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Localising Faster: Efficient and precise lidar-based robot localisation in

large-scale environments

Li Sun1,3, Daniel Adolfsson2, Martin Magnusson2, Henrik Andreasson2, Ingmar Posner3, and Tom Duckett1

Abstract— This paper proposes a novel approach for global
localisation of mobile robots in large-scale environments. Our
proposed method leverages learning-based localisation and
filtering-based localisation, to localise the robot efficiently and
precisely through seeding Monte Carlo Localisation (MCL)
with deep learned distribution. In particular, a fast locali-
sation system rapidly estimates the 6-DOF pose through a
deep-probabilistic model (Gaussian Process Regression with
deep kernel), then a precise recursive estimator refines the
estimated robot pose according to the geometric alignment.
More importantly, the Gaussian method (i.e. deep probabilistic
localisation) and non-Gaussian method (i.e. MCL) can be
integrated naturally via importance sampling. Consequently,
the two systems can be integrated seamlessly and mutually
benefit from each other. To verify the proposed framework,
we provide a case study in large-scale localisation with a 3D
lidar sensor. Our experiments on the Michigan NCLT long-term
dataset show that the proposed method is able to localise the
robot in 1.94 s on average (median of 0.8 s) with precision of
0.75 m in a large-scale environment of approximately 0.5 km2.

I. INTRODUCTION

For large-scale robotic applications in GPS-denied en-

vironments – such as indoor industrial environments, un-

derground mining, or space – efficient and precise lidar-

based robot localisation is in high demand. Geometry-based

methods such as global registration [1], [2] and particle

filters [3], [4], [5], [6], [7] are widely used both to rescue

a ‘kidnapped’ robot and continuously localise the robot.

However, the computational effort of these methods increases

monotonically with the size of the environment. Deep learn-

ing methods [8], [9], [10], [11], [12] are emerging in image-

based relocalisation as a pivotal precursor to directly estimate

the 6-DOF pose based on a model learned for a specific

environment with a deep regression neural network. These

learning methods are scalable as the computation time only

depends on the complexity of the neural network. However,

without geometric verification, they are likely to be less

precise than geometry-based methods.

Using conventional filtering-based methods, e.g. MCL,

the pose estimate is updated recursively with each new

observation. This tends to be very robust and leads to precise

localisation, although when there is a large error in the initial

estimate, it can take a long time for the filter to converge

– on the scale of minutes even for modest-sized maps [6].
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Fig. 1: We propose a hybrid global localisation method that

enables precise localisation within 2 seconds on average on

this large-scale map. Each cell in this grid is of 50 × 50 m.

To mitigate this limitation, our intuition is to combine deep

localisation and Monte-Carlo localisation.

The first contribution of this paper is a hybrid localisation

approach for lidar-based global localisation in large-scale en-

vironments. Our approach integrates a learning-based method

with a Markov-filter-based method, which makes it possible

to efficiently provide global and continuous localisation with

centimetre precision. A second contribution is a deep non-

parametric model i.e. Gaussian Process with conjunction of

deep neural network as the kernel are used to estimate the

distribution of the global 6-DOF pose from superimposed

lidar scans. As a core component, the estimated distribution

can be used to seed the Monte-Carlo localisation, thereby

seamlessly integrating the two systems.

II. RELATED WORK

A. Lidar-based global localisation

There exists a large body of research dealing with lidar-

based localisation. The work that is most relevant to the

scope of this paper can be generally divided into methods

that provide informed initialisation of MCL, and appearance

descriptors that aim to provide ‘one-shot’ localisation.

While MCL in principle is robust and, by using a

multimodal belief distribution, lends itself also to global

localisation with a very uncertain initial estimate of the

robot’s location, a naive initialisation using a uniform particle

distribution does not scale well to maps of realistic size.

Some authors [1], [4] alleviate the problem by working with

a multi-resolution grid over the map. This makes it possible

to scale to slightly larger maps, but is close to a uniform

distribution and does not make use of the learned appearance

of the map, as in our work. Another strategy is to design

a distribution from observations and sample particles from

that [13], [5], [6]. Another possibility is to use external



information, such as wi-fi beacons [14] or a separate map

layer that governs the prior probability of finding robots in

each part of the map [15]. In contrast, we work directly

on point cloud data. None of the above methods have been

evaluated on maps as large as those in our experiments.

Several engineered appearance descriptors have also been

proposed for 2D [16] and 3D [17], [18], [19] lidar-based

global localisation. These all have in common that they aim

to provide ‘one-shot’ global localisation, but require a linear

search over all descriptors created from the map. Even if a

single descriptor look-up is very quick, for large-scale long-

term localisation, the linear scaling factor is still a major

drawback compared to the method proposed in Sec. III-B.

B. Deep image-based global localisation

Image localisation is the task of accurately estimating the

location and orientation of an image with respect to a global

map, and has been studied extensively in both robotics and

computer vision. Pose-Net [8] and related approaches [9],

[10] have initiated a new trend to estimate the 6-DOF global

pose using deep regression neural networks. In [10], the

geometric reprojection error, i.e. from the reprojection of the

3D reconstruction to the image frame, is jointly optimized

with global pose loss during training. More recently, Valada

et al. [11] proposed geometry consistency loss to learn a

spatially consistent global representation using relative pose

loss as an auxiliary. Researchers investigate the predictive

uncertainties in the deep model [9], [20], but sadly, uncer-

tainties are not further utilized to improve the localisation.

Global loop-closure detection can be combined with local

feature matching as a hierarchical approach for visual relo-

calisation [21], [22]. In these approaches, the deep global

descriptors learned as a location signature are used to short-

list possible locations in a large-scale environment, then the

precise 6-DOF pose can be estimated by 2D-to-3D matching

between the retrieved key frames candidates and the map.

With geometry verification, the localisation precision can be

remarkably improved.

III. METHODOLOGY

A. Problem Formulation

In the global localisation problem, given the observation

ot and 6-DOF robot pose st(pt, rt) at time t, the goal is

to estimate the posterior p(st|ot). If the robot is moving,

and a sequence of observations o0:t and control inputs (e.g.

odometry) u1:t are available, the a-posteriori pose becomes

p(st|o0:t, u1:t).
System 1 – efficient global localisation can be formulated

through a learning-based method – we aim to obtain a pose

estimate from a single observation using a fast deterministic

model. In order to train the deterministic model, the obser-

vations O = {oi} and poses S = {si} used to build the

map, i.e. map = Mapping(O,S), are provided as training

examples. The problem can be formulated as estimating

the conditional probability P (st|O,S, ot). Parametric models

(e.g. neural networks) or Gaussian methods (e.g. Gaussian

Processes) can be used to resolve this.

System 2 – precise localisation can be formulated through

a Markov-filter-based method – the a-posteriori belief state

of the robot pose bel(st) can be iteratively updated as

a Bayes filter as the robot is moving. With the motion

model p(st|st−1, ut), the belief can be updated as bel(st) =
∫

P (st|st−1, ut)bel(st−1)dst−1 and given the measurement

model P (ot|st), the belief can be then updated as bel(st) =
ηP (ot|st)bel(st).

To integrate the two systems, importance sampling can

be used to update the particles generated by System 1

using System 2. In particular, we propose to draw particles

from P (st|O,S, ot) in system 1 and update belief bel(yt)
in System 2, and maintain the particles in a healthy and

converging distribution through importance sampling.

B. System 1: efficient localisation using a deep probabilistic

model

To learn a deterministic model to efficiently predict the 6-

DOF pose of the robot, a natural idea is to use a parametric

statistical model like a deep neural network. A bonus is

that the deep models can learn site-specific features through

back-propagation. However, it is also important to model the

predictive probability P (st|O,S, ot), which can efficiently

generate robot pose hypotheses. Our intuition is to use a

Gaussian process to estimate this conditional distribution.

1) Observation for learning: Using dense point clouds

has a proven effectiveness in robot localisation [19]. To

acquire a dense point cloud from a sparse lidar such as a

Velodyne HDL-32E, without using extra mechanical devices,

we first superimpose k frames of consecutive observations

{o′i}i∈{t−k,...,t} at time t using odometry:

o′t−k:t = ∆Tt−ko
′
t−k... ∪∆Tt−1o

′
t−1 ∪ o′t, (1)

where ∆Tt−i is the relative transformation between the pose

at frame t − i and that at frame t. ∆Tt−i can be obtained

by a fusion of wheel odometry and inertial sensors, i.e. IMU

and Gyro, or lidar odometry. The superimposed point cloud

can be converted to a height map and further encoded as

a gray-scale bird’s eye view image as shown in Fig. 1. In

the learning of the deep probabilistic localisation, we use

the bird’s eye view image of the superimposed point cloud

(denoted ot = o′t−k:t) as the observation at time t.

2) Deep Neural Network for Feature Learning: A deep

neural network is used to learn site-specific features from

regressing 6-DOF global poses. Specifically, we first use five

convolutional stacks of a pretrained ResNet-50 model as the

backbone, and then the network is divided into two branches

and triple-layer MLPs are used to learn the three-dimensional

position p̂ = (px, py, pz) and four-dimensional rotation

(quaternion) r̂ = (qx, qy, qz, qw), respectively. We propose

the following loss function for simultaneously minimising

the positional loss and rotational loss.

LT,R = ||p̂− pgt||2 + λ (1− < r̂, rgt >2) (2)

Here, < r̂, rgt > is the inner product of the predicted

and ground-truth quaternion. The second term indicates the

distance between two normalized quaternion vectors.



Fig. 2: The deep learning architecture. In the proposed method, we use the four convolutional blocks of ResNet-50 as

backbone. A context stack consisting of 6 convoluational layers (128 filters with kernel size of 3×3). and a triple layer

MLP (i.e. 4096, 4096, 128) is used to learn the global location feature. Both global pose loss (consists of positional and

rotational loss) and geometry-consistency loss are used to train the position and orientation features (using two branches).

The final layer feature is used as the observation of GP to build the kernel. The SVI-GP is trained via a mini batch-training

and latent variables are approximated by variational inference. All the network and GP parameters are trained end-to-end.

Given a pair of bird’s eye view images from time t-k and

t, the predicted global poses T̂t−k and T̂t, and the ground

truth poses T
gt
t−k and T

gt
t , we can calculate the relative

transform from the predictions and ground truth and make

them geometrically consistent.

LC = LT,R

(

(T̂t−k)
−1T̂t, (T gt

t−k)
−1T

gt
t

)

(3)

More specifically, T̂t (T
gt
T ) is the transform matrix which can

be obtained from the translation p̂t (p
gt
t ) and rotation r̂t (r

gt
t )

at time t. We convert the transform matrices back to pose

vectors to compute the positional and rotational losses. We

find that with the assistance of geometric consistency loss,

the neural network can learn spatially consistent features

and constrain the search space of global localisation, thereby

enhancing the robustness of global pose estimation.

In our implementation, we found that the data augmenta-

tion can significantly improve the performance1.

The proposed deep neural network can learn site-specific

and spatio-temporally consistent features. However, the infer-

ence (prediction) is not fully probabilistic with L2 loss. The

drawback is that predictive uncertainties cannot be provided.

I.e., the neural network cannot give the predictive distribution

of the robot pose. In our two-system framework, the uncer-

tainty of Bayesian localisation is of critical importance. An

appropriate predictive distribution can accelerate the conver-

gence of the MCL by giving small variances, and, at the same

time, suppress the effects of false positives by predicting with

large variances. To mitigate this, we adapt Gaussian process

regression as the basis of the deep localisation network.

That is, a hybrid probabilistic regression method is proposed

1The bird’s eye view image of size 400×400 can be generated from the
superimposed local point cloud in a visual scope of 100×100×10 metres
with a resolution of 0.4 metres per pixel. We randomly crop a 300×300
image for training and apply the corresponding translational offset to the
target pose. For the geometry consistency learning, we randomly pick paired
images within a window of ten frames (k ∈[1,10]).

where the deep neural network provides the deep kernel of

a Gaussian Process.

3) Gaussian Process with Deep Kernel: Given the train-

ing observations O, learning target i.e. poses S, latent

variable f , and the testing example ot, the prediction step

of Gaussian process regression involves inferring the condi-

tional probability of the latent variable of testing example

P (f∗|O,S, o∗) as:

N (K∗n(Knn + σ2I)−1y,K∗∗ −K∗n(Knn + σ2I)−1Kn∗)
(4)

This conventional inference formula is not scalable as

the computation increases exponentially with n, i.e. O(n3).
Instead of using all the training examples for the prior Knn,

a reduced set of examples O′ ∈ Rm∗D (known as the

inducing points) is used to approximate the whole training

set, where D is the dimension of the feature and m << n.

Given the latent variables of the inducing points, Z = {zi},

the posterior distribution P (Z|S) can be estimated by a

variational distribution Q(Z) (modeled as a multi-variant

Gaussian, Q(Z) ∈ N (µ,Σ)). Via variational inference, the

inducing points O′ can be estimated by maximization of the

evidence lower bound (ELBO) of the log marginal liklihood

of P (S) [23]:

logP (S) ≥ L(Q(µ,Σ), O′)

=

∫

Q(Z)EP (f |Z)[log P (S|f)]dZ −KL
(

Q(Z)||P (Z)
)

.

(5)
In this formula, the first term is the predictive likelihood

and KL refers to the Kullback-Leibler divergence. Titsias et

al. [23] prove the final formula of the optimal inducing points

S′ and the mean µ and variances Σ of Q(Z). In order to

further make the training scalable, we train the SVIGP [24]

(Stochastic Variational Inference Gaussian Process) from

mini-batch data.

With the optimised inducing points S′, and variational

distribution Q(Z) ∈ N (µ,Σ), the predictive probability in



Eq. 4 can be reformulated as:

P (f∗|O,S, o∗) =

∫

P (f∗|Z)Q(Z)dZ = N
(

f∗|K∗mK−1
mmµ,

K∗∗ −K∗mK−1
mmKm∗ +K∗mK−1

mmΣ−1K−1
mmKm∗

)

(6)

We use a shared RBF kernel for multi-output prediction

and the kernel is constructed from deep neural network

features. To be more specific, the feature of the last layer

(shown in Fig. 2) is used as the observation of the GP. By

this means, the parametric neural network can be integrated

with the non-parametric Gaussian Process.

More importantly, through maximising the log marginal

likelihood, the inducing points S′, the variational distribution

Q(Z), hyper-parameters of the kernel K, and the parameters

of the deep neural network can be jointly optimised by

simple back-propagation-through-time. As the GP is very

sensitive to the kernel parameters, to avoid suffering from

local minima, we address the training in two stages. We first

train the deep neural network, i.e. feature of the kernel, using

the translational and rotational loss, then the GP is trained

end-to-end with the deep kernels.

It is worth noting that we only train the Gaussian Process

Regression for positioning, and the angular distance loss

function is still used to learn the rotation. This is for two

reasons: firstly the inherent normalization attribute of the

quaternion cannot be leveraged in the Gaussian Process via

maximizing the log likelihood, and secondly, the predictive

uncertainty of rotation is less important than that of position

in large-scale localisation (in other words, rotational predic-

tions depend on positional predictions). Qualitative results of

the predictive distributions are shown in Fig. 4.

C. System 2: Precise localisation using MCL

For System 2 (MCL), we use a reference 3D map built

using poses from RTK-GPS (for training) and we represent

the map using the Normal Distribution Transform (NDT)

for memory efficiency. This step answers the map =
Mapping(O,S) in the problem formulation.

During localisation, with the motion model P (st|st−1, ut),
the belief can be updated [25]:

bel(st) =

∫

P (st|st−1, ut)bel(st−1)dst−1 (7)

with the measurement model. This integral can be approx-

imated via resampling with importance sampling, i.e. a

particle filter. The a-posteriori belief estimate is updated as:

bel(st) = ηP (ot|st)bel(st) (8)

where ηP (ot|st) refers to the importance weights of samples,

and the measurement model P (ot|st) can be obtained by cal-

culating the distance between the lidar distribution and Map

distribution with the representation of Normal Distribution

Transform (NDT).

The conventional methods usually first initialize a tem-

porary particle distribution which is reminiscent of the

belief bel(ot). However, the belief can be estimated effec-

tively from the current observation using the learning-based

method, hence providing a parametric method to initialize

the belief as:

bel(st) = P (st|o1:t, u1:t) ≈ P (st|O,S, ot), (9)

where the conditional probability P (st|O,S, ot) can be es-

timated by Gaussian Process P (f∗|O,S, o∗) using Eq. 6.

Practically, the particles are generated from two origins

St = Ssys1 ∪ Ssys2 in our implementation. They are

the particles drawing from the GP’s predictive distribution

Ssys1 ∼ P (f∗|O,S, o∗) and particles Ssys2 resampled from

the previous belief set St−1. Through the importance sam-

pling mechanism, the sys1 particles from deep learning

estimation and sys2 particles from MCL can be integrated,

thereby integrating the two systems. A detailed description

is shown in Algorithm 1.

Algorithm 1 A hybrid particle filtering approach

In: The map map, Gaussian Process model GP . Initially

empty set St−1. Desired size Nsys1 and Nsys2. At each

time stamp, the observation ot, the control vector ut.

Out: The robot 6-DOF pose st.

Ssys2 = St−1

Draw Ssys1 from P (st|O,S, ot) s.t. |Ssys1| = Nsys1

St = Ssys1 ∪ Ssys2

for each particle smt in St do

Sample smt ∼ P (st|st−1, ut)
Update weight wm

t = P (ot|s
m
t )

end for

Normalize weights

Resample St s.t. |St| = Nsys2 according to weights

return 6-DOF pose st =
1

Nsys2

∑Nsys2

m wm
t smt .

IV. EXPERIMENT

Our research focuses on long-term localisation using 3D

lidar data. In order to evaluate our proposed approach, a long-

term mapping dataset with ground truth is required. To the

best of our knowledge, the Michigan North Campus Long-

Term Vision and lidar (NCLT) dataset2 is the only long-term

multi-session dataset currently available for lidar mapping

and relocalisation. The dataset consists of 27 sessions with

varying routes and days over 15 months. In each session, a

Segway robot is driven via joystick to traverse the campus,

and multi-sensor data including wheel odometry, 3D lidar,

IMU, gyro, etc. are recorded. Ground-truth pose data are

obtained by fusion of lidar scan matching and high precision

RTK-GPS. The whole dataset spans 34.9 h and 147.4 km.

More details can be found in [26].

Since the learning-based method requires training exam-

ples and the filter-based method needs a pre-built map,

2http://robots.engin.umich.edu/nclt/



TABLE I: The quantitative result of Bayesian localisation.

Metrics Feb April May June Aug Oct Nov Dec Overall

median transitional error 1.74m 1.69m 2.02m 1.99m 2.13m 2.14m 3.98m 3.59m 2.18m
median rotational error 3.25◦ 3.36◦ 3.34◦ 3.17◦ 3.66◦ 3.67◦ 5.12◦ 4.72◦ 3.65◦

mean transitional error 8.77m 2.88m 15.3m 11.57m 14.06m 17.33m 30.15 32.08m 16.55m
mean rotational error 6.19◦ 4.43◦ 9.50◦ 7.96◦ 8.52◦ 11.58◦ 17.98◦ 14.51◦ 4.99◦

number of frames 33K 14K 26K 19K 27K 30K 14K 25K 184K

we selected eight sessions3 for training and another eight

sessions for testing. We selected the training sessions because

they cover all explored areas of the campus, and the testing

sessions were chosen randomly from varying seasons.

Our hypothesis is that the learning-based method (Sys-

tem 1) is efficient but lacks accuracy, while the filter-based

method (System 2) is precise but computationally intensive.

By combining the two systems, efficient and precise locali-

sation can be achieved.

A. Deep Bayesian localisation evaluation

1) Training: In this experiment, we evaluate the proposed

deep probabilistic localisation and the learned uncertainties.

The training of the neural network has two stages. Firstly, we

train the network with L2 positional loss, angular orientation

loss and auxiliary loss. Here the RES-Net stacks weights are

transplanted from a pre-trained model (on ImageNet). In this

stage, we use Adam optimizer and train for 200 epochs with

an initial learning rate of 10−4 with exponential decay of

0.95. We clip the gradient by 5.0 and the learning rate by

10−7. In the second stage, we use the same rotational loss

and the last layer feature for position prediction to build the

kernel of the Gaussian Process. We use 350 inducing points

(m in Eq. 6) to estimate the variational distribution to ap-

proximate the prior for the whole dataset. More specifically,

we transplant all the weights of the first stage to the deep

GP model. We freeze the weights of the 5 ResNet stacks and

optimize the parameters of the GP, fully-connected layers and

context stack layers jointly by maximizing the log likelihood.

In this stage, an initial learning rate of 10−3 with with

exponential decay of 0.95 is used, and the model is trained

for another 100 epochs. A discount of 0.1 and 0.01 on

the learning rate is applied to the fully-connected layers

and context stack layers. Our implementation is based on

TensorFlow4 and GPflow5 toolboxes. We use an i7 desktop

with a NVIDIA TITAN X GPU for training, and the whole

training process takes five days.

2) Evaluation Criteria: In this experiment, we follow

the critera used in [8] to evaluate the deep localisation.

In particular, we use the positional error to measure the

3D position estimation, and the angular distance between

predictive quaterion and ground truth quaterion to measure

the rotational error. In this evaluation, the median errors

are the more robust statistics for large-scale localisation.

We evaluated our deep localisation model on eight testing

3Training sessions are 2012-01-08, 2012-01-15, 2012-01-22, 2012-02-02,
2012-02-04, 2012-02-05, 2012-03-31, and 2012-09-28.

4https://www.tensorflow.org/
5https://github.com/GPflow/GPflow

Fig. 3: The Bayesian localisation performance under different

uncertainty intervals. In this test, we uniformly divide the

magnitude of uncertainties to 11 intervals from 0 to 50

(and above 50). The numbers above the bars indicate the

percentages of testing examples in each bin.

sessions, and both the results on individual days and over

the whole testing sets are provided in Table I.

As shown in Table I, we achieve an overall median

positional and angular error of 2.18 m and 3.65◦ over eight

sessions over the duration of one year. The median errors

increase gradually from February to December from 1.74 m

to 3.59 m, which can be attributed to the environment

changes (i.e. plants and construction work) and new explored

trajectories. Nevertheless, the reported performance shows

satisfactory robustness to weather and seasonal variance,

which demonstrates the capability of our model for long-

term localisation.

3) Uncertainty Evaluation: We further evaluate the pre-

dictive probabilities of our proposed model. It is more

important to predict locations with uncertainties, which is the

advantage of non-parametric models, e.g. Gaussian Process,

compared to parametric deep neural networks. In the hybrid

method, a well modelled predictive probability distribution

is able to accelerate the convergence of the particle filter, but

can also suppress ill-posed localisation due to false positives.

To evaluate the uncertainties, we divide the magnitude of

the predictive uncertainties (L2 norm of variances on x, y,

and z directions). We divide the magnitude of uncertainties

(i.e. of positional prediction) into uniform intervals and

calculate the mean and median errors within intervals. The

histogram of predictions is also counted. The statistical re-

sults are shown in Fig. 3. We found that both positional error

and rotational error positively propagate to the magnitude of

uncertainties. Most of the predictions (≥85%) fall into the

first four bins, i.e. the magnitude of uncertainty is less than

20. Within this uncertainty range (0–20 in magnitude), the

proposed model achieves positional errors of less than 4.3 m

on average and 2.0 m median, and rotational errors of less

than 2.7◦ on average and 1.7◦ median.



Success rate (%) Localisation time [s]

Method Feb April May June Aug Oct Nov Dec Overall Mean Median

Hybrid - GP Cov (ours) 97.2 100 94.4 94.9 95.8 94.7 81.2 88.7 93.3 1.94± 3.0 0.80

Hybrid - Fixed Cov (ours) 97.7 99.0 93.0 93.5 94.8 94.0 79.7 88.3 92.5 2.32± 3.3 0.95

NDT-MCL with uniform initialisation 62.0 70.6 57.3 59.6 52.7 51.7 37.6 40.1 54.0 154.29± 46.2 157.93

TABLE II: Success rate of hybrid localisation with fixed and GP cov compared to Uniform MCL.

(a) A success case of deep local-
isation. Then, GP particles will
converge near the ground truth.

(b) A failure case of deep local-
isation. In this case, GP particles
will die out very quickly.

Fig. 4: Qualitative results of success/failure cases. The

true robot pose is plotted as the green arrow and the particles

sampled from GP and re-sampled from MCL are shown as

red arrow.

B. Monte-Carlo Localisation Baseline Evaluation

For large-scale environments like the Michigan campus,

the large amount of required particles makes MCL in-

tractable. For that reason we restricted sampling only around

previously explored positions from the training dataset.

Specifically, for each explored position 3×3×3 points were

sampled from a voxel grid with voxel size vx, vy , vz of

0.2m, a finer resolution would make the amount of particles

unmanageable. Nearby points were then filtered using a

voxel-filter with the same resolution. For each remaining

point, 8 pose particles were created with evenly spaced

orientations around the z-axis. During the resampling step,

the number of particles was reduced by a fraction 0.6 until

1000 particles remained.

In total, over 4000 localisation attempts (initial locations

are uniformly chosen from 8 sessions) were performed using

our two methods and the MCL baseline. An attempt was

considered successful if an error < 0.75m was achieved

within 140 iterations. MCL scored a 54% success rate with

an average localisation time of 154.3 s as shown in Table II.

C. Hybrid Localisation Evaluation

Instead of a initialising particles in all possible locations,

we use the proposed deep probabilistic method to seed the

MCL (Eq. 9) and continue to update the samples following

Algorithm 1. Specifically, we used a nominal number of 500

particles, increasing up to 1000 as additional particles were

sampled, and reducing back to 500 during the resampling

step. Using only a small amount of particles with the fast

and sparse NDT-based measurement likelihood model, we

achieved an average iteration time of 0.073 s with σ =0.02.

To investigate the benefit of sampling from the uncertainty

estimates, we compared it to sampling from a fixed position

distribution (σ2
x = 70, σ2

y = 70, σ2
z = 3). Orientations were

sampled from a fixed distribution(σ2
ex = 0.0225, σ2

ey =

0.25, σ2
ez = 0.0225) in both cases. These parameters are

chosen according to practical experience. The localisation

success rate and speed is shown in table. II and Fig. 5.
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Fig. 5: Localisation time using our method with fixed co-

variance (Fix) and covariance from Gaussian Process (GP).

We found a median and mean localisation time of 0.799 s

and 1.944 s respectively for the hybrid approach with covari-

ance estimated by GP. Compared to the MCL baseline, the

median localisation time is reduced by 99.5%. Similarly to

the evaluation in Sec. IV-A.2, the highest success rate was

obtained in the early months of the year, gradually decreasing

over the year.

V. CONCLUSION

This paper proposed a hybrid probabilistic localisation

method which leverages the efficient inference of the deep

deterministic model and the rigorous geometry verification of

Markov-filter-based localisation. This paper seeks a solution

to resolve the non-conjugacy between the Gaussian method

(Gaussian Process) and non-Gaussian method (Monte-Carlo

localisation) through importance sampling. Consequently, the

two systems can be integrated seamlessly.

From the experiments, we found that the learning-based

localisation method can provide an optimised predictive dis-

tribution to seed MCL, thereby accelerating the convergence

of particles. On the other hand, the false positives can be

suppressed by the correctly modelled uncertainties in the

continuous localisation. The experimental results show that

the hybrid system is able to localise in 99.5% less time

compared to the Monte-Carlo baseline method, i.e. NDT-

MCL, and increases the precision to centimeters to meet the

needs of large-scale real-world localisation problems.

The future work will investigate the possibility of lever-

aging the semantics [27] to further improve the localisation

performance, utilising learning ego-motion estimation [28]

instead of using wheel odometry, and integrating the pro-

posed dual-system localisation with long-term mapping [29]

to complete the long-term localisation and mapping pipeline.
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