

target region is itself a problem which requires kinodynamic

planning through clutter, since the object and the robot may

need to contact and push other objects during the motion. The

robot uses a kinodynamic planner to approach o2 in Fig. 1b

and to push it to the target region in Fig. 1c. In Fig. 1d the

operator points directly the actual goal object (green). The

kinodynamic planner in Fig. 1e finds a way to push other

objects out of the way and in Fig. 1f successfully reaches

the goal object. The human operator’s role in the system is

not to guide the robot all the way to the goal, but to provide

key high-level actions to help the robot. At any point during

the interaction, even at the very beginning, the operator can

decide not to provide any further high-level actions (either

because the scene is easy enough for the low-level planner

or because the operator is busy) and she can command the

system to plan directly for the actual goal object. The system

degrades nicely to state-of-the-art kinodynamic planning if

no high-level actions are provided.

The use of high-level plans is related to recent work in

robotic hierarchical planning [2], [17]–[20] and task-and-

motion planning (TAMP) [21]–[23]. This line of work shows

that with a good high-level plan for a task, the search of

the low-level motion planner can be guided to a relevant but

restricted part of the search space, making the planner faster

and more successful. Particularly relevant to our problem

is the work from Stilman et al. [17], which formulates the

problem of manipulation/navigation among movable obstacles

(NAMO) as a high-level search over the orderings of objects

to be moved, combined with a low-level motion planner that

pick objects up and move in that order. We use a similar

high-level plan structure, i.e. an ordering of objects, but we

focus on non-prehensile manipulation of objects, rather than

pick-and-place.

The hierarchical/TAMP planners above generate high-level

plans autonomously. Motivated by existing work in human-

in-the-loop planning [24]–[29], in this work we investigate

the potential of using a human operator to suggest high-

level plans. The existing work in human-in-the-loop planning

focuses on path planning and providing clues to a planner to

guide it through the collision-free space. We explore a similar

approach, but in the context of non-prehensile pushing-based

planning, where human physical intuition can be useful. Other

human-in-the-loop systems have been investigated for pick-

and-place tasks [30]–[33] but to the best of our knowledge,

a human-in-the-loop approach has not been applied to non-

prehensile physics-based manipulation before.

We compare our method to using kinodynamic methods

without any high-level plans, e.g. KPIECE and RRT. We also

compare our method to hierarchical methods which generate

high-level plans autonomously. For the latter, we implemented

a non-prehensile variation of the NAMO planner as well

as an approach which uses a straight-line motion heuristic

to generate candidate objects for the high-level plan. We

performed experiments in simulation and on a real robot,

which shows that the human-in-the-loop approach produces

more successful plans and faster planning times. This gain, of

course, comes at the expense of a human operator’s time. We

show that this time is minimal and to evaluate this further, we

experiment with a single human operator providing high-level

plans in-parallel to multiple robots and present an analysis.

We discuss whether such an approach may be feasible in a

warehouse automation setting. To support reproducibility, we

provide the source code of all our algorithms and experiments

in an open repository1.

II. PROBLEM FORMULATION

Our environment is comprised of a robot r, a set of movable

obstacles O, and other static obstacles. The robot is allowed

to interact with the movable obstacles, but not with the static

ones. We also have og ∈ O which is the goal object to reach.

We are interested in problems where the robot needs to

reach for an object in a cluttered shelf that is constrained

from the top, and therefore we constrain the robot motion

to the plane and its configuration space, Qr, to SE(2). The

configuration of a movable object i ∈ {1, . . . , |O|}, qi, is its

pose on the plane (x, y, θ). We denote its configuration space

as Qi. The configuration space of the complete system is the

Cartesian product Q = Qr ×Qg ×Q1 × · · · ×Q|O|−1.

Let q0 ∈ Q be the initial configuration of the system,

and Qgoals ⊂ Q a set of possible goal configurations. A

goal configuration, qn ∈ Qgoals, is defined as a configuration

where og is within the robot’s end-effector (see Fig. 1f).

Let U be the control space comprised of the robot velocities.

Let the system dynamics be defined as f : Q× U → Q that

propagates the system from qt ∈ Q with a control ut ∈ U .

We define the Reaching Through Clutter (RTC) problem as

the tuple (Q,U, q0, Qgoals, f). The solution to the problem

is a sequence of controls from U that move the robot from

q0 to a qn ∈ Qgoals.

III. SAMPLING-BASED KINODYNAMIC PLANNERS

Two well known sampling-based kinodynamic planners

are Rapidly-exploring Random Trees (RRT) [14], [15] and

Kinodynamic Motion Planning by Interior-Exterior Cell

Exploration (KPIECE) [16]. Both RRT and KPIECE have

been used before in the literature to solve problems similar

to the RTC problem [4], [5], [34], [35]. We use kinodynamic

RRT and KPIECE in our work in two different ways: (1)

as baseline RTC planners to compare against, and (2) as

the low-level planners for the Guided-RTC Framework that

accepts high-level actions (explained in Sec. IV).

Kinodynamic RRT: RRT is a sampling-based planner that

builds a tree from the initial state, q0 ∈ Q, and then samples

1https://github.com/rpapallas/hitl_clutter



a random state qrand ∈ Q and tries to extend the tree from

the nearest neighbor qnear ∈ Q. Kinodynamic RRT samples

controls to bring qnear near to qrand.

KPIECE: KPIECE is a sampling-based planner that operates

well in problems with complex dynamics [16]. KPIECE builds

a tree from the state and control space until a goal is reached.

KPIECE uses the notion of space coverage to guide its

exploration in the state space by constructing a discretization

of the state space. KPIECE samples a control from U and it

tries to expand the tree and update the discretization.

In this work, when we plan with a kinodynamic plan-

ner (either RRT or KPIECE) we will use the notation

kinodynamicPlanning(qstart, goal) with a start configuration

of the system, qstart, and some goal input.

IV. GUIDED-RTC FRAMEWORK

In this section, we describe a guided system to solve RTC

problems. A Guided-RTC system accepts high-level actions.

A high-level action can suggest to push a particular obstacle

object into a certain region, or it may suggest to reach for the

goal object. We formally define a high-level action with the

triple (oi, xi, yi), where oi ∈ O is an object, and (xi, yi) is

the centroid of a target region that oi needs to be pushed into.

The target region has a constant diameter d. When oi = og,

this is interpreted as the high-level action to reach for the

goal object, and the centroid can be ignored. The high-level

actions may be suggested by an automated high-level planner

or by a human-operator.

Consider Fig. 1 as an example. A human-operator suggests

a high-level action (o2, 1.15, 0.4) (Fig. 1a), where (1.15, 0.4)
is the centroid of the blue target region. The Guided-RTC

system finds the controls to push o2 into the target region

(Fig. 1c). When the human-operator suggests to reach for

the goal object og (Fig. 1d), the system finds the controls to

perform this action (Figs. 1e and 1f).

In this work, we investigate how a Guided-RTC system

with a human-in-the-loop performs when compared with (a)

solving the original RTC problem directly using kinodynamic

approaches (Sec. III), and (b) using Guided-RTC systems

with automated ways of generating the high-level actions.

In Sec. IV-A we present a generic algorithm to implement

the Guided-RTC framework which is agnostic to how the

high-level actions are generated. Then we present different

approaches to generate the high-level actions, including a

human-in-the-loop approach in Sec. IV-B, as well as two

other automated approaches in Secs IV-C and IV-D.

A. A Generic approach for Guided-RTC Planning

We present a generic algorithm for Guided-RTC in Alg. 1.

The initial configuration of the problem is assumed to be

the current configuration, qcurrent, of the system (line 2).

The next high-level action is decided based on the current

configuration (line 4). If the object in the high-level action

is not the goal object (line 5), then it is pushed to the target

region between lines 6 and 11, and a new high-level action

is requested. If it is the goal object, the robot tries to reach

it between lines 13 and 15 and the system terminates.

d
(xi, yi)

qa1
d

(xi, yi)

qa2

Fig. 3: Approaching states: The blue circle is the target region,

the red rectangle the object to manipulate. We compute two

approaching states, qa1 and qa2.

We plan to push an object to its target region in two steps.

In line 7 we plan to an intermediate approaching state near

the object, and then in line 9, we plan from this approaching

state to push the object to its target region. Specifically, given

an object to push, oi, we compute two approaching states qa1
and qa2 (line 6). Fig. 3 shows how these approaching states are

computed, based on the object’s current position, the centroid

(xi, yi) and the minimum enclosing circle of the object. The

approaching state qa1 encourages side-ways pushing, where

qa2 encourages forward pushing. We also experimented with

planning without first approaching the object but we found

that approaching the object from a good pose yields to faster

pushing solutions. Using both approaching states as the goal

we plan to move to one of them (multi-goal planning) in

line 7. Then, from the approaching state reached (either qa1
or qa2) we push oi to its target region (line 9). If any of the

two planning calls in lines 7 and 9 fails, then the algorithm

proceeds to the next high-level action (line 4). Otherwise, we

execute the solutions sequentially in line 11, which changes

the current system configuration qcurrent.

We use kinodynamic planners (e.g. kinodynamic RRT or

KPIECE) to support the planning in lines 7, 9 and 13.

Alg. 1 runs up to an overall time limit, Toverall, or until a

goal is reached. The pushing planning calls in lines 7 and 9

have their own shorter time limit, Tpushing , and they should

find a valid solution within this limit. The planning call in

line 13 is allowed to run until the overall time limit is over.

Algorithm 1 Guided-RTC

1: procedure GRTC(Q,U, q0, Qgoals)

2: qcurrent ← q0
3: do

4: oi, xi, yi ← NEXTHIGHLEVELACTION(qcurrent)

5: if oi 6= og then

6: qa1, qa2 ← compute approaching states to oi
7: kinodynamicPlanning(qcurrent, {qa1, qa2})
8: if planning fails then continue

9: kinodynamicPlanning(qa1 or qa2, (oi, xi, yi))
10: if planning fails then continue

11: qcurrent ← execute solutions from lines 7 and 9

12: while oi 6= og
13: kinodynamicPlanning(qcurrent, Qgoals)

14: if planning succeeds then

15: qcurrent ← execute solution from line 13



B. Guided-RTC with Human-In-The-Loop (GRTC-HITL)

Guided-RTC with Human-In-The-Loop (GRTC-HITL) is

an instantiation of the GRTC Framework. A human-operator,

through a graphical user interface, provides the high-level

actions. In Alg. 2 we present GRTC-HITL NEXTHIGH-

LEVELACTION function (referenced in Alg. 1, line 4).

The human provides high-level actions until she selects

the goal object, og . The GRTC framework (Alg. 1) plans and

executes them. The state of the system changes after each

high-level action and the human operator is presented with

the resulting state each time (qcurrent). Note here that the

operator can decide not to provide any guidance (by selecting

the goal object straightaway), which would be equivalent

to running a state-of-the-art kinodynamic planning on the

original RTC problem.

We developed a simple user interface to communicate with

the human-operator. The operator at every step is presented

with a window showing the environment and the robot. The

operator, using a mouse pointer, provides the input by first

clicking on the desired object and then a point on the plane

(Fig. 1a) that becomes the centroid of the target region.

The approach we propose here uses a human-operator to

decide on the high-level plan. One question is whether one

can use automatic approaches, and how they would perform

compared to the human suggested actions. To make such a

comparison, we implemented two automated approaches.

C. Guided-RTC with NAMO

We adapted the NAMO algorithm described by Stilman et

al. [17] to our problem as an alternative, autonomous, way to

generate a high-level plan. NAMO has originally been used

for pick-and-place manipulation. We adapted it to work for

non-prehensile tasks by using a kinodynamic planner as the

low-level planner, instead of collision-free motion planners

as in the original work.

To determine the ordering of objects to manipulate and

where to place them, i.e. the high-level plan, NAMO uses

backward planning. It starts by running the low-level planner

to reach the goal, assuming the robot can travel through other

movable objects. The resulting volume of space swept by the

robot to reach the goal object is then checked to see which

movable objects intersect with it. These objects are added to

a queue to be moved out of this swept volume. The algorithm

then pops out an object from this queue and makes a recursive

call to reach and move that object. This process continues

until the queue is empty, meaning that (1) there is a plan to

reach and move every object out of the way, and (2) there is

a position to place every object out of the accumulated robot

Algorithm 2 GRTC-HITL

1: function NEXTHIGHLEVELACTION(qcurrent)

2: oi ← get object selection from human operator

3: if oi 6= og then

4: xi, yi ← get region centroid from human operator

5: return oi, xi, yi

6: return og

(a)

o7

(b)

Vswept

(c)

Fig. 4: GRTC-Heuristic: (a) Initial state. (b) The robot moves

on a straight line to the goal object, og, to obtain the first

blocking obstacle (o7) and the swept volume (yellow area).

(c) The heuristic produces a high-level action for o7 indicated

by the arrow and the target region (blue). This process is

repeated until Vswept contains no blocking obstacle.

swept volume. The last object planned for is the first one to

be moved during execution. For a more detailed explanation

of NAMO, we refer the reader to Stilman et al. [17].

Since NAMO plans backward, to decide on the first object

to be moved, it needs to determine all the objects to be moved

and their target positions. While this means NAMO can offer

theoretical guarantees when a plan exists, it also means that in

highly cluttered environments like ours, NAMO can quickly

run out of space to place objects, before it resolves all the

constraints. In our experimental setting which includes a high

number of objects in a restricted shelf space, NAMO failed in

all cases by filling up the space with the robot swept volume

before a plan for all objects in the queue have been found.

This motivated us to design a heuristic approach similar to

NAMO, but one that plans forward, by directly identifying

the first object to move out of the way.

D. Guided-RTC with Straight Line Heuristic (GRTC-

Heuristic)

We present this approach in Alg. 3 and illustrate it in Fig. 4.

This heuristic assumes the robot moves on a straight line from

its current position towards the goal object (Fig. 4b). The first

blocking object, ob in line 2, is identified as the next object

to be moved. During the straight line motion, we capture the

robot’s swept volume, Vswept (Fig. 4b). We randomly sample

a collision-free target region centroid outside Vswept (Alg. 3

line 4 and Fig. 4c). The object and the centroid are then

returned as the next high-level action (Alg. 3 line 5). The

centroid sampling happens 30cm around the object’s initial

position to maximize the chance of a successful pushing. If

there is no collision-free space around ob, then we sample

from the entire space.

After every high-level action suggested by the heuristic, the

Algorithm 3 GRTC-Heuristic Planner

1: function NEXTHIGHLEVELACTION(qcurrent)

2: ob ← find the first blocking obstacle to og
3: if there exists a blocking obstacle ob then

4: xb, yb ← find collision-free placement of ob
5: return ob, xb, yb

6: return og ⊲ No blocking obstacle, reach the goal



(a) S1 (b) S2 (c) S3 (d) S4

(e) R1 (f) R2 (g) R3 (h) R4

Fig. 5: Initial states of different problems in simulation (S1-

S4) and real world (R1-R4). Goal object is in green.

Guided-RTC framework (Alg. 1) plans and executes it and

the state of the system is updated (qcurrent). The heuristic

then suggests a new high-level action from qcurrent until

there is no blocking obstacle (Alg. 3 line 6).

V. EXPERIMENTS & RESULTS

The algorithms we evaluate are: (1) GRTC-HITL which is

the main algorithm we propose and uses a human operator to

obtain the high-level actions (Sec. IV-B), (2) GRTC-Heuristic

which uses a straight line heuristic to automatically determine

the high-level actions (Sec. IV-D) and (3) Kinodynamic RRT

and KPIECE (Sec. III) which plan to reach for the goal object

without a high-level plan. As explained in Sec. IV-C, NAMO

failed to find solutions in our problems and therefore we did

not include results for it here.

For all experiments, we use the Open Motion Planning

Library (OMPL) [36] implementation of RRT and KPIECE.

We use MuJoCo2 [37] to implement the system dynamics,

f . For all planners, the overall planning time limit, Toverall,

is 300 seconds, after which it was considered a failure. For

GRTC-HITL and GRTC-Heuristic, Tpushing is 10 seconds.

For GRTC-HITL, the human-interaction time was included

in the overall time limit. The same human-operator, who was

experienced with the system, was used in all experiments.

Since we are interested in an industrial/warehouse scenario

where human-operators would be trained to use the system, we

are mainly interested in the performance of trained operators,

rather than novices.

In Sec. V-A we present simulation results comparing GRTC-

HITL with Kinodynamic RRT, KPIECE, and GRTC-Heuristic.

In Sec. V-B we show results where the human operator

guides multiple robots in parallel, in simulation. In Sec. V-C

we present real-world experiments comparing kinodynamic

planners with GRTC-HITL on 10 different scenes. A video

with some of these experiments is available on https://

youtu.be/nfr1Fdketrc.

A. Simulation Results

We evaluated each approach 100 times by running them 10

times in 10 different, randomly-generated, scenes. We use a

randomizer that places the goal object at the back of the shelf

2On a computer with Intel Core i7-4790 CPU @ 3.60GHz, 16GB RAM.
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Fig. 6: Simulation results, for each scene (S1-S10): (Top)

Success rate. (Bottom) Mean planning time. The error bars

indicate the 95% CI. For GRTC-HITL and GRTC-Heuristic,

the dark shade indicates the planning time where the light

shade indicates the time it took to produce the high-level

actions (for GRTC-HITL this is a fraction of the time).

and then incrementally places the remaining (nine) objects in

the shelf such that no object collides with each other. Some

of the scenes are presented in Figs. 5a to 5d.

For GRTC-HITL, the human-operator interacted with each

scene once and from the last state left by the human-operator

we ran the planner (Alg. 1 line 13) to reach for the goal object

10 times. For GRTC-Heuristic we ran all 100 experiments

with both RRT and KPIECE as the low-level planners and

we present the better performing one. For GRTC-HITL and

GRTC-Heuristic the low-level planner is RRT.

Fig. 6 summarizes the results of our experiments for each

of the random scenes (S1-S10). Fig. 6-Top shows that GRTC-

HITL yields to more successes per scene than any other

approach except for S6 which was as successful as KPIECE.

The overall success rate for each approach is 72% for GRTC-

HITL, 11% for RRT, 28% for KPIECE and 14% for GRTC-

Heuristic. Fig. 6-Bottom shows that GRTC-HITL improved

the planning time in all scenes.

Table I summarizes the guidance performance for GRTC-

HITL and GRTC-Heuristic for all ten scenes. Proposed

Actions indicates the total number of high-level actions

proposed. This number includes the successful actions (actions

that the planner managed to satisfy) and failed actions (actions

that the planner could not find a solution for). Guidance Time

indicates the time spent on generating the high-level actions in

seconds (in case of GRTC-HITL the time the human-operator

was interacting with the system and for GRTC-Heuristic the

time took for the heuristic to generate the high-level actions).

On average, the human proposed around 5 actions, of which

around 3 were successful. On the other side, GRTC-Heuristic

proposed on average around 88 actions, of which only 3 were

successful. The human operator spent on average 14 seconds

interacting with the system while GRTC-Heuristic spent on

average 124 seconds proposing high-level actions.



Reaching Goal Object Executing Solution Success Operator: Select Position

Robot 1 Robot 2 Robot 3 Robot 4

Fig. 7: Parallel Guidance: The first robot is planning to reach

for the goal object, the second one executes a solution, the

third robot successfully reached the goal object, the fourth

robot is waiting for human input (operator’s main focus).

B. Parallel Guidance

Since the human spends only a small amount of time

guiding the robot using GRTC-HITL, a single human-operator

can be used to guide multiple robots simultaneously, e.g. in a

warehouse where a small number of operators remotely guide

a large number of robots. We present an example in Fig. 7.

We performed experiments to test how the performance was

affected when the human-operator guides multiple robots

in parallel. We tested guiding four robots in parallel. We

generated 20 new random scenes and divided them into

five groups of four. We compare the performance when the

robots were guided individually in 20 different runs, to the

performance when four robots were guided in parallel in five

different runs. We repeated this process two times (i.e. 40

individual runs and 10 parallel runs). Note that in the worst

case with a time limit of 300 seconds, running 20 scenes

individually requires 100 minutes of human-operator time;

whereas five parallel runs require just 25 minutes.

Table II summarizes these results. The success rate of

parallel guidance is 60% and for individual guidance 70%.

This efficient use of the human-operator’s time comes with

the cost of slightly increased planning time and lower success

rate. We also measured the time the system was waiting for

human input which was on average 15 seconds.

TABLE I: Simulation results.

GRTC-HITL GRTC-Heuristic

µ σ µ σ

Proposed Actions 4.9 3.3 88.4 58.2

Successful Actions 3.1 1.0 3.0 1.4

Guidance Time (s) 13.6 10.0 124.3 81.7

TABLE II: Parallel vs. Individual Guidance.

Parallel Individual

µ σ µ σ

Guidance Time (s) 21.1 28.0 13.0 14.4

Overall Planning Time (s) 139.7 117.9 122.8 120.0

Planner Idle Time (s) 14.8 9.4 0.0 0.0

TABLE III: Real-world results.

GRTC-HITL KPIECE RRT

Successes 7 1 2

Planning Failures 2 4 8

Execution Failures 1 5 0

(a) (b) (c) (d)

Fig. 8: A guided planning demonstration in the real world.

C. Real-robot results

We performed experiments using a UR5 manipulator on

a Ridgeback omnidirectional base. We used the OptiTrack

motion capture system to detect initial object/robot poses

and to update the state in the human interface after every

high-level action.

We evaluated RRT, KPIECE and GRTC-HITL performance

in ten different problems in the real world. We show some

of the scenes in Figs. 5e to 5h.

Table III summarizes the success rate of each approach

in the real world. When we say that the robot failed during

execution, we mean that although the planner found a solution,

when the robot executed the solution in the real-world, it

either failed to reach the goal object, or it violated some

constraint (hit the shelf or dropped an object to the floor).

These execution failures were due to the uncertainty in the

real world: The result of the robot’s actions in the real-world

yield to different states than the ones predicted by the planner.

The success rate for GRTC-HITL, RRT and KPIECE is

70%, 20%, and 10% respectively. GRTC-HITL failed 20%

during planning and 10% during execution. KPIECE was

more successful during planning than RRT but failed most of

the times during execution. RRT, on the other, hand accounts

for more failures during planning than any other approach.

In Figs. 2 and 8 we show two examples. In the first example,

the human operator provides the first high-level action in

Fig. 2a and then indicates the goal object in Fig. 2c which

is reached in Fig. 2d. In the second example, the human-

operator provides initially two high-level actions (Fig. 8a and

Fig. 8b). The operator in Fig. 8c indicates the goal object

and the robot reached the goal object in Fig. 8d.

VI. CONCLUSIONS

We introduced a new human-in-the-loop framework for

physics-based non-prehensile manipulation in clutter (GRTC-

HITL). We showed through simulation and real-world ex-

periments that GRTC-HITL is more successful and faster in

finding solutions than the three baselines we compared with.

We also presented experiments where a single human-operator

guides multiple robots in parallel, to make best use of the

operator’s time. We made the source code of our framework

and of the baselines publicly available.

To the best of our knowledge, this is the first work to look

into non-prehensile manipulation with human-in-the-loop. In

the future, we would like to build on this work to evaluate the

parallel control of higher numbers of robots, by minimizing

the time the system is idle.
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planning algorithm,” Journal of Intelligent & Robotic Systems, vol. 67,
no. 3-4, pp. 285–306, 2012.

[27] J. Denny, J. Colbert, H. Qin, and N. M. Amato, “On the theory of
user-guided planning,” in 2016 IEEE/RSJ International Conference on

Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 4794–4801.
[28] F. Islam, O. Salzman, and M. Likhachev, “Online, interactive user

guidance for high-dimensional, constrained motion planning,” arXiv

preprint arXiv:1710.03873, 2017.
[29] J. Denny, R. Sandström, and N. M. Amato, “A general region-based

framework for collaborative planning,” in Robotics Research. Springer,
2018, pp. 563–579.

[30] A. E. Leeper, K. Hsiao, M. Ciocarlie, L. Takayama, and D. Gossow,
“Strategies for human-in-the-loop robotic grasping,” in Proceedings of

the seventh annual ACM/IEEE international conference on Human-

Robot Interaction. ACM, 2012, pp. 1–8.
[31] S. Muszynski, J. Stückler, and S. Behnke, “Adjustable autonomy for

mobile teleoperation of personal service robots,” in 2012 IEEE RO-

MAN: The 21st IEEE International Symposium on Robot and Human

Interactive Communication. IEEE, 2012, pp. 933–940.
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