
Bayesian Learning-Based Adaptive Control for Safety Critical Systems

David D. Fan1,3, Jennifer Nguyen2, Rohan Thakker3, Nikhilesh Alatur3,
Ali-akbar Agha-mohammadi3, and Evangelos A. Theodorou1

Abstract— Deep learning has enjoyed much recent success,
and applying state-of-the-art model learning methods to con-
trols is an exciting prospect. However, there is a strong
reluctance to use these methods on safety-critical systems, which
have constraints on safety, stability, and real-time performance.
We propose a framework which satisfies these constraints while
allowing the use of deep neural networks for learning model
uncertainties. Central to our method is the use of Bayesian
model learning, which provides an avenue for maintaining ap-
propriate degrees of caution in the face of the unknown. In the
proposed approach, we develop an adaptive control framework
leveraging the theory of stochastic CLFs (Control Lyapunov
Functions) and stochastic CBFs (Control Barrier Functions)
along with tractable Bayesian model learning via Gaussian
Processes or Bayesian neural networks. Under reasonable
assumptions, we guarantee stability and safety while adapting
to unknown dynamics with probability 1. We demonstrate
this architecture for high-speed terrestrial mobility targeting
potential applications in safety-critical high-speed Mars rover
missions.

Index Terms— Robust/Adaptive Control of Robotic Systems,
Robot Safety, Probability and Statistical Methods, Bayesian
Adaptive Control, Deep Learning, Mars Rover

I. INTRODUCTION

The rapid growth of Artificial Intelligence (AI) and
Machine Learning (ML) disciplines has created a tremen-
dous impact in engineering disciplines, including finance,
medicine, and general cyber-physical systems. The ability
of ML algorithms to learn high dimensional dependencies
has expanded the capabilities of traditional disciplines and
opened up new opportunities towards the development of
decision making systems which operate in complex scenarios.
Despite these recent successes [1], there is low acceptance of
AI and ML algorithms to safety-critical domains, including
human-centered robotics, and particularly in the flight and
space industries. For example, both recent and near-future
planned Mars rover missions largely rely on daily human
decision making and piloting, due to a very low acceptable
risk for trusting black-box autonomy algorithms. Therefore
there is a need to develop computational tools and algorithms
that bridge two worlds: the canonical structure of control
theory, which is important for providing guarantees in
safety-critical applications, and the data driven abstraction
and representational power of machine learning, which is

1Institute for Robotics and Intelligent Machines, Georgia Institute of
Technology, Atlanta, GA, USA

2Department of Mechanical and Aerospace Engineering, West Virginia
University, Morgantown, WV, USA

3NASA Jet Propulsion Laboratory, California Institute of Technology,
Pasadena, CA, USA

Fig. 1: The left image depicts a 1/5th scale RC car platform driving
at the Mars Yard at JPL; and the right is a platform from the Mars
Explore Rover (MER) mission.

necessary for adapting the system to achieve resiliency against
unmodeled disturbances.

Towards this end, we propose a novel, lightweight frame-
work for Bayesian adaptive control for safety critical systems,
which we call BALSA (BAyesian Learning-based Safety and
Adaptation). This framework leverages ML algorithms for
learning uncertainty representations of dynamics which in
turn are used to generate sufficient conditions for stability
using stochastic CLFs and safety using stochastic CBFs.
Treating the problem within a stochastic framework allows for
a cleaner and more optimal approach to handling modeling
uncertainty, in contrast to deterministic, discrete-time, or
robust control formulations. We apply our framework to the
problem of high-speed agile autonomous vehicles, a domain
where learning is especially important for dynamics which
are complex and difficult to model (e.g., fast autonomous
driving over rough terrain). Potential Mars Sample Return
(MSR) missions are one example in this domain. Current
Mars rovers (i.e., Opportunity and Curiosity) have driven on
average ∼3km/year [2], [3]. In contrast, if MSR launches
in 2028, then the rover has only 99 sols (∼102 days) to
complete potentially 10km [4], [5]. After factoring in the
intermittent and heavily delayed communications to earth,
the need for adaptive, high-speed autonomous mobility could
be crucial to mission success.

Along with the requirements for safety and adaptation,
computational efficiency is of paramount importance for
real systems. Hardware platforms often have severe power
and weight requirements, which significantly reduce their
computational power. Probabilistic learning and control over
deep Bayesian models is a computationally intensive problem.
In contrast, we shorten the planning horizon and rely on a
high-level, lower fidelity planner to plan desired trajectories.
Our method then guarantees safe trajectory tracking behavior,
even if the given trajectory is not safe. This frees up the
computational budget for other tasks, such as online model
training and inference.

Related work - Machine-learning based planning and

ar
X

iv
:1

91
0.

02
32

5v
3

 [
ee

ss
.S

Y
]

 4
 J

ul
 2

02
1

control is a quickly growing field. From Model Predictive
Control (MPC) based learning [6], [7], safety in reinforcement
learning [8], belief-space learning and planning [9], to imita-
tion learning [10], these approaches all demand considerations
of safety under learning [11], [12], [13], [14]. Closely
related to our work is Gaussian Process-based Bayesian
Model Reference Adaptive Control (GP-MRAC) [15], where
modeling error is approximated with a Gaussian Process
(GP). However, computational speed of GPs scales poorly
with the amount of data (O(N3)), and sparse approximations
lack representational power. Another closely related work is
that of [16], who showed how to formulate a robust CLF
which is tolerant to bounded model error. Extensions to
robust CBFs were given in [17]. A stated drawback of this
approach is the conservative nature of the bounds on the
model error. In contrast, we incorporate model learning into
our formulation, which allows for more optimal behavior,
and leverage stochastic CLF and CBF theory to guarantee
safety and stability with probability 1. Other related works
include [18], which uses GPs in CBFs to learn the drift term
in the dynamics f(x), but uses a discrete-time, deterministic
formulation. [19] combined L1 adaptive control and CLFs.
Learning in CLFs and CBFs using adaptive control methods
(including neuro-adaptive control) has been considered in
several works, e.g. [20], [21], [22], [23].

Contributions - Here we take a unique approach to
address the aforementioned issues, with the requirements
of 1) adaptation to changes in the environment and the
system, 2) adaptation which can take into account high-
dimensional data, 3) guaranteed safety during adaptation,
4) guaranteed stability during adaptation and convergence of
tracking errors, 5) low computational cost and high control
rates. Our contributions are fourfold: First, we introduce a
Bayesian adaptive control framework which explicitly uses
the model uncertainty to guarantee stability, and is agnostic
to the type of Bayesian model learning used. Second, we
extend recent stochastic safety theory to systems with switched
dynamics to guarantee safety with probability 1. In contrast
to adaptive control, switching dynamics are used to account
for model updates which may only occur intermittently. Third,
we combine these approaches in a novel online-learning
framework (BALSA). Fourth, we compare the performance
of our framework using different Bayesian model learning
and uncertainty quantification methods. Finally, we apply this
framework to a high-speed driving task on rough terrain using
an Ackermann-steering vehicle and validate our method on
both simulation and hardware experiments.

II. SAFETY AND STABILITY UNDER MODEL LEARNING
VIA STOCHASTIC CLF/CBFS

Consider a stochastic system with SDE (stochastic differ-
ential equation) dynamics:

dx1 = x2dt, dx2 = (f(x) + g(x)u)dt+ Σ(x)dξ(t) (1)

where x1, x2 ∈ Rn, x = [x1, x2]ᵀ, the controls are u ∈
Rn, the diffusion is Σ(x) ∈ Rn×n, and ξ(t) ∈ Rn is a
zero-mean Wiener process. For simplicity we restrict our

analysis to systems of this form, but emphasize that our
results are extensible to systems of higher relative degree
[24], as well as hybrid systems with periodic orbits [25]. A
wide range of nonlinear control-affine systems in robotics can
be transformed into this form. In general, on a real system, f ,
g, and Σ may not be fully known. We assume g(x) is known
and invertible, which makes the analysis more tractable. It
will be interesting in future work to extend our approach to
unknown, non-invertible control gains, or non-control affine
systems (e.g. ẋ = f(x, u)). Let f̂(x) be a given approximate
model of f(x). We formulate a pre-control law with pseudo-
control µ ∈ Rn:

u = g(x)−1(µ− f̂(x)) (2)

which leads to the system dynamics being

dx1 = x2dt, dx2 = (µ+ ∆(x))dt+ Σ(x)dξ(t) (3)

where ∆(x) = f(x) − f̂(x) is the modeling error, with
∆(x) ∈ Rn.

Suppose we are given a reference model and reference
control from, for example, a path planner:

dx1rm = x2rmdt, dx2rm = frm(xrm, urm)dt

The utility of the methods outlined in this work is for adaptive
tracking of this given trajectory with guaranteed safety and
stability. We assume that frm is continuously differentiable in
xrm, urm. Further, urm is bounded and piecewise continuous,
and that xrm is bounded for a bounded urm. Define the error
e = x − xrm. We split the pseudo-control input into four
separate terms:

µ = µrm + µpd + µqp − µad (4)

where we assign µrm = ẋ2rm and µpd to a PD controller:

µpd = [−KP −KD]e (5)

Additionally, we assign µqp as a pseudo-control which we
optimize for and µad as an adaptive element which will cancel
out the model error. Then we can write the dynamics of the
model error e as:

de =

[
de1
de2

]
=

[
0 I
−KP −KD

]
edt (6)

+

[
0
I

] (
(µqp − µad + ∆(x))dt+ Σ(x)dξ(t)

)
= (Ae+G(µqp − µad + ∆(x)))dt+GΣ(x)dξ(t) (7)

where the matrices A and G are used for ease of notation.
The gains KD,KP should be chosen such that A is Hurwitz.
When µad = ∆(x), the drift modeling error term is canceled
out from the error dynamics.

Next, we require a method for learning or approximating
the drift and diffusion terms ∆(x) and Σ(x). Such methods
include Bayesian SDE approximation methods [26], Neural-
SDEs [27], or differential GP flows [28], to name a few. This
model should know what it doesn’t know [29], and should
capture both the epistemic uncertainty of the model, i.e.,
the uncertainty from lack of data, as well as the aleatoric

uncertainty, i.e., the uncertainty inherent in the system [30].
We expect that these methods will continue to be improved
by the community. We can use the second equation in (3) to
generate data points to use for learning these terms in the
SDE. In discrete time, the learning problem is formulated
as finding a mapping from input data X̄t = x(t) to output
data Ȳt = (x2(t+dt)−x2(t))/dt− (f̂(x(t)) + g(x(t))u(t)).
Given the ith dataset Di = {X̄t, Ȳt}t=0,dt,...,ti with i ∈ N,
we can construct the ith model {mi(x), σi(x)}, where mi(x)
approximates the drift term ∆(x) and σi(x) approximates the
diffusion term Σ(x). Note that we do not require updating
the model at each timestep, which significantly reduces
computational load requirements and allows for training more
expressive models (e.g., neural networks).

In practical terms, in this work we opt for an approximate
method for learning {mi(x), σi(x)}, in which we view
each data point in Di as an independently and identically
distributed sample, and set up a single timestep Bayesian
regression problem, in which we model ∆(x) as a multivariate
Gaussian random variable, i.e. ∆̄i(x) ∼ N (mi(x), σi(x)).
This approximation ignores the SDE nature of (3) and will not
be a faithful approximation (See [31] for insightful comments
on this problem). However, until Bayesian SDE approximation
methods improve, we believe this approach to be reasonable
in practice. Methods for producing reliable confidence bounds
include a large class of Bayesian neural networks ([32], [33],
[34]), Gaussian Processes or its many approximate variants
([35], [36]), and many others. We compare several methods in
our experimental results. We leave a more principled learning
approach using Bayesian SDE learning methods for future
work.

After obtaining the joint model {mi(x), σi(x)}, Equation
(7) can be written as the following switching SDE:

de = (Ae+G(µqp + εmi (t))dt+Gσi(x)dξ(t) (8)

with e(0) = x(0)−xrm(0) and where εmi (t) = mi(x)−∆(x).
i ∈ N is a switching index which updates each time the model
is updated. The main problem which we address is how to
find a pseudo-control µqp which provably drives the tracking
error to 0 while simultaneously guaranteeing safety.

Since ∆(x) is not known a priori, one approach is to
assume that ‖εmi (t)‖ is bounded by some known term. The
size of this bound will depend on the type of model used
to represent the uncertainty, its training method, and the
distribution of the data Di. See [15] for such an analysis
for sparse online Gaussian Processes. For neural networks in
general there has been some work on analyzing these bounds
[37], [38]. For simplicity, let us assume the modeling error
εmi (t) = 0, and instead rely on σi(x) to fully capture any
remaining modeling error in the drift. Then we have the
following dynamics:

de = (Ae+Gµqp)dt+Gσi(x)dξ(t) (9)

with e(0) = x(0) − xrm(0). This is valid as long as
σi(x) captures both the epistemic and aleatoric uncertainty
accurately. Note also that if the bounds on ‖εmi (t)‖ are known,
then our results are easily extensible to this case via (8).

A. Stochastic Control Lyapunov Functions for Switched
Systems

We establish sufficient conditions on µqp to guarantee
convergence of the error process e(t) to 0. The result is a
linear constraint similar to deterministic CLFs (e.g., [17]). The
difference here is the construction a stochastic CLF condition
for switched systems. The switching is needed to account for
online updates to the model as more data is accumulated.

In general, consider a switched SDE of Itô type [39] defined
by:

dX(t) = a(t,X(t))dt+ σi(t,X(t))dξ(t) (10)

where X ∈ Rn1 , ξ(t) ∈ Rn2 is a Wiener process, a(t,X)
is a Rn1-vector function, σi(t,X) a n1 × n2 matrix, and
i ∈ N is a switching index. The switching index may change
a finite number of times in any finite time interval. For each
switching index, a and σ must satisfy the Lipschitz condition
‖a(t, x)−a(t, y)‖+‖σi(t, x)−σi(t, y)‖ ≤ L‖x−y‖,∀x, y ∈
D with D compact. Then the solution of (10) is a continuous
Markov process.

Definition II.1. X(t) is said to be exponentially mean square
ultimately bounded uniformly in i if there exists positive
constants K, c0, τ such that for all t,X0, i, we have that
EX0
‖X(t)‖2 ≤ K + c0‖X0‖2e−τt.

We first restate the following theorem from [15]:

Theorem II.1. Let X(t) be the process defined by the solution
to (10), and let V (t,X) be a function of class C2 with
respect to X , and class C1 with respect to t. Denote the
Itô differential generator by L. If 1) −α1 + c1‖X‖2 ≤
V (t,X) ≤ c3‖X‖2 + α2 for real α1, α2, c1 > 0; and 2)
LV (t,X) ≤ βi − c2V (t,X) for real βi, c2 > 0, and all i;
then the process X(t) is exponentially mean square ultimately
bounded uniformly in i. Moreover, K = α2

c1
+maxi(

|βi|
c1c2

+α1

c1
),

c0 = c3
c1

, and τ = c2.

Proof. See [15] Theorem 1.

We use Theorem II.1 to derive a stochastic CLF sufficient
condition on µqp for the tracking error e(t). Consider the
stochastic Lyapunov candidate function V (e) = 1

2e
ᵀPe

where P is the solution to the Lyapunov equation AᵀP +
PA = −Q, where Q is any symmetric positive-definite
matrix.

Theorem II.2. Let e(t) be the switched stochastic process
defined by (9), and let ε > 0 be a positive constant. Suppose
for all t, µqp and the relaxation variable d1i ∈ R satisfy the
inequality:

Ψ0
i + Ψ1µqp ≤ d1i (11)

Ψ0
i = −1

2
eᵀQe+

1

ε
V (e) +

1

2
tr(Gσiσ

ᵀ
i G

ᵀP)

Ψ1 = eᵀPG.

Then e(t) is exponentially mean-square ultimately bounded
uniformly in i. Moreover if (11) is satisfied with d1i < 0 for
all i, then e(t)→ 0 exponentially in the mean-squared sense.

Proof. The Lyapunov candidate function V (e) is bounded
above and below by 1

2λmin(P)‖e‖2 ≤ V (e(t)) ≤
1
2λmax(P)‖e‖2. We have the following Itô differential of
the Lyapunov candidate:

LV (e) =
∑
j

∂V (e)

∂ej
Aej +

1

2

∑
j,k

[Gσiσ
ᵀ
i G

ᵀ]jk
∂2V (e)

∂ek∂ej

= −1

2
eᵀQe+ eᵀPGµqp +

1

2
tr(Gσiσ

ᵀ
i G

ᵀP). (12)

Rearranging, (11) becomes LV (e) ≤ − 1
εV (e). Setting α1 =

α2 = 0, βi = d1i , c1 = 1
2λmin(P), c2 = 1

ε , c3 = 1
2λmax(P),

we see that the conditions for Theorem II.1 are satisfied
and e(t) is exponentially mean square ultimately bounded
uniformly in i. Moreover,

Ee0‖e(t)‖2 ≤

κ(P)‖e0‖2e−
t
ε + max

i
(

|d1i |
4λmin(P)λmax(P)

) (13)

where κ(P) is the condition number of the matrix P .
Therefore if d1i < 0 for all i, e(t) converges to 0 exponentially
in the mean square sense.

The relaxation variable d1i allows us to find solutions for
µqp which may not always strictly satisfy a Lyapunov stability
criterion LV ≤ 0. This allows us to incorporate additional
constraints on µqp at the cost of losing convergence of the
error e to 0. Fortunately, the error will remain bounded by
the largest d1i . In practice we re-optimize for a new d1i at
each timestep. This does not affect the result of Theorem II.2
as long as we re-optimize a finite number of times for any
given finite interval.

One highly relevant set of constraints we want to satisfy
are control constraints Hu ≤ b, where H ∈ Rnc × Rn is a
matrix and b ∈ Rnc is a vector. Let µd = µrm + µpd − µad.
Recall the pre-control law (2). Then the control constraint is:

Hg−1(x)µqp ≤ Hĝ−1(x)(µd − f̂(x)) + b. (14)

Next we formulate additional constraints to guarantee safety.

B. Stochastic Control Barrier Functions for Switched Systems

We leverage recent results on stochastic control barrier
functions [40] to derive constraints linear in µqp which
guarantee the process x(t) satisfies a safety constraint, i.e.,
x(t) ∈ C for all t. The set C is defined by a locally Lipschitz
function h : Rn → R as C = {x : h(x) ≥ 0} and
∂C = {x : h(x) = 0}. We first extend the results of [40] to
switched stochastic systems.

Definition II.2. Let X(t) be a switched stochastic process
defined by (10). Let the function B : Rn → R be
locally Lipschitz and twice-differentiable on int(C). If there
exists class-K functions γ1 and γ2 such that for all X ,
1/γ1(h(X)) ≤ B(X) ≤ 1/γ2(h(X)), then B(x) is called a
candidate control barrier function.

Definition II.3. Let B(x) be a candidate control barrier
function. If there exists a class-K function γ3 such that

LB(X) ≤ γ3(h(X)), then B(x) is called a control barrier
function (CBF).

Theorem II.3. Suppose there exists a CBF for the switched
stochastic process X(t) defined by (10). If X0 ∈ C, then for
all t, Pr(X(t) ∈ C) = 1.

Proof. [40] Theorem 1 provides a proof of the result for non-
switched stochastic processes. Let ti denote the switching
times of X(t), i.e., when t ∈ [0, t0), the process X(t) has
diffusion matrix σ0(X), and when t ∈ [ti−1, ti) for i > 0,
the process X(t) has diffusion matrix σi(X). If X0 ∈ C,
then Xt ∈ C for all t ∈ [0, t0) with probability 1 since the
process X(t) does not switch in the time interval t ∈ [0, t0).
By similar argument for any i > 0 if Xti−1

∈ C then Xt ∈ C
for all t ∈ [ti−1, ti) with probability 1. This also implies
that Xti ∈ C, since X(t) is a continuous Markov process.
Then Xt ∈ C for all t ∈ [ti, ti+1) with probability 1. Then
by induction, for all t, Pr(X(t) ∈ C) = 1.

Next, we establish a linear constraint condition sufficient
for µqp to guarantee safety for (9). Rewrite (9) in terms of
x(t) as:

dx = (A0x+G(µd + µqp))dt+Gσi(x)dξ(t) (15)

A0 =

[
0 I
0 0

]
, µd = µrm + µpd − µad.

Theorem II.4. Let x(t) be a switched stochastic process
defined by (16). Let B(x) be a candidate control barrier
function. Let γ3 be a class-K function. Suppose for all t, µqp
satisfies the inequality:

Φ0
i + Φ1µqp ≤ 0 (16)

Φ0
i =

∂B

∂x

ᵀ

(A0x+Gµd)− γ3(h(x)) +
1

2
tr(Gσiσ

ᵀ
i G

ᵀ ∂
2B

∂x2
)

Φ1 =
∂B

∂x

ᵀ

G

Then B(x) is a CBF and (17) is a sufficient condition for
safety, i.e., if x0 ∈ C, then x(t) ∈ C for all t with probability
1.

Proof. We have the following Itô differential of the CBF
candidate B(x):

LB(x) =
∂B

∂x

ᵀ

(A0x+G(µd + µqp))

+
1

2
tr(Gσiσ

ᵀ
i G

ᵀ ∂
2B

∂x2
). (17)

Rearranging (17) it is clear that LB(x) ≤ γ3(h(x)). Then
B(x) is a CBF and the result follows from Theorem II.3.

C. Safety and Stability under Model Adaptation

We can now construct a CLF-CBF Quadratic Program (QP)
in terms of µqp incorporating both the adaptive stochastic
CLF and CBF conditions, along with control limits (Equation

(18)):

arg min
µqp,d1,d2

µᵀ
qpµqp + p1d

2
1 + p2d

2
2 (18)

s.t. Ψ0
i + Ψ1µqp ≤ d1 (Adaptive CLF)

Φ0
i + Φ1µqp ≤ d2 (Adaptive CBF)

Hg−1(x)µqp ≤ Hg−1(x)(µd − f̂(x)) + b

In practice, several modifications to this QP are often made
([24],[41]). In addition to a relaxation term for the CLF in
Theorem II.2, we also include a relaxation term d2 for the
CBF. This helps to ensure the QP is feasible and allows for
slowing down as much as possible when the safety constraint
cannot be avoided due to control constraints, creating, e.g.,
lower impact collisions. Safety is still guaranteed as long
as the relaxation term is less than 0. For an example of
guaranteed safety in the presence of this relaxation term
see [17], also see [21] for an approach to handling safety
with control constraints. The emphasis of this work is on
guaranteeing safety in the presence of adaptation so we leave
these considerations for future work. Our entire framework
is outlined in Algorithm 1.

Algorithm 1: BAyesian Learning-based Safety and
Adaptation (BALSA)

1 Require: Prior model f̂(x), known g(x), reference
trajectory xrm, choice of modeling algorithm
∆̄i(x) ∼ N (mi(x), σi(x)), dt, A, Hu ≤ b.

2 Initialize: i = 0, Dataset D0 = ∅, t = 0, solve P
3 while true do
4 Obtain µrm = ẋ2rm(t) and compute µpd
5 Compute model error and uncertainty

µad = mi(x(t)), and σi(x(t))
6 µqp ← Solve QP (18)
7 Set

u(t) = g(x)−1(µrm + µpd + µqp − µad − f̂(x))
8 Apply control u(t) to system.
9 Step forward in time t← t+ dt.

10 Append new data point to database:
11 X̄t = [x(t)], Ȳt =

(x2(t+ dt)− x2(t))/dt− (f̂(x(t)) + g(x(t)u(t)).
12 Di ← Di ∪ {X̄t, Ȳt}
13 if updateModel then
14 Update model ∆̄i(x, µ) with database Di
15 Di+1 ← Di, i← i+ 1

III. APPLICATION TO FAST AUTONOMOUS DRIVING

In this section we validate BALSA on a kinematic
bicycle model for car-like vehicles. We model the state
x = [px, py, θ, v]ᵀ as position in x and y, head-
ing, and velocity respectively, with dynamics ẋ =
[v cos(θ), v sin(θ), v tan(ψ)/L, a]ᵀ. where a is the input
acceleration, L is the vehicle length, and ψ is the steering
angle. We employ a simple transformation to obtain dynamics

in the form of (1). Let z = [z1, z2, z3, z4]ᵀ where z1 = px,
z2 = py, z3 = ż1, z4 = ż2, and c = tan(ψ)/L. Let the
controls u = [c, a]ᵀ. Then ż fits the canonical form of (1).
To ascertain the importance of learning and adaptation, we
add the following disturbance to [ż3, ż4]ᵀ to use as a “true”
model:

δ(z) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
− tanh(v2)
−(0.1 + v)

]
(19)

This constitutes a non-linearity in the forward velocity and
a tendency to drift to the right.

We use the following barrier function for pointcloud-based
obstacles. Similar to [17], we design this barrier function with
an extra component to account for position-based constraints
which have a relative degree greater than 1. This is done by
including the time-derivative of the position-based constraint
as an additional term in the barrier function, which penalizes
velocities (or higher order derivatives) leading to a decrease
of the level set function h. Let our safety set C = {x ∈
Rn|h(x, x′) ≥ 0}, where x′ is the position of an obstacle.
Let h(x, x′) = ‖(x − x′)‖2 − r where r > 0 is the radius
of a circle around the obstacle. Then construct a barrier
function B(x;x′) = 1/(γph(x, x′) + d

dth(x, x′)). As shown
by [24], B(x) is a CBF, where γp helps to control the rate of
convergence. We chose γ1(x), γ2(x) = x and γ3(x) = γ/x.

A. Validation of BALSA in Simulation

One iteration of the algorithm for this problem takes less
than 4ms on a 3.7GHz Intel Core i7-8700K CPU, in Python
code which has not been optimized for speed. We make our
code publicly available1. Because training the model occurs
on a separate thread and can be performed anytime online,
we do not include the model training time in this benchmark.
We use OSQP [42] as our QP solver.

In Figure 2, we compare BALSA with several different
baseline algorithms. We use a Neural Network trained with
dropout and a negative-log-likelihood loss function for cap-
turing the uncertainty [34]. We place several obstacles in the
direct path of the reference trajectory. We also place velocity
barriers for driving too fast or too slow. We observe that the
behavior of the vehicle using our algorithm maintains good
tracking errors while avoiding barriers and maintaining safety,
while the other approaches suffer from various drawbacks.
The adaptive controller (ad) and PD controller (pd) violate
safety constraints. The (qp) controller with an inaccurate
model also violates constraints and exhibits highly suboptimal
behavior (Figure 3). A robust (rob) formulation which uses
a fixed robust bound which is meant to bound any model
uncertainty [17], while not violating safety constraints, is
too conservative and non-adaptive, has trouble tracking the
reference trajectory. In contrast, BALSA adapts to model error
with guaranteed safety. We also plot the model uncertainty
and error in (Figure 3).

1https://github.com/ddfan/balsa.git

https://github.com/ddfan/balsa.git

0 10 20 30 40 50 60
X Position

−3

−2

−1

0

1

2

Y
Po

sit
io

n
ref ad qp pd rob balsa

Fig. 2: Comparison of the performance of four algorithms in tracking
and avoiding barrier regions (red ovals). ref is the reference trajectory.
ad is an adaptive controller (µrm+µpd−µad). qp is a non-adaptive
safety controller (µrm +µpd +µqp). pd is a proportional derivative
controller (µrm + µpd). rob is a robust controller which uses a fixed
σi(x) to compensate for modeling errors. balsa is the full adaptive
CLF-CBF-QP approach outlined in this paper and in Algorithm 1,
i.e. (µrm + µpd − µad + µqp).

0

2

Ve
l (

m
/s

)

ref ad qp pd rob balsa

0

1
Pr

ed
 e

rr

0 10 20 30 40 50 60
Time(s)

10−3

10−1

σ i
(x

)

Fig. 3: Top: Velocities of each algorithm. Red dotted line indicates
safety barrier. Middle: Output prediction error of model, decreasing
with time. Solid and dashed lines indicate both output dimensions.
Bottom: Uncertainty σi(x), also decreasing with time. Predictions
are made after 10 seconds to accumulate enough data to train the
network. During this time we choose an upper bound for σ0 = 1.0.

B. Comparing Different Modeling Methods in Simulation

Next we compared the performance of BALSA on three
different Bayesian modeling algorithms: Gaussian Processes,
a Neural Network with dropout, and ALPaCA [33], a meta-
learning approach which uses a hybrid neural network with
Bayesian regression on the last layer. For all methods we
retrained the model intermittently, every 40 new datapoints.
In addition to the current state, we also included as input to
the model the previous control, angular velocity in yaw, and
the current roll and pitch of the vehicle. For the GP we re-
optimized hyperparameters with each training. For the dropout
NN, we used 4 fully-connected layers with 256 hidden units
each, and trained for 50 epochs with a batch size of 64. Lastly,
for ALPaCA we used 2 hidden layers, each with 128 units,
and 128 basis functions. We used a batch size of 150, 20
context data points, and 20 test data points. The model was
trained using 100 gradient steps and online adaption (during
prediction) was performed using 20 of the most recent context
data points with the current observation (see [33] for details of
the meta-learning capabilities of ALPaCA). At each training
iteration we retrain both the neural network and the last
Bayesian linear regression layer. Figure (4) and Table (I)
show a comparison of tracking error for these methods. We

−5

0

5
No Learning

ref 0-60s 60-120s
GP

−2.5 0.0 2.5
−5

0

5
Dropout NN

−2.5 0.0 2.5

ALPaCA

Fig. 4: Comparison of adaptation performance in a Gazebo simula-
tion using three different probabilistic model learning methods.

No learn GP Dropout ALPaCA
0-60s 0.580 0.3992 0.408 0.390

60-120s 0.522 0.097 0.105 0.110
TABLE I: Average tracking error in position for different modeling
methods in sim, split into the first minute and second minute.

found GPs to be computationally intractable with more than
500 data points, although they exhibited good performance.
Neural networks with dropout converged quickly and were
efficient to train and run. ALPaCA exhibited slightly slower
convergence but good tracking as well.

C. Hardware Experiments on Martian Terrain

To validate that BALSA meets real-time computational
requirements, we conducted hardware experiments on the
platform depicted in Figure (5). We used an off-the shelf
RC car (Traxxas Xmaxx) in 1/5-th scale (wheelbase 0.48 m),
equipped with sensors such as a 3D LiDAR (Velodyne VLP-
16) for obstacle avoidance and a stereo camera (RealSense
T265) for on-board for state estimation. The power train
consists of a single brushless DC motor, which drives the
front and rear differential, operating in current control mode
for controlling acceleration. Steering commands were fed to a
servo position controller. The on-board computer (Intel NUC
i7) ran Ubuntu 18.04 and ROS [43].

Experiments were conducted in a Martian simulation
environment, which contains sandy soil, gravel, rocks, and
rough terrain. We gave figure-eight reference trajectories at
2m/s and evaluated the vehicle’s tracking performance (Figure
5). Due to large achieving good tracking performance at higher
speeds is difficult. We observed that BALSA is able to adapt
to bumps and changes in friction, wheel slip, etc., exhibiting
improved tracking performance over a non-adaptive baseline
(Table II).

We also evaluated the safety of BALSA under adaptation.
We used LiDAR pointclouds to create barriers at each LiDAR
return location. Although this creates a large number of

Mean Err Std Dev Max
No Learn 1.417 0.568 6.003
Learning 0.799 0.387 2.310

TABLE II: Mean, standard deviation, and max tracking error on our
rover platform for a figure-8 task.

−2 0 2 4 6 8 10 12 14
−3

−2

−1

0

1

2

3 No adaptation
Adaptation
Reference

Fig. 5: Left: A high-speed rover vehicle. Right: Figure-8 tracking on
our rover platform on rough and sandy terrain, comparing adaptation
vs. no adaptation.

−4 −2 0 2 4 6 8 10

−4

−2

0

2

Fig. 6: Vehicle avoids collision despite localization drift and
unmodeled dynamics. Blue line is the reference trajectory, colored
pluses are the vehicle pose, colored points are obstacles. Colors
indicate time, from blue (earlier) to red (later). Note that localization
drift results in the obstacles appearing to shift position. Green circle
indicates location of the obstacle at the last timestep. Despite this
drift the vehicle does not collide with the obstacle.

constraints, the QP solver is able to handle these in real-time.
Figure 6 shows what happens when an obstacle is placed in
the path of the reference trajectory. The vehicle successfully
slows down and comes to a stop if needed, avoiding the
obstacle altogether.

IV. CONCLUSION

In this work, we have described a framework for safe,
fast, and computationally efficient probabilistic learning-based
control. The proposed approach satisfies several important
real-world requirements and take steps towards enabling safe
deployment of high-dimensional data-driven controls and
planning algorithms. Further development other types of
robots including drones, legged robots, and manipulators is
straightforward. Incorporating better uncertainty-representing
modeling methods and training on higher-dimensional data
(vision, LiDAR, etc) will also be a fruitful direction of
research.

ACKNOWLEDGEMENT

The authors would like to thank Joel Burdick’s group for
their hardware support. This research was partially carried out
at the Jet Propulsion Laboratory (JPL), California Institute
of Technology, and was sponsored by the JPL Year Round
Internship Program and the National Aeronautics and Space
Administration (NASA). Jennifer Nguyen was supported in
part by NASA EPSCoR Research Cooperative Agreement
WV-80NSSC17M0053 and NASA West Virginia Space Grant

Consortium, Training Grant #NX15AI01H. Evangelos A.
Theodorou was supported by the C-STAR Faculty Fellowship
at Georgia Institute of Technology. Copyright ©2019. All
rights reserved.

REFERENCES

[1] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton et al., “Mastering the
game of go without human knowledge,” Nature, vol. 550, no. 7676, p.
354, 2017.

[2] NASA, “Where is Curiosity? - NASA Mars Curiosity
Rover,” 2018. [Online]. Available: https://mars.nasa.gov/msl/mission/
whereistherovernow/

[3] NASA, “Opportunity Updates,” 2018. [Online]. Available: https:
//mars.nasa.gov/mer/mission/rover-status/opportunity/recent/all/

[4] E. Klein, E. Nilsen, A. Nicholas, C. Whetsel, J. Parrish, R. Mattingly,
and L. May, “The mobile mav concept for mars sample return,” in
2014 IEEE Aerospace Conference, March 2014, pp. 1–9.

[5] A. Nelessen, C. Sackier, I. Clark, P. Brugarolas, G. Villar, A. Chen,
A. Stehura, R. Otero, E. Stilley, D. Way, K. Edquist, S. Mohan,
C. Giovingo, and M. Lefland, “Mars 2020 entry, descent, and landing
system overview,” in 2019 IEEE Aerospace Conference, March 2019,
pp. 1–20.

[6] N. Wagener, C. Cheng, J. Sacks, and B. Boots, “An online learning
approach to model predictive control,” CoRR, vol. abs/1902.08967,
2019. [Online]. Available: http://arxiv.org/abs/1902.08967

[7] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou,
“Information-theoretic model predictive control: Theory and applications
to autonomous driving,” IEEE Transactions on Robotics, vol. 34, no. 6,
pp. 1603–1622, 2018.

[8] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-
based reinforcement learning with stability guarantees,” in Advances
in neural information processing systems, 2017, pp. 908–918.

[9] S.-K. Kim, R. Thakker, and A.-A. Agha-Mohammadi, “Bi-directional
value learning for risk-aware planning under uncertainty,” IEEE
Robotics and Automation Letters, vol. 4, no. 3, pp. 2493–2500, 2019.

[10] S. Ross, G. Gordon, and D. Bagnell, “A reduction of imitation learning
and structured prediction to no-regret online learning,” in Proceedings
of the fourteenth international conference on artificial intelligence and
statistics, 2011, pp. 627–635.

[11] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust
Constrained Learning-based NMPC enabling reliable mobile robot
path tracking,” The International Journal of Robotics Research,
vol. 35, no. 13, pp. 1547–1563, nov 2016. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364916645661

[12] K. Pereida and A. P. Schoellig, “Adaptive Model Predictive Control
for High-Accuracy Trajectory Tracking in Changing Conditions,” in
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, oct 2018, pp. 7831–7837. [Online]. Available:
https://ieeexplore.ieee.org/document/8594267/

[13] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious Model
Predictive Control using Gaussian Process Regression,” arXiv, may
2017. [Online]. Available: http://arxiv.org/abs/1705.10702

[14] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli,
A. Anandkumar, Y. Yue, and S.-J. Chung, “Neural Lander: Stable
Drone Landing Control using Learned Dynamics,” arXiv, nov 2018.
[Online]. Available: http://arxiv.org/abs/1811.08027

[15] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela,
“Bayesian Nonparametric Adaptive Control Using Gaussian Processes,”
IEEE Transactions on Neural Networks and Learning Systems,
vol. 26, no. 3, pp. 537–550, mar 2015. [Online]. Available:
http://ieeexplore.ieee.org/document/6823109/

[16] Q. Nguyen and K. Sreenath, “Optimal Robust Control for Bipedal
Robots through Control Lyapunov Function based Quadratic Programs.”
Robotics: Science and Systems, 2015.

[17] Q. Nguyen and K. Sreenath, “Optimal robust control for constrained
nonlinear hybrid systems with application to bipedal locomotion,” in
2016 American Control Conference (ACC). IEEE, 2016, pp. 4807–
4813.

[18] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-
End Safe Reinforcement Learning through Barrier Functions for
Safety-Critical Continuous Control Tasks,” arXiv, mar 2019. [Online].
Available: http://arxiv.org/abs/1903.08792

https://mars.nasa.gov/msl/mission/whereistherovernow/
https://mars.nasa.gov/msl/mission/whereistherovernow/
https://mars.nasa.gov/mer/mission/rover-status/opportunity/recent/all/
https://mars.nasa.gov/mer/mission/rover-status/opportunity/recent/all/
http://arxiv.org/abs/1902.08967
http://journals.sagepub.com/doi/10.1177/0278364916645661
https://ieeexplore.ieee.org/document/8594267/
http://arxiv.org/abs/1705.10702
http://arxiv.org/abs/1811.08027
http://ieeexplore.ieee.org/document/6823109/
http://arxiv.org/abs/1903.08792

[19] Q. Nguyen and K. Sreenath, “L1 adaptive control for bipedal robots
with control Lyapunov function based quadratic programs,” in 2015
American Control Conference (ACC). IEEE, jul 2015, pp. 862–867.
[Online]. Available: http://ieeexplore.ieee.org/document/7170842/

[20] A. J. Taylor, V. D. Dorobantu, M. Krishnamoorthy, H. M. Le, Y. Yue,
and A. D. Ames, “A Control Lyapunov Perspective on Episodic
Learning via Projection to State Stability,” arXiv, mar 2019. [Online].
Available: http://arxiv.org/abs/1903.07214

[21] T. Gurriet, A. Singletary, J. Reher, L. Ciarletta, E. Feron, and A. Ames,
“Towards a framework for realizable safety critical control through active
set invariance,” in Proceedings of the 9th ACM/IEEE International
Conference on Cyber-Physical Systems. IEEE Press, 2018, pp. 98–106.

[22] V. Azimi and P. A. Vela, “Robust adaptive quadratic programming
and safety performance of nonlinear systems with unstructured uncer-
tainties,” in 2018 IEEE Conference on Decision and Control (CDC).
IEEE, 2018, pp. 5536–5543.

[23] V. Azimi and P. A. Vela, “Performance reference adaptive control:
A joint quadratic programming and adaptive control framework,” in
2018 Annual American Control Conference (ACC). IEEE, 2018, pp.
1827–1834.

[24] Q. Nguyen and K. Sreenath, “Exponential Control Barrier Functions
for enforcing high relative-degree safety-critical constraints,” in 2016
American Control Conference (ACC). IEEE, jul 2016, pp. 322–328.
[Online]. Available: http://ieeexplore.ieee.org/document/7524935/

[25] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, 2014.

[26] A. Look and M. Kandemir, “Differential bayesian neural nets,” arXiv
preprint arXiv:1912.00796, 2019.

[27] X. Liu, S. Si, Q. Cao, S. Kumar, and C.-J. Hsieh, “Neural sde:
Stabilizing neural ode networks with stochastic noise,” arXiv preprint
arXiv:1906.02355, 2019.

[28] P. Hegde, M. Heinonen, H. Lähdesmäki, S. Kaski et al., “Deep learning
with differential gaussian process flows,” in International Conference
on Artificial Intelligence and Statistics. PMLR, 2019.

[29] L. Li, M. L. Littman, T. J. Walsh, and A. L. Strehl, “Knows what
it knows: a framework for self-aware learning,” Machine learning,
vol. 82, no. 3, pp. 399–443, 2011.

[30] C. J. Roy and W. L. Oberkampf, “A comprehensive framework for
verification, validation, and uncertainty quantification in scientific
computing,” Computer Methods in Applied Mechanics and Engineering,
vol. 200, no. 25-28, pp. 2131–2144, jun 2011.

[31] T. Lew, A. Sharma, J. Harrison, and M. Pavone, “On the Problem
of Reformulating Systems with Uncertain Dynamics as a Stochastic
Differential Equation. http://asl.stanford.edu/wp-content/papercite-
data/pdf/dynsSDE.pdf,” Technical Report, 2020. [Online]. Available:
http://asl.stanford.edu/wp-content/papercite-data/pdf/dynsSDE.pdf

[32] D. Hafner, D. Tran, T. Lillicrap, A. Irpan, and J. Davidson,
“Reliable Uncertainty Estimates in Deep Neural Networks using
Noise Contrastive Priors,” arXiv, jul 2018. [Online]. Available:
http://arxiv.org/abs/1807.09289

[33] J. Harrison, A. Sharma, and M. Pavone, “Meta-Learning Priors for
Efficient Online Bayesian Regression,” arXiv, jul 2018. [Online].
Available: http://arxiv.org/abs/1807.08912

[34] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, 2016, pp. 1050–1059.

[35] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas,
“Taking the human out of the loop: A review of bayesian optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2015.

[36] Y. Pan, X. Yan, E. A. Theodorou, and B. Boots, “Prediction under
uncertainty in sparse spectrum gaussian processes with applications
to filtering and control,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
2760–2768.

[37] D. Yarotsky, “Error bounds for approximations with deep relu networks,”
Neural Networks, vol. 94, pp. 103–114, 2017.

[38] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anand-
kumar, Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing
control using learned dynamics,” in 2019 International Conference on
Robotics and Automation (ICRA). IEEE, 2019, pp. 9784–9790.

[39] R. Khasminskii, Stochastic stability of differential equations. Springer
Science & Business Media, 2011, vol. 66.

[40] A. Clark, “Control barrier functions for complete and incomplete
information stochastic systems,” in 2019 American Control Conference
(ACC), July 2019, pp. 2928–2935.

[41] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876,
2016.

[42] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” ArXiv e-prints,
Nov. 2017.

[43] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “Ros: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

http://ieeexplore.ieee.org/document/7170842/
http://arxiv.org/abs/1903.07214
http://ieeexplore.ieee.org/document/7524935/
http://asl.stanford.edu/wp-content/papercite-data/pdf/dynsSDE.pdf
http://arxiv.org/abs/1807.09289
http://arxiv.org/abs/1807.08912

	I Introduction
	II Safety and Stability under Model Learning via Stochastic CLF/CBFs
	II-A Stochastic Control Lyapunov Functions for Switched Systems
	II-B Stochastic Control Barrier Functions for Switched Systems
	II-C Safety and Stability under Model Adaptation

	III Application to Fast Autonomous Driving
	III-A Validation of BALSA in Simulation
	III-B Comparing Different Modeling Methods in Simulation
	III-C Hardware Experiments on Martian Terrain

	IV Conclusion
	References

