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Abstract— We present a contact-implicit trajectory optimiza-
tion framework that can plan contact-interaction trajectories
for different robot architectures and tasks using a trivial
initial guess and without requiring any parameter tuning.
This is achieved by using a relaxed contact model along with
an automatic penalty adjustment loop for suppressing the
relaxation. Moreover, the structure of the problem enables
us to exploit the contact information implied by the use of
relaxation in the previous iteration, such that the solution
is explicitly improved with little computational overhead. We
test the proposed approach in simulation experiments for non-
prehensile manipulation using a 7-DOF arm and a mobile robot
and for planar locomotion using a humanoid-like robot in zero
gravity. The results demonstrate that our method provides an
out-of-the-box solution with good performance for a wide range
of applications.

I. INTRODUCTION

The introduction of contacts into a trajectory optimization
problem leads to non-smooth dynamics and thus precludes
the use of gradient-based optimization methods in a vari-
ety of robot manipulation and locomotion tasks. Therefore,
much work has focused on mitigating the discrete nature of
contacts by developing appropriate models which enable the
optimization to reason about contacts. For this purpose, [1, 2]
propose to solve a nonlinear program with complementarity
constraints. In [3], complementarity- and penalty-based con-
tact models are used in a similar numerical scheme. [4, 5]
present hierarchical strategies to increase the computational
efficiency through warm starting. In [6, 7], the complemen-
tarity condition is relaxed, and methods are presented to
improve the integration accuracy of the dynamics. Mordatch
et al. [8, 9] solve a convex program with soft constraints that
model the dynamics with contacts by compromising physical
realism. In [10], a time-stepping scheme with a smoother
variant of the complementarity constraints is proposed, and
iterative linear quadratic regulator (iLQR) [11] is employed
to solve the problem near real-time. Similarly, [12] proposes
a bi-level optimization based on iLQR with implicit hard-
contact constraints. iLQR is also used in [13, 14] but with
an explicit smooth contact model, in which the contact force

This material is partially based upon work supported by National Science
Foundation under Grant Nos. 1451427, 1544895, 1928654. The contribution
outlined in this paper was implemented while A.Ö. Önol was an intern
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Fig. 1. Applications considered in this study: (a) 1-DOF pusher-slider
system for a visual analysis of the problem, (b) a 7-DOF robot arm pushing
a box, (c) a mobile robot pushing a box, and (d) locomotion in zero gravity.

is a function of the distance, so that dynamic motions for a
quadruped robot can be planned in real-time.

While smooth models facilitate convergence, they also
lead to physical inaccuracies and are quite difficult to tune.
With this in mind, we previously proposed a variable smooth
contact model (VSCM) [15] in which virtual forces acting
at a distance are injected to the underactuated dynamics
with rigid-body contact mechanics. The virtual forces are
exploited to discover contacts and minimized throughout the
optimization. Consequently, physically-feasible motions are
obtained while maintaining fast convergence. Additionally,
shooting methods, such as iLQR, are typically sensitive to
the initial guess [16]; thus, in [17], we proposed a variant of
the successive convexification algorithm that was originally
proposed in [18, 19] and showed that it outperforms iLQR for
a contact-implicit trajectory optimization (CITO) problem.
The use of the VSCM and the successive convexification
algorithm (SCVX) significantly mitigates the sensitivity to
the initial guess and the burden of tuning by reducing the
number of tuning parameters to one, namely a penalty on the
virtual stiffness. Nevertheless, it may be required to tune this
penalty when the task or the robot is changed; and without
extra tuning, abrupt changes may occur in the planned
motions even with minor task modifications. Moreover, the
resulting contacts are usually impulsive due to the structure
of the contact model.

In order to address these issues, we introduce a penalty
loop approach for CITO that is analogous to state-of-the-
art trajectory optimization methods for collision avoidance
such as TrajOpt [20] and GuSTO [21]. In these methods,
the penalty on constraints is gradually increased so that the
optimization can be initialized with an infeasible trajectory
that is in collision. The robot links are eventually pulled
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out of collisions by following the gradients. For the CITO
problem, an infeasible trajectory corresponds to a motion
that completes the task by using non-physical forces that
act from a distance, namely the virtual forces. Hence, we
develop a method that automatically adjusts the penalty on
the relaxation parameters until a motion that completes the
task using only physical forces is found. In the CITO case,
the solution can be further improved by explicitly exploiting
the contact information from the relaxation. In other words,
the residual virtual forces indicate the position, time, and
magnitude of contact forces required to complete the task.
For this purpose, we develop a computationally-cheap post-
processing step that improves the solution.

We consider non-prehensile manipulation applications us-
ing a 1-degree-of-freedom (DOF) pusher, a 7-DOF arm, and
a holonomic mobile robot and a planar locomotion applica-
tion in zero gravity, see Fig. 1. We test the proposed approach
for various goal positions to demonstrate the robustness of
our framework. In all cases, the exact same configuration
of the pipeline is used with a trivial initial guess, in which
the robot stands still. To the best of our knowledge, this
is the first attempt to generalize CITO which is the main
contribution of this paper to the theory of optimization-based
planning of contact-interaction trajectories.

II. METHODOLOGY

A. Dynamic Model

The dynamics of an underactuated system with na actuated
DOF and nu unactuated DOF, subject to external forces due
to frictional rigid-body contacts and virtual forces generated
by the contact model is given by

M(q)q̈+ c(q, q̇) = ST
a τ +JT

c (q)λ c +ST
u λ v, (1)

where q , [qT
a ,qT

u ]
T ∈ Rna+nu is the configuration vector;

M(q)∈R(na+nu)×(na+nu) is the mass matrix; c(q, q̇)∈Rna+nu

represents the Coriolis, centrifugal, and gravitational terms;
Sa = [Ina×na 0na×nu ] is the selection matrix for the actuated
DOF and Su = [0nu×na Inu×nu ] is the selection matrix for
the unactuated DOF; τ ∈ Rna is the vector of generalized
joint forces; λ c ∈ R6nc is the vector of generalized contact
forces at nc contact points and Jc(q) ∈ R6nc×(na+nu) is the
Jacobian matrix mapping the joint velocities to the Cartesian
velocities at the contact points and λv ∈Rnu is the vector of
generalized contact forces on the unactuated DOF generated
by the contact model. In this paper, for n f free bodies in
SE(3) (e.g. objects or the torso of a humanoid), we set nu =
6n f . The state of the system is represented by x, [qT q̇T ]T ∈
Rn where n = 2(na +nu).

It should be noted that there are two types of contact
mechanics in this system: (i) frictional contact forces due
to physical contacts in the simulated world (i.e. contacts
detected by the physics engine) which are effective on all
DOF; and (ii) virtual forces due to the contact model which
are exerted only on the unactuated DOF, as explained in II-B.

In this study, the generalized joint forces are decomposed
as τ = τu+ c̃− J̃T

c λ̃ c, where c̃, J̃c, and λ̃ c are the estimations
of c(q, q̇), Jc(q), and λ c; and τu ∈ Rna is the vector of

control variables associated with the joint forces. This helps
to center the optimization problem in terms of the joint forces
by directly relating the control term to the acceleration.

B. Contact Model

The contact model considers np pairs of predefined contact
candidates on the robot (e.g. end-effector links) and in
the environment (e.g. the surfaces of an object). For each
contact pair, the magnitude of the virtual force normal to
the surface γ ∈ R+ is calculated by γ(q) = ke−αφ(q) using
the virtual stiffness k ∈R+, the signed distance between the
contact candidates φ ∈ R, and the curvature α ∈ R+. The
corresponding generalized virtual force acting on the free
body associated with the contact pair λ v ∈ R6 is calculated
by λ v(q) = γ(q)[I3 − l̂(q)]T n(q), where I3 is 3×3 identity
matrix, l is the vector from the center of mass of the free
body to the nearest point on the contact candidate on the
robot, l̂ is the skew-symmetric matrix form of l that performs
the cross product, and n ∈R3 is the contact surface normal.
The net virtual force acting on a free body is the sum of
the virtual forces corresponding to the contact candidates
associated with that body. As a result, the virtual forces
provide a smooth relationship between the dynamics of the
free bodies and the configuration of the system.

In the VSCM, the virtual stiffness values k ∈ Rnp are
decision variables of the optimization. Thus, the vector of
control variables is u , [τT

u , kT ]T ∈ Rm where m = na +np.

C. Trajectory Optimization Problem

A finite-dimensional trajectory optimization problem for
N time steps can be written in terms of state and control
trajectories X , [x1, ...,xN+1] and U , [u1, ...,uN ]; final and
integrated cost terms CF and CI ; and lower and upper control
and state bounds uL, uU , xL, and xU :

minimize
U

C(X,U),CF(xN+1)+
N

∑
i=1

CI(xi,ui) (2a)

subject to:

xi+1 = f (xi,ui) for i = 1, ...,N, (2b)
uL ≤ u1,...,N ≤ uU , xL ≤ x1,...,N+1 ≤ xU , (2c)

where xi+1 = f (xi,ui) describes the evolution of the nonlin-
ear dynamics over a control period i.

Locomotion and non-prehensile manipulation tasks can be
defined based on the desired torso/object configurations. In
this study, we use a weighted quadratic final cost in terms
of the deviations of the position and orientation of the free
body from the desired pose, pe and θe:

CF = w1 p2
e +w2θ

2
e , (3)

where w1 and w2 are the weights. To suppress all virtual
forces, the L1-norm of the virtual stiffness variables (i.e. an
exact penalty method [22]) is penalized in the integrated cost:

CI = ω||ki||1. (4)

The penalty ω is adjusted by the penalty loop algorithm, as
described in II-E.



D. Successive Convexification

The original successive convexification algorithm pro-
posed in [18, 19] is based on repeating three main steps in
successions: (i) linearizing non-convex constraints (e.g. the
nonlinear dynamics) about the trajectory from the previous
succession, (ii) solving the resulting convex subproblem
in a trust region to avoid artificial unboundedness due to
linearization, and (iii) adjusting the trust-region radius based
on the fidelity of the linear approximations.

The convex subproblem is given by:

minimize
δx1,...,δxN+1,δu1,...,δuN

L ,C(Xs +δX,Us +δU) (5a)

subject to:

δxi+1 = Aiδxi +Biδui for i = 1, ...,N, (5b)
xL ≤ xs

i +δxi ≤ xU for i = 1, ...,N +1, (5c)
uL ≤ us

i +δui ≤ uU for i = 1, ...,N, (5d)
||δX||1 + ||δU||1 ≤ rs, (5e)

where (Xs,Us) is the trajectory from the succession s; Ai ,
∂ f (xi,ui)/∂xi|xs

i ,u
s
i
; Bi , ∂ f (xi,ui)/∂ui|xs

i ,u
s
i
; δxi , xi− xs

i ;
δui , ui−us

i ; and r is the trust-region radius. Additionally,
virtual controls can be added to this problem to prevent
artificial infeasibility due to linearization [19].

The convex subproblem is a simultaneous problem, and
therefore has a larger size but a sparse structure, which
can be exploited by a suitable solver. After solving the
convex subproblem, we apply only the change of controls
instead of applying the changes for both states and controls.
The state trajectory is then recalculated by rolling-out the
dynamics. This modification prevents the accumulation of
defects (i.e. f (xi,ui)− xi+1) that may occur when using the
penalty approach in the original method as well as improves
the convergence speed by allowing larger trust regions in our
experiments. As a result, the modified method combines the
numerical efficiency of direct methods and the accuracy of
shooting methods. Although it does not have a convergence
proof, unlike the original algorithm, it is shown to provide
fast and reliable convergence for CITO in [17].

E. Penalty Loop

The SCVX is initialized with large virtual stiffness values
to enable the optimization algorithm to reason about contacts.
With judicious tuning, the virtual forces vanish yielding a
motion that solves the task by using only physical contacts
as the optimization converges. However, the penalty on the
virtual stiffness ω , plays an important role in this process.
While a small penalty may result in physically-inconsistent
motions due to leftover virtual forces, a motion that com-
pletes the task may not be found if the penalty is too large.
Although the tuning of this penalty is fairly straightforward,
it hinders the generalization of the method for a wide range
of tasks and robots. In order to address this issue, we propose
a penalty loop approach that adjusts the penalty similar to
a subgradient method [23]. Furthermore, the solution is im-
proved after each iteration through a computationally-cheap

post-processing stage by exploiting the contact information
embedded in the stiffness variables.

The proposed penalty loop approach is summarized in
Algorithm 1. In the first iteration, the SCVX is run with
a light penalty value. If the solution satisfies the pose con-
straints, the weight is increased to reduce the stiffness values;
otherwise, the solution is rejected and the weight is reduced
by the half of the previous change. Then, a post process
is performed on the optimal trajectory to attract the robot
links associated with the non-zero stiffness values towards
the corresponding contact candidates in the environment
using a pulling controller, which is outlined in II-F. This
process is carried out only if the average stiffness value is
below a threshold, which usually holds after the first iteration
in our experiments. The position constraint is normalized
with respect to initial position error such that the method
scales better to different orders of magnitude (meters for
locomotion versus centimeters in the manipulation task).

F. Post Process

After solving the SCVX at each penalty loop iteration,
the residual virtual stiffness variables indicate the position,
timing, and magnitude of forces required to complete the
task. To exploit this information, we develop a controller that
pulls the contact candidates on the robot associated with non-
zero stiffness variables towards the corresponding contact
candidates in the environment.

For a contact pair p and a control period i, the pulling force
f[p, i]∈R3 is calculated from the distance vector d[p, i]∈R3

and the associated virtual stiffness value k[p, i]:

f[p, i] = k[p, i]d[p, i]. (6)

Here, d is the vector from the center of mass of the contact
candidate on the robot to the point that is offset from the
center of the contact candidate in the environment. The
offset is initialized at d0 for the first penalty iteration and
reduced for the following iterations by dividing it by the
number of successful penalty iterations. This offset helps
reaching occluded surfaces in the environment. Alternatively,
a potential field approach may be used with repulsive forces
on the surfaces with zero stiffness values.

The corresponding generalized joint force vector τpull [i] ∈
Rna is calculated by:

τ pull [i] = ∑
np
p=1 JT

t [p, i]f[p, i], (7)

where Jt [p, i]∈R3×na is the translational Jacobian matrix for
the center of mass of the contact candidate on the robot.

To prevent the pulling force generating abrupt motions for
large stiffness values, a damping controller is applied to keep
the joint velocities close to the planned motion:

τdamp[i] = KvST
a M(q[i])q̇e[i], (8)

where Kv ∈ Rna×na is a positive-definite gain matrix, q̇e
is the deviation of the joint velocities from the planned
velocities and τdamp[i] ∈ Rna is the generalized joint forces
for damping. This computation can be done very efficiently
by using the sparse form of the inertia matrix.



Algorithm 1: Penalty Loop
Input : Initial state vector x1 and initial control trajectory U.
Output: Optimal state and control trajectories.
Data : Initial penalty value ω1 > 0, penalty step size

∆ωs > 0, initial position error p0
e , position tolerance

εp > 0, rotation tolerance εθ > 0, avg. stiffness
threshold for post processing kthreshold , max.
stiffness tolerance εk > 0.

j = 1, U j = U
repeat

Step 1 (X,U)← SCVX(U j,ω j).
Step 2 Calculate position error pe, rotation error θe, max.

and avg. stiffness values kmax and kavg.
if pe/p0

e ≤ εp∧θe ≤ εθ then
∆ω j← ∆ωs
ω j+1← ω j +∆ω j

if k j
avg ≥ k j−1

avg then
Reject the solution U j+1← U j, k j

avg← k j−1
avg ,

j← j+1, and go back to Step 1.
end

else
∆ω j←−∆ω j−1/2
ω j+1← ω j +∆ω j

Reject the solution U j+1← U j, k j
avg← k j−1

avg ,
j← j+1, and go back to Step 1.

end
if kavg < kthreshold then

Step 3 Apply the pulling controller:
(Xpp,Upp)← PC(x1,U).
Step 4 Perform the hill-climbing search:
(Xpp,Upp)← HCS(x1,U

j
pp).

Step 5 Recalculate pe.
if pe/p0

e ≤ εp then
Accept the post-processing step:
(X j+1,U j+1)← (Xpp,Upp).

else
Reject the post-processing step:
(X j+1,U j+1)← (X,U).

end
else

Accept the solution: (X j+1,U j+1)← (X,U)
end
j← j+1

until j > jmax∨ (kmax ≤ εk ∧ pe/p0
e ≤ εp);

return (X j,U j).

In Algorithm 1, applying these two steps is referred as
the pulling controller (PC). The inputs of the PC are the
initial state vector and the optimal control trajectory obtained
from the SCVX. The PC adds the pulling and damping
forces to the planned joint forces, i.e. τ = τ + τ pull + τdamp,
and outputs the resulting control and state trajectories. The
PC attracts virtually active robot links to the corresponding
contact candidates in the environment to facilitate physical
contacts. However, as the distances get smaller, the planned
stiffness values may lead to excessively large virtual forces.
To prevent that, we perform a naive hill-climbing search
(HCS) after applying the PC. In this step, non-zero stiffness
values are reduced by the change of the final cost divided
by the previous change as long as the nonlinear pose error
decreases. This step also helps to suppress virtual forces
explicitly, i.e. independently of the penalty increase.

III. APPLICATIONS

A. 1-DOF Pusher-Slider System

For a visual analysis of the problem, we evaluate the
proposed approach for a simplistic problem: a 1-DOF pusher-
slider system with a single time step of 1 s, see Fig. 1(a).
The task is to push the slider 20 cm forward (Task 1a), and
there is only one contact pair that consists of the tip of the
pusher and the front face of the slider.

B. Pushing with a 7-DOF Arm

Similar to [15, 17, 24], we test the method for pushing a
box on a table, see Fig. 1(b). For this application, we consider
a 7-DOF Sawyer Robot by Rethink Robotics. In addition to
pushing the box forward, which is the only task considered
in [15, 17, 24], the method is evaluated for side and diagonal
pushes as well, which are typically more challenging as the
robot must use the occluded faces of the object. In this
environment, there are four contact pairs between the side
faces of the box and the cylindrical end-effector flange of the
robot. The simulation time is 1 s, and the control sampling
period is 0.1 s. Three forward pushing tasks are considered
to move the box 5 cm, 10 cm, and 30 cm (i.e. Tasks 1b,
2b, and 3b). The goal of these tasks is to show that, even
with identical initialization conditions, the method performs
reliably for diverse problems, i.e. tasks that require gentle
contact interactions for slight motions or impulsive motions
to move the object out of the robot’s workspace. Moreover,
we evaluate the method to push the box 10 cm left and right
(Tasks 4b and 5b) as well as for a diagonal push to move
the box 20 cm forward and 20 cm left (Task 6b).

C. Pushing with a Mobile Robot

Another application studied here is non-prehensile manip-
ulation with a mobile robot. We consider a Human Support
Robot (HSR) by Toyota pushing a box using its velocity-
controlled, holonomic base, as shown in Fig. 1(c). There are
four contact pairs between the side faces of the box and
the cylindrical base of the robot. As the translational and
rotational velocities are bounded by ±2 m/s and ±2 rad/s,
a simulation time of 5 s and a control sampling period of
0.5 s are used for this application. A forward pushing task
to move the box 50 cm (Task 1c) and two diagonal pushing
tasks are considered. It is observed that when the default
friction coefficient of the physics engine (µ = 1) is used, the
robot heavily relies on the frictional forces for the diagonal
pushes, which seems unrealistic. In order to show that the
method is capable of avoiding that as well, we repeat these
tasks using µ = 0.1. Hence, Tasks 2c and 3c require to move
the box 20 cm forward and 20 cm left, and Tasks 4c and 5c
require to move the box 30 cm forward and 10 cm right.

D. Planar Locomotion in Zero Gravity

Lastly, the proposed framework is tested for a locomotion
application to demonstrate that it can make and break multi-
ple contacts simultaneously. We consider a planar, humanoid-
like robot with a prismatic torso and 2-DOF cylindrical arms
and legs. The environment has zero gravity which avoids



stability constraints allowing exact utilization of the proposed
framework. The task is specified in terms of the torso’s
desired pose which the robot can reach by using four static
bricks in the environment, as shown in Fig. 1(d). However,
as the motion is undamped without contacts, the robot must
also use contacts to slow down or stop. In this case, there
are 8 contact candidates in the environment that are the front
and rear faces of the bricks, and 4 contact candidates on the
robot that are the end links of the arms and the legs. These
candidates are paired based on the sides, so that there are 16
contact candidates in total. Indeed, the legs are never used
in the tasks considered here but are added in order to show
that the proposed method can immediately reject superfluous
virtual stiffness variables as well as its capability of handling
many contact pairs. For this application, the simulation time
is 2 s, and the control sampling period is 0.1 s. We consider
two tasks to move the torso forward 70 cm and 100 cm, i.e.
Tasks 1d and 2d. Tasks 3d, 4d, 5d, and 6d require to move
the torso 70 cm forward and 20 cm right, 100 cm forward
and 20 cm left, 90 cm forward and 25 cm left, and 40 cm
forward and 20 cm right, respectively.

IV. SIMULATION EXPERIMENTS

A. Software Implementation
We simulate the dynamics in MuJoCo [25] since it is found

to be advantageous for rigid-body dynamics with contacts
[26] and employs a smooth contact model that facilitates
the gradient-based optimization [27]. The large-scale, sparse
solver SQOPT [28] is used to solve the convex subproblem in
(5) which has a large and sparse equality constraint (5b) and
a sparse quadratic cost with only 6 non-zero elements. The
distance between contact candidates and the nearest point
on the robot are calculated by the Gilbert-Johnson-Keerthi
algorithm [29] implemented in FCL [30]. The derivatives
of the dynamics are approximated by central differences.1

However, it is possible to make this process more computa-
tionally efficient and accurate using the analytical derivatives
developed in [31, 32]. Computations are run on a workstation
with Intel Core i7-6700K processor.

B. Parameter Values
In all cases, the same parameter values and initial seed

are used. The weights in the final cost (3) are w1 = 104

and w2 = 1. We use a trivial initial guess with zero joint
force values τu = 0 (i.e. the robot does not move) and
large stiffness values k = 10 N/m. The upper bound for the
stiffness variables is 20 N/m and α = 10. In the penalty loop
algorithm, the initial penalty value ωs = 0.1, the penalty step
size ∆ωs = 1.5, and the average stiffness threshold is 2 N/m.
The tolerance values are selected as εp = 30%, εθ = 1 rad,
and εk = 0.1 N/m, yet they can be tightened as needed for
the application. For the post-process stage, Kv = 2.5I and
the initial offset distance, d0 is arbitrarily selected as 5 cm
but the procedure is not sensitive to this value. In the HCS,
the initial step size is 0.1 N/m, and the step size and cost
tolerances are 10−3 are 10−2.

1The code is available at https://www.merl.com/research/license#CITO.

Fig. 2. Change of the cost function over control variables for the 1-DOF
pusher-slider system and the progress of the penalty loop algorithm.

C. Visual Analysis

Figure 2 depicts the cost function with respect to the
control variables as well as the progress of the proposed
method for the 1-DOF pusher-slider system. The large blue
band shows that the cost is mostly flat when the physical and
virtual forces are zero. In other words, it is difficult for the
gradient-based optimization to find a motion that completes
the task without a reasonable initial guess. However, the
virtual force relaxes the problem by providing steep gradients
from the trivial initial guess, and the SCVX accomplishes
the task using mostly the virtual force in the first penalty
iteration. Moreover, after each iteration the solution is im-
proved substantially by the pulling controller that gets the
robot closer to the box and by reducing the virtual stiffness
using the HCS. Consequently, a motion that satisfies the task
constraints by using only physical forces is obtained.

D. Results

For all applications, except for the pusher-slider system,
we evaluate the method for several goal poses in the
workspace. Please see the accompanying video2 for the
resulting motions. Here, the progress of the algorithm over
penalty loop iterations is presented in terms of the penalty
over the relaxation, the average and maximum stiffness
values, and the pose error. Figures 3, 4, and 5 demonstrate
the results for all applications and tasks. These results show
that in all cases, the planner finds a motion that satisfies the
pose constraints (i.e. the normalized position error is below
30% and the rotation error is below 1 rad) and the stiffness
values always converge to zero owing to the exact penalty
function in (4). Furthermore, the average stiffness is usually
reduced below the threshold in only one iteration.

For the 7-DOF arm tasks, the computation times averaged
over penalty loop iterations and tasks for solving the convex
subproblems, applying the post process, and calculating the
derivatives are 2.05 s, 0.05 s, and 7.23 s, respectively, and
the average number of penalty iterations for these tasks is 5.
Namely, one can plan a wide range of pushing motions for
a 7-DOF arm by using the proposed framework in about 10
s, when the analytic derivatives are integrated.

2The video is available at https://youtu.be/ GsuxuQEgPg.

https://www.merl.com/research/license#CITO
https://youtu.be/_GsuxuQEgPg


Fig. 3. Changes of (a) the penalty, (b) the average and maximum stiffness,
(c) position error, and (d) rotation error over penalty iterations for the 7-DOF
robot arm tasks.

The video shows that the proposed method can find
motions with maintained contacts for sensitive pushing tasks
(e.g. Task 1b) as well as highly-dynamic behaviors with
impact-like contacts (e.g. Task 3b), and there are no abrupt
changes in the behavior in between. Furthermore, the fric-
tional forces are extensively used for the side pushing tasks
although they are not considered in the contact model. This
is owing to the fact that once a contact is made, the gradients
make it possible to also reason about the tangential forces.
Thus, the proposed approach is not limited to the utilization
of normal contact forces.

For the mobile robot application, solving the convex
subproblems, applying the post process, and calculating the
derivatives take 0.91 s, 0.14 s, and 25.81 s in average,
and the average number of penalty iterations is 4.6. In this
application, the frictional forces are used substantially for
the diagonal pushes for the default friction value (i.e. Tasks
2c and 4c), as shown in the video. However, lowering the
friction coefficient yields similar convergence characteristics,
see Fig. 4(a), albeit different motion patterns that mostly rely
on normal forces to move the box will occur.

It is noteworthy that the algorithm cannot always find a
solution that satisfies the pose constraints in the first iteration
(i.e. for Tasks 1b, 6b, 1c, 2c, and 3c). However, it overcomes
this by reducing the penalty and allowing the virtual stiffness
to increase. Additionally, in some cases (e.g. Tasks 5b and
6b), the penalty is reduced if the fixed step size ∆ωs = 1.5
is too large.

The most computationally expensive application is the
planar locomotion with the average times of 38.97 s, 0.57 s,
and 51.66 s for solving the convex subproblems, applying
the post process, and calculating the derivatives and the
average number of iterations of 5.2. The similar computation
times for the post process indicates that this step scales
well with the size of the problem. However, solving the
convex program takes a significantly longer time for the
locomotion problem, which can potentially be improved by
using a customized convex programming solver. Obviously,
the generality of the proposed framework comes at the cost of

Fig. 4. Changes of (a) the penalty, (b) the average and maximum stiffness,
(c) position error, and (d) rotation error over penalty iterations for the mobile
robot tasks.

Fig. 5. Changes of (a) the penalty, (b) the average and maximum stiffness,
(c) position error, and (d) rotation error over penalty iterations for the planar
locomotion tasks.

increased computational cost, and real-time implementation
remains unlikely. Nevertheless, it is possible to use the
penalty loop approach for offline planning and then executing
the resulting trajectory by running SCVX or iLQR in a
receding horizon fashion.

V. CONCLUSION

In this paper, we have presented a generalized contact-
implicit trajectory optimization framework that can be used
for a wide range of applications and tasks with the same
trivial initial seed and without any tuning. The proposed
algorithm automatically adjusts the penalty on the relaxation
parameters while explicitly improving solutions through a
post-processing stage that exploits the contact information
indicated by how the relaxation is used in the solution.
Our findings indicate that this formulation is generic and
applicable for a diverse set of problems as it can generate
motions with sensitive contact interactions as well as highly-
dynamic motions for a wide variety of tasks and robots. The
future work will focus on validating the resulting motions
by hardware experiments.
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