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TrueRMA: Learning Fast and Smooth Robot Trajectories with
Recursive Midpoint Adaptations in Cartesian Space
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Abstract— We present TrueRMA, a data-efficient, model-
free method to learn cost-optimized robot trajectories over a
wide range of starting points and endpoints. The key idea
is to calculate trajectory waypoints in Cartesian space by
recursively predicting orthogonal adaptations relative to the
midpoints of straight lines. We generate a differentiable path
by adding circular blends around the waypoints, calculate the
corresponding joint positions with an inverse kinematics solver
and calculate a time-optimal parameterization considering ve-
locity and acceleration limits. During training, the trajectory is
executed in a physics simulator and costs are assigned according
to a user-specified cost function which is not required to be
differentiable. Given a starting point and an endpoint as input,
a neural network is trained to predict midpoint adaptations that
minimize the cost of the resulting trajectory via reinforcement
learning. We successfully train a KUKA iiwa robot to keep
a ball on a plate while moving between specified points and
compare the performance of TrueRMA against two baselines.
The results show that our method requires less training data to
learn the task while generating shorter and faster trajectories.

[. INTRODUCTION

Generating a robot trajectory for a movement between a
specified starting point and endpoint is typically divided into
two stages [1]: The first step is finding waypoints that form a
collision-free geometric path with a sampling-based motion
planner, while timestamps are added to the waypoints in a
second step. This approach assumes that suitable waypoints
can be found without considering the timing of the trajectory
execution. However, if the environment changes over time or
as a consequence of the robot movement, the stages can no
longer be treated as decoupled. Examples include collision-
free path planning in the presence of moving obstacles [2],
trying to transport a full drinking glass without spilling water
or keeping a ball on a plate during the movement of the
robot. While optimization-based planners [3], [4] can be
used to generate a single trajectory between two specified
points, we focus on the more challenging problem of learning
cost-optimized movements over a wide range of starting
points and endpoints. Once trained, learning approaches can
generate well-performing trajectories within a short amount
of time, which is especially important if the endpoint is not
known in advance. However, the gain in time comes along
with a potentially time-consuming and data-intensive training
phase.

Learning arbitrary trajectories is hard due to the high-
dimensional search space, a problem which is commonly
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Fig. 1: Trajectory generation with TrueRMA. The final
trajectory after two recursive adaptation steps is shown in
blue. The elements of an action vector ag » define the length
of the orthogonal adaptation vectors (shown in green).
S: starting point; E: endpoint; My »: adapted midpoints

known as the curse of dimensionality. Hence, the key to data-
efficient trajectory learning lies in the reduction of the search
space by incorporating knowledge of reasonable waypoint
distributions and time-parameterizations. TrueRMA is based
on the following assumptions:

¢ The predicted path is preferred to be short. For this
reason, TrueRMA starts with a straight line between
the specified starting point and endpoint.

« Waypoints should have similar distances and should
be evenly spread between the starting point and the
endpoint. As shown in Fig. [I] this can be achieved
by predicting orthogonal midpoint adaptations in a
recursive manner.

o With the aim of reducing cycle times, robot move-
ments for industrial applications are preferred to be
fast. Hence, we parametrize all trajectories to be time-
optimal with respect to the joint limits of the robot.

Given that the assumptions are valid, TrueRMA provides
an efficient way to reduce the dimensionality of the search
space. We demonstrate the efficiency of our approach by
comparing the data required to learn a ball-on-plate task
against two baselines: Direct prediction of waypoints and
prediction of adaptations relative to the current end-effector
pose. We note that the above-mentioned assumptions limit
the scope of applicability to some degree. TrueRMA works
best if spreading the waypoints evenly between the starting
point and endpoint is a reasonable strategy. It is not directly
applicable to tasks that require fast and slow segments within
a trajectory or complex path shapes like loops.

II. RELATED WORK

A. Motion Planners

TrueRMA is related to offline motion planners, as the aim
is to generate a trajectory specified by a starting point and
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Fig. 2: Overview of the system components

endpoint. However, traditional motion planners generate a
path for a single trajectory, while TrueRMA learns trajecto-
ries over a wide range of starting points and endpoints, which
allows fast waypoint generation at runtime. Given a list of
waypoints, a differentiable path can be produced by adding
circular blends [1], [5]. Examples for offline motion planners
are sample-based methods like probabilistic roadmap plan-
ners [6] and optimization-based algorithms. In [7], collision-
free paths are generated based on recursive midpoint adapta-
tions. Optimization-based motion planners include gradient-
based techniques like CHOMP [3] and gradient-free algo-
rithms like STOMP [4]. Gradient-based techniques require a
differentiable cost function, while gradient-free approaches
can handle arbitrary cost functions. TrueRMA is a gradient-
free method. The STOMP algorithm is the closest to our
approach. The basic principle is to generate a large number
of noisy trajectories based on an initial solution. The cost
function is evaluated for each noisy trajectory and an updated
trajectory is generated by weighting each trajectory inversely
proportional to its cost. The procedure is repeated in an
iterative manner. However, in contrast to our method, the
generated trajectories are not time-optimal. Instead, a fixed
trajectory duration is chosen. Assuming a fixed execution
time prevents the method from being applied for highly
dynamic tasks, as the robot needs a certain dynamic reserve
to execute potentially longer trajectories within the same
time. While the STOMP algorithm works in joint space,
TrueRMA predicts waypoints in Cartesian space.

B. Reinforcement Learning in Robotics

Deep reinforcement learning has been successfully applied
to a wide range of robot skills like grasping [8], locomo-
tion [9] or in-hand manipulation [10]. Dynamic movement
primitives (DMP) [11] have been proposed to learn discrete
and rhythmic movements. DMPs can be trained with the PI>
algorithm [12]. While DMPs generate smooth trajectories,
they are not guaranteed to be time-optimal.

III. SYSTEM OVERVIEW

The most important system components for trajectory
learning with TrueRMA are shown in Fig. 2| While the next
paragraph aims to describe the workflow as a whole, further

details on the individual components can be found in the
following sections.

Given a Cartesian starting point and endpoint of a trajec-
tory as input, a neural network predicts actions, which are
used to generate waypoints in Cartesian space. We present
three different strategies to generate these waypoints in chap-
ter As explained in chapter the path of a trajectory
needs to be continuously differentiable. Simply connecting
the generated waypoints with straight line segments leads
to discontinuous joint velocities and acceleration peaks.
After smoothing the path by adding circular blends around
the waypoints, equidistant waypoints are sampled from the
path. These waypoints are given to an inverse kinematics
solver, which returns the corresponding joint positions. Using
a method proposed in [1], we calculate a time-optimal
trajectory parameterization and sample joint positions and
velocities with a uniform time step in between points. The
trajectory is then executed by a physics simulator using a
joint trajectory controller. During training, the performance
of the trajectory is rated with a scalar reward, which is used
to improve the network predictions via reinforcement learn-
ing. The computation times for the individual components
are given in TABLE [I|

System component Computation time

Neural network (action prediction) < 1.0ms
Waypoint generation (TrueRMA) < 1.5ms
Smoothing (circular blends) < 0.5ms
Inverse kinematics solver ~ 50ms

100 ms - 260 ms
100 ms - 220 ms

Time-optimal parameterization
Trajectory simulation and reward calculation

TABLE I: Computation times for the three-dimensional ball-
on-plate task using a single CPU core of an Intel i5-7300U

IV. TRAJECTORY LEARNING
A. Formalization

We formalize trajectory learning as a one-step Markov
decision process (S,.A,R,), where S is the state space, A
is the action space and R, is the reward for action a. Using
model-free reinforcement learning, a policy 7 :S — A is
trained to map states s € S to those actions a € A that



maximize the expected reward. The policy is represented by
a fully-connected neural network with two hidden layers of
size [200, 100]. The state is composed of a starting point
and an endpoint in Cartesian space. With TrueRMA, each
waypoint is described by a fixed number of parameters. A
single action specifies all waypoints of a path, which means
that the dimensionality of the action space scales linearly
with the number of predicted waypoints. Both state space
and action space are continuous and normalized, meaning
that each element of the corresponding vectors is in the range
of [-1, 1]. Reward is calculated for each trajectory according
to a task-specific performance metric.

B. Implementation

We use the OpenAl Gym toolkit [13] to implement our
environment and Ray [14] for distributed training. The neural
network is trained using Proximal Policy Optimization (PPO)
[15], an on-policy actor-critic method, which is known for
its stability and reliability. The implementation of PPO is
provided by RLIib [16]. In order to make the comparison
with the baselines as fair as possible, we did not tune
hyperparameters.

V. PHYSICS SIMULATION

TrueRMA allows to optimize robot trajectories based on
their effects on the environment. We use PyBullet [17], a
general-purpose physics engine, to simulate a KUKA iiwa
robot and its surroundings. We note that the physics engine
can by replaced by real-world data collection in future work.

A. Inverse Kinematics Solver

Cartesian waypoints are converted to joint space by
an inverse kinematics solver. The waypoints are sampled
equidistantly from the smoothed path. We use a numeric
solver provided by PyBullet, which favors the solution that
is the closest to a given rest pose. By specifying a fixed rest
pose, we ensure a unique and deterministic return value for
each Cartesian waypoint despite the kinematic redundancy
of the manipulator. Singularities are avoided by restricting
the workspace accordingly.

B. Joint Trajectory Controller

The trajectory execution is performed by a constraint-
based joint trajectory controller which accepts position and
velocity setpoints. We run the physics simulator at a fre-
quency of 240 Hz. As the time-optimal trajectory is sampled
at the same frequency, setpoints can be commanded at each
simulation step.

C. Reward Calculation

During training, a scalar reward that indicates the perfor-
mance of the trajectory is calculated. The full state of the
environment during or after the trajectory execution can be
considered to calculate the reward. While TrueRMA does not
require a differentiable cost function, learning is accelerated
by providing a dense performance metric.

VI. WAYPOINT GENERATION

A. Generating Waypoints in Cartesian Space

Trajectory waypoints can either be predicted in Cartesian
space (also referred to as task space) or in joint space.
We discuss the pros and cons of both variants and explain
why TrueRMA predicts waypoints in Cartesian space. With
TrueRMA, each waypoint is defined by a fixed number of
parameters, meaning that the dimensionality of the action
space scales linearly with the number of waypoints and
the number of parameters per waypoint. Since the final
performance of a trajectory depends on all waypoints, reward
can only be given after executing the whole trajectory. The
reinforcement learning algorithm has to deal with a so-called
credit assignment problem [18]. Reducing the dimensionality
of the action vector simplifies the problem, thus making the
training phase less data-intensive. A waypoint in Cartesian
space can be described by three coordinates (X, y, z) and three
angles (roll, pitch, yaw). Dependent on the specific task, the
dimensionality might be reducible by setting a fixed value for
a specific dimension (e.g. a fixed yaw rotation can be used
when balancing a ball on a plate). Moreover, as explained
below, the dimensionality can be further reduced by predict-
ing orthogonal adaptations. When working in joint space,
one dimension per joint is required to define a waypoint.
The KUKA iiwa robot, which is used for our experiments,
has seven degrees of freedom, meaning that seven instead
of six dimensions are required to define a waypoint in joint
space. However, when working in Cartesian space, there are
two things to be aware of: Firstly, if a robot is kinematically
redundant, a pose in Cartesian space can be expressed by
multiple joint configurations. To avoid generating different
trajectories for equal Cartesian waypoints, we use an inverse
kinematics solver that returns a unique joint configuration for
a given end-effector pose. Secondly, it must be ensured that
a solution of the inverse kinematics exists for each potential
Cartesian waypoint. We address this issue by restricting the
workspace of the robot accordingly.

B. Recursive Midpoint Adaptations

An illustrative example for recursive midpoint adaptations
is shown in Fig. [I] The basic idea is to predict adaptations
relative to the midpoint of a straight line between a specified
starting point and endpoint. The adapted midpoint splits the
path between the starting point and endpoint into two new
straight line segments. By applying the strategy recursively, a
path consisting of 2V + 1 waypoints can be generated within
N iterations. Fig. [3] illustrates the recursive approach by
means of a binary tree. Apart from the leaves, each node
represents a single midpoint adaptation. In the last step, a
new path between the starting point and endpoint is generated
by concatenating the adapted midpoints as illustrated by the
blue arrows. When predicting orthogonal adaptations, the
number of parameters per waypoint can be reduced by one.
While the reduction of the search space simplifies learning,
shapes like loops or back-and-forth motions are no longer
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Fig. 3: Binary tree representation of recursive midpoint
adaptations for N = 2. The blue arrows indicate how the
waypoints are put together to form a path.

S: starting point; E: endpoint; My »: adapted midpoints

possible. Fig. ] shows two randomly generated paths for the
planar case of orthogonal midpoint adaptations.

S S

Fig. 4: Planar paths generated by a random agent with
TrueRMA after N = 3 iterations. The initial straight line is
shown in black.

Note that when using orthogonal adaptations, the adapted
midpoint is equidistant to both ends of the corresponding
straight line. As can be seen in Fig. [5] the baselines allow
arbitrary path shapes.

1) The planar case: In the planar case, one parameter is
required to describe a two-dimensional Cartesian point. The
absolute value of the parameter linearly scales the length of
the orthogonal adaptation vector, while the sign specifies the
direction. In case that the adapted midpoint would lie outside
of the specified workspace, the length of the adaptation
vector is reduced until the adapted point lies on the boundary.
We define the maximum length of the orthogonal adaptation
vector to be half of the length of the straight line.

2) The three-dimensional case: In the three-dimensional
case, two parameters specify an adaptation within a plane.
The plane is defined by the unmodified midpoint and the
direction of the straight line, which serves as a normal
vector. The parameters are polar coordinates within the
plane, meaning that one parameter determines the length
of the adaptation vector, while the other specifies an angle
in relation to an arbitrarily chosen reference direction. The
reference direction is chosen in the following way: We define
a fixed point outside the workspace and calculate Pz, the
point on the plane with the smallest distance to the fixed
point. The line between the unmodified midpoint and P
defines the reference direction.

3) Orientations: Each Cartesian orientation (roll, pitch,
yaw) is treated as an independent, one-dimensional variable.
One parameter is required per orientation. The value of the
adaptation depends on the parameter and on the length of

the corresponding straight line. Note that adaptations for
orientations are one-dimensional.

C. Baselines

Two different baselines are implemented in order to assess
the performance of TrueRMA. When using the absolute
prediction baseline (“TrueAbs”), actions directly define co-
ordinates of waypoints in Cartesian space. With the relative
prediction baseline (“TrueRel”), actions define adaptations
relative to the current Cartesian pose of the end-effector. In
both cases, the final path is composed of the starting point,
the predicted waypoints and the endpoint. Fig. [6] illustrates
the functional principle of the baselines for a planar path
with three intermediate waypoints.

§< é E E
S S
(a) TrueAbs

(b) TrueRel

Fig. 5: Planar paths with seven intermediate points generated
by a random agent.

(b) TrueRel

Fig. 6: Planar paths with three intermediate waypoints
specified by six parameters ag_ 5.

VII. TRAJECTORY GENERATION

A. Smoothing by Adding Circular Blends

Given the Cartesian waypoints from chapter [VI] a differen-
tiable path is generated by connecting circular blends around
the waypoints with straight line segments. The method and
its mathematical foundations are described in [1]. While [1]
performs smoothing in joint space, we add circular blends
in Cartesian space. Note that due to the circular blends, the
smoothed path slightly deviates from the given waypoints.
As shown in Fig. smoothing is required to avoid high
joint accelerations and jerks.
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Fig. 7: Examples for Cartesian path generation and time-optimal parameterization for the planar case. All metrics are
normalized to their boundary values. Missing joints are omitted to preserve a clear overview.

Left: Without adding circular blends, both acceleration and jerk limits are exceeded. Middle: When adding blends with small
radii, the parameterization complies with the limits but low joint velocities are required near to the predicted waypoints.
Right: Adding blends with greater radii enables fast and smooth trajectory execution.

B. Time-optimal Parameterization
A parameterization is time-optimal with respect to speci-
fied limits, if at least one joint is constrained by the limits
at each point in time. The time-optimal parameterization is
computed with a method proposed in [1], which supports =
velocity and acceleration limits. Although jerk and torque >
boundaries are not explicitly considered, the corresponding

limits were not exceeded in our experiments. Given a fixed
set of waypoints in joint space, a unique parameterization
is computed. Hence, the neural network does not have to
predict the timing of the trajectory. While the joint velocity

and torque limits are officially provided by KUKA [19], ball touch the boundary of a board. Fig. [§] shows the
acceleration and jerk limits are not publicly available. There- environment for both cases. In the two-dimensional case, the
fore, we resort to the values of a comparable Franka Emika robot moves inside a plane with a size of 0.85m x 0.3 m.
Panda robot [20]. The workspace of the three-dimensional case is a cuboid with
dimensions of 0.85m X 0.3m x 0.2m. The areas edged
in black visualize potential starting points and endpoints.
A. Specification of the Ball-on-Plate Task During training, the robot is allowed to move from left to

We evaluate our method with a two-dimensional and three-  right as well as the other way round. Seven intermediate
dimensional ball-on-plate task. The goal is to move between  waypoints are predicted. Further visualization is provided
a specified starting point and endpoint without letting a  in the accompanying video. In the two-dimensional case,

Fig. 8: Two and three-dimensional ball-on-plate task.

VIII. EVALUATION



—— TrueRMA

Absolute Prediction (TrueAbs)

—— Relative Prediction (TrueRel)

—4 5
E —_—

= 31 5

s v 4

2 £

327 =
%14\——-\“ 83_

2 S i

o

. . 2 . .
.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
Sample steps 1e5 Sample steps 1le5

Three-dimensional case

o 1.0

E - 907

= ©

S s

> bt

g0 c 0

T ©

[« [J]

3 =

[e]

€ 0.0 —=—— -50 . .
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Sample steps 1e5 Sample steps 1e5

o 1.0 50

2

E o] "

2 5 251

< =

20.51 2 o

8 . s —251

@ 0.0 — —50 | | |
0.0 2.5 5.0 0.0 2.5 5.0 7.5

Sample steps le4 Sample steps 1le4

w

N

N

0 : " 1 . -
0.0 2.5 5.0 7.5 0.0 2.5 5.0 7.5
Sample steps le4d Sample steps 1le4

fany

N W A~ U,

Mean time [s]

N

Mean length [m]

Two-dimensional case

Fig. 9: Evaluation criteria of the ball-on-plate task plotted against the progress of the training.

pitch angles are adapted, while roll and yaw angles are set
to fixed values. Thus, TrueRMA requires two parameters
per waypoint. When moving in three-dimensions, the roll
angle is adapted as well, leading to four parameters per
waypoint. In both cases, the baselines require one additional
parameter per waypoint. Reward is assigned according to the
cost savings of the adapted trajectory compared to a straight
line movement. The cost is defined as the average distance
of the ball from the midpoint of the board multiplied by the
execution time of the trajectory.

B. Evaluation Criteria

The results of the training process for the two and three-
dimensional case are shown in Fig.[0]and in the accompany-
ing video. Each sample step corresponds to a single trajectory
execution. Four different evaluation criteria are selected:

1) Boundary hit rate: The boundary hit rate represents the
probability that the ball hits the boundary during trajectory
execution. Since the goal of a ball-on-plate task is to keep
the ball on the plate, the boundary hit rate is the clearest
indicator for the performance of a balancing policy. As can
be seen in the left part of Fig. [0] all methods manage to
keep the ball on the plate. However, significantly less data is
required when using TrueRMA. To achieve a hit rate of less
than 10 % in the three-dimensional case, TrueRMA required
27 000 trajectory execution, while the absolute prediction
baseline and the relative prediction baseline required 69 000
and 112 000 trajectory executions, respectively.

2) Mean reward: The reward is specified as the per-
formance gain compared to a straight line movement. A
reward of zero means that the generated trajectory performs
as well as a straight line movement. Fig. O] shows that the
performance of TrueRMA rises significantly faster than the
performance of the baselines. However, TrueRMA converges

at a lower final reward, meaning that the baselines perform
better if sufficient data is available. The results are plausible,
since the baselines can learn arbitrary path shapes, while
TrueRMA restricts the search space to accelerate learning.

3) Mean trajectory length and execution time: Compared
to the baselines, TrueRMA generates the shortest trajectories.
This outcome is reasonable as the search is initialized from
a straight line, which is the shortest possible path. As can
be seen in Fig. [5] the absolute prediction baseline starts with
very long trajectories. However, after training for a suffi-
ciently long time, relatively short trajectories are generated.
The trajectories generated by TrueRMA are the fastest, which
is plausible as they are shorter. We note that the learning
process aims to optimize both balancing performance and
execution time, which means that faster trajectories do not
necessarily lead to a higher reward.

IX. CONCLUSIONS

We presented a workflow to learn smooth and fast robot
trajectories in Cartesian space and evaluated three different
methods to generate waypoints based on network predic-
tions. All three methods succeeded in keeping a ball on
a plate while moving between specified points. However,
significantly less training data was required when predicting
orthogonal midpoint adaptations.

In future work, we intend to evaluate the performance of
our approach for learning collision-free trajectories in the
presence of moving obstacles.
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