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Abstract— Whether a robot can perform some specific task
depends on several aspects, including the robot’s sensors and
the plans it possesses. We are interested in search algorithms
that treat plans and sensor designs jointly, yielding solutions—
i.e., plan and sensor characterization pairs—if and only if they
exist. Such algorithms can help roboticists explore the space
of sensors to aid in making design trade-offs. Generalizing
prior work where sensors are modeled abstractly as sensor
maps on p-graphs, the present paper increases the potential
sensors which can be sought significantly. But doing so enlarges
a problem currently on the outer limits of being considered
tractable. Toward taming this complexity, two contributions
are made: (1) we show how to represent the search space for
this more general problem and describe data structures that
enable whole sets of sensors to be summarized via a single
special representative; (2) we give a means by which other
structure (either task domain knowledge, sensor technology
or fabrication constraints) can be incorporated to reduce the
sets to be enumerated. These lead to algorithms that we have
implemented and which suffice to solve particular problem
instances, albeit only of small scale. Nevertheless, the algorithm
aids in helping understand what attributes sensors must possess
and what information they must provide in order to ensure a
robot can achieve its goals despite non-determinism.

I. INTRODUCTION

We currently approach robot sensors from the perspective
of consumers, purchasing whatever seems necessary from a
catalogue, then writing program code to make robots useful.
This perspective puts practical constraints up front: it is
influenced by technologies that are currently available, it
limits options to what can be fabricated cheaply and sold
profitably. Worse, it relies on roboticists to reason (often
only heuristically) about the information needed for a robot
to achieve its goals. If there is some notion of task structure,
reasoning about it is seldom formalized, and may be tied
to assumptions often taken for granted (e.g., for fixed price,
greater sensor precision is better). This paper approaches the
question of sensors from a more fundamental perspective—
asking how we might represent and explore conceivable
sensors. It is, therefore, of a more theoretical nature.

Which sensors are necessary depends on what your robot
wants to do. We study robots that act to attain goals while
managing uncertainty, formulating these precisely as plan-
ning problems, under worst-case non-determinism. Unlike
many papers entirely focused on finding plans, this paper
examines ways in which sensors affect whether a planning
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Fig. 1: A wheeled robot (as a blue disk) needs a charging station (the
lightning bolts), but is slightly lost (the uncertainty in its initial pose
is shown visually, as three possibilities). Unable to navigate stairs, it
must avoid those locations lest it topple down a stairwell. The robot
is able to recharge its battery despite the presence of uncertainty,
with the help of either a camera, a simple linear distance sensor, or
a short-range scanning lidar. (If bumping into walls is permitted, a
sensorless plan is possible as well.)

problem can be solved. The perspective is that sensor choices
alter the set of feasible plans, and we look at sensor/plan
pairs jointly. We examine the space of sensors that are useful
with respect to a specific given problem. These sensors,
indeed especially those that provide little information, can be
enlightening. Still, we do require they provide information
to make progress toward goals [1], even in the presence
of uncertainty. We are interested in exploring all sensors,
including even hypothetical ones, for which there exists some
goal-achieving plan.

Fig. 1 shows a simple didactic scenario illustrating multi-
ple aspects of the problem: a robot, uncertain about its initial
position and incapable of navigating stairs, needs to reach a
charging station. We give four exemplar sensors that, under
different plans, ensure goal attainment:

(i) a camera to distinguish red and gray helps to eliminate
uncertainty in the initial pose when following the top plan;

(ii) a robot with a distance sensor can disambiguate initial
position 2 from {1, 3}, since it observes that it is near the
wall after two forward moves only when it starts at 2, while
observing medium or far from the wall for {1, 3};

(iii) with a lidar sensor the robot can distinguish 3 from
{1, 2} since, after three forward moves from 3, it senses a
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different polygon from those of 2 and 3.
(iv) the vacuous sensor also suffices, albeit only under the

assumption of benign collisions, and with many steps.
The sensors do not all quash the uncertainty completely,

but they eliminate enough to reach the goal under different
plans. For example, the robot with a distance sensor never
resolves whether it came from 1 or 3 in executing the
corresponding plan. The robot with a lidar sensor does
not distinguish 1 from 2. But, in both cases, the robot
reaches a charger. There are also important differences in
the sensors’ fidelity. The camera divides all the locations
into three equivalent classes: a red location, a gray one, and
the white ones. In contrast, the distance sensor’s specification
tells us that middle range distance readings are noisy, failing
to separate medium and far distances from the wall crisply
(when the robot observes ‘med’, then it is either at a medium
or a far range from the wall; when obtaining ‘near’, it is close
to the wall).

Sensors can be modeled as the information they provide
for the plan. While previous works [2, 3, 4] regard sensors as
partitions over all events to be perceived, this paper is more
general, considering sensors as covers. Doing so requires
some care, including new representations and means to lessen
the combinatorial explosion that a naïve treatment entails.

II. MODEL

We study a setting depicted in Fig. 2. The robot is
equipped with a sensor, through which it receives obser-
vations from the world. Actions are chosen to alter states
according to the robot’s plan to, ultimately, reach some goal
states in the world. The sensor may have limited fidelity
and fail to distinguish different observations from the world.
The uncertainty in sensing is modeled via a type of function,
termed a sensor map. These elements are formalized in terms
of p-graphs and sensor maps that we outline below.

Fig. 2: An overview of the setting: the robot is modeled abstractly
as realizing a plan to achieve some goal in the world. The sensor
is modeled as a sensor map. Both the world and the plan have
concrete representations as p-graphs.

A. A p-graph and its interaction language
We start by defining p-graphs and related properties. For

more complete formal definitions, please see [5].

Definition 1 (p-graph [5]). A p-graph is an edge-labeled
directed bipartite graph G = (Vy ∪Vu, E, Y, U, V0), where
1) the finite vertex set V (G), whose elements are also called
states, form two disjoint subsets: the observation vertices
Vy and the action vertices Vu, with V (G) = Vy ∪ Vu;

2) each edge e ∈ E originating at an observation vertex
bears a set of observations Y (e) ⊆ Y , containing observa-
tion labels, and leads to an action vertex;

3) each edge e ∈ E originating at an action vertex bears
a set of actions U(e) ⊆ U , containing action labels, and
leads to an observation vertex; and

4) a non-empty set of states V0(G) are designated as initial
states, which may be either action states (V0(G) ⊆ Vu) or
observation states (V0(G) ⊆ Vy), exclusively.

We use the word ‘event’ to mean either an action or an
observation. Here, Y is assumed to be finite. A sequence of
alternating actions and observations, also called an execution,
can be traced in the p-graph, if there exists a path, starting
from some initial state, with the same number of edges and
each edge in the path bears the corresponding event. A p-
graph G describes a set of such event sequences.

One p-graph is used to model the world, another the robot.
Both p-graphs are coupled, resulting in a planning problem.
Sensors influence this coupling relationship by influencing
the distinguishability of observations made by the robot.
Conflations and corruptions of events are treated next.

B. Sensor maps

Definition 2 (observation/sensor maps [6]). A sensor map
on p-graph G is a function h : Y → P(X) \ {∅} mapping
from an observation in Y to a non-empty set of observations
X , where P(X) is the powerset of X .

If h maps y1 to {x1, x2, x3, x4} then, when event y1
happens in the world, the robot may receive any of those
four values as a sensor reading; further, we assume the choice
happens non-deterministically.

Given any subset of sensor readings X ′ ⊆ X as input
to (that is, observed or perceived by) the robot, the as-
sociated observations within the world W are related via
the preimages of X ′ under h, denoted by h−1(X ′) :=
{` ∈ Y (W ) | h(`) ∩X ′ 6= ∅}. Below, the notation for a
sensor map h and its preimage h−1 is extended in the usual
manner to p-graphs by applying the function to labels on
each observation edge, i.e., in the obvious way.

C. Planning problems and plans

Definition 3 (planning problem and plan). A planning prob-
lem is a p-graph W along with a goal region Vgoal ⊆ V (W );
a plan is a p-graph P equipped with a termination region
Vterm ⊆ V (P ).

Definition 4 (solves under sensor map). A plan (P, Vterm)
solves a planning problem (W,Vgoal) under sensor map h if
there is some integer which bounds the length of all joint-
executions of W and h−1〈P 〉, and for each joint-execution
and any pair of nodes (v ∈ V (h−1〈P 〉), w ∈ V (W )) reached
by that execution simultaneously, the following holds:
1) if v and w are both action nodes and, for every label

borne by each edge originating at v, there exist edges
originating at w bearing the same action label;

2) if v and w are both observation nodes and, for every
label borne by each edge originating at w, there exist edges
originating at v bearing the same observation label;

3) if v ∈ Vterm and then w ∈ Vgoal;



4) if v /∈ Vterm then some extended joint-execution exists,
continuing from v and w, reaching the termination region.

Property 1) and 2) define a notion of safety; 3) of cor-
rectness; 4) of liveness. Note that the sensor map, modeling
robot’s sensor in this paper, may affect the solvability of the
planning problem. In other words, we have to examine the
safety when searching for sensor maps.

D. Sensor design in a planning problem

Now we can define the central problem of the paper:

Problem: Joint-Plan-Sensor-Design (JPSD)
Input: A planning problem (W,Vgoal)

Output: All the sensor maps H, such that there exists
a plan (P, Vterm) to solve the planning problem
(W,Vgoal) under each sensor map h ∈ H.

III. COMPUTATIONAL ABSTRACTIONS FOR SENSOR MAPS

Sensor maps map observations to their images, while the
planning problem is defined in the preimage space. To solve
this problem, we will begin by considering an alternate form
in the preimage space for the sensor maps.

A. Equivalent representation for sensor maps

Any sensor map has an equivalent cover representation.

Theorem 1. For planning problem (W,Vgoal), any sensor
map h is equivalent to a cover up to plan solvability.

Proof. ⇒: Given any sensor map h, to see whether a plan
is a solution (cf. Def. 4), we must determine the preimage
h−1(x) = {` ∈ Y (W ) | h(`) = x} for single readings x.
Collect all the data associated with h, on the X , via

M = {h−1(x1), h−1(x2), . . . , h−1(xn)},
where X = {x1, x2, . . . , xn}. This is a multiset. But now
observe that where for any xi and xj we have h−1(xi) =
h−1(xj), we can construct a new sensor map by replacing xi
and xj with a new symbol x′. This new sensor map is also a
solution if and only if h is a solution for JPSD. Under this
new sensor map, no two readings in the sensor map share
the same preimage, and h−1 can be thus represented as set

C = {h−1(x1), h−1(x2), . . . , h−1(xn)},
where ∪xi∈Xh

−1(xi) = Y (W ). The set above is called a
cover for set Y (W ). Henceforth, we call the cover for sensor
map h an observation cover, denote it Ch. (It is a subset of
the powerset of Y (W ), i.e., Ch ⊆ P(Y (W )) \ {∅}.)
⇐: Having just showed that there exists a cover interpre-

tation for any sensor map h, we now construct a sensor map
for any observation cover. Suppose cover {S1, S2, . . . , Sk} ⊆
P(Y (W )) for set Y (W ) is given. Taking the first k natural
numbers for X , consider a label map h defined so that
y

h7→
{
i ∈ {1, 2, . . . , k} | y ∈ Si

}
.

Together, the cover Ch is an equivalent representation for
any sensor map h, up to plan solvability.

B. Operations on observation covers

Next, we give two operations on covers (projection and
intersection) that are useful for sensor maps.

The sensor map is a cover for all observations in the
planning problem. Only some small number of observations
may be applicable while at particular world states. We are
interested in how the observations in such a reduced set
conflate with each other. This is realized via an operation
that reduces the domain:

Definition 5 (cover projection). For cover C =
{G1, G2, . . . , Gn}, denote its domain by d(C) = ∪1≤i≤nGi.
Then the projection of C on any domain D is πD(C) =
{Gi ∩D|Gi ∈ C}.

We call sensor map πD(C) with reduced domain
d(C) ∩D a partial sensor map. The word ‘partial’ is apt
as the sensor map need not cover every observation in the
planning problem.

On the other hand, we are also interested in finding
all sensor maps with certain behavior on their restrictions.
Specifically, we desire to find all label maps which, when
given two partial label maps, agree with those label maps on
their projections. This comes from an intersection between
two partial sensor maps.

Definition 6 (cover intersection). For any two partial sensor
maps, expressed as cover C1 and C2, with the union of their
domains D = d(C1)∪d(C2), then let D be all covers1 whose
domain is D. Then the intersection of C1 and C2, denoted
C1uC2, is defined so that ∀C ′ ∈ D, we have C ′ ∈ C1uC2,
if and only if

(a) d(C ′) = d(C1) ∪ d(C2), and
(b) πd(C1)(C

′) ⊆ C1 and πd(C2)(C
′) ⊆ C2.

Note that u is associative and that C1 u ∅ = ∅ for any
cover C1. When no cover that satisfies (a) and (b) above,
then C1 uC2 = ∅. We say that C1 is compatible with C2 if
C1uC2 6= ∅. We will also lift this notation to the intersection
of lists of covers. In writing L1 u L2 for two lists of covers
L1 and L2, we mean L1 u L2 = ∪C1∈L1,C2∈L2

C1 u C2.

IV. JOINTLY SEARCHING FOR SENSOR DESIGNS & PLANS

First, we construct a robot’s belief tree and then give
approaches to search for all sensor designs and plans in it.

A. The belief tree under different sensor maps and actions

The robot’s plan must manage uncertainties owing to
initial ignorance, action non-determinism, and sensor imper-
fection. The robot’s belief expresses this uncertainty, which
we represent as a set of states. Without this, the robot may
violate plan safety by trying to execute some action that is
not possible in its actual state. The dynamics of the belief
will be captured by a finite tree structure, where each vertex
lists a set of world states, the robots’ belief. Plans need only
visit each belief vertex at most once.

1Throughout, variables in blackboard bold represent a list of covers.



Theorem 2. Let W be the set of estimated world states for
the robot’s belief. For any sensor design h ∈ H, where H
is a set of sensor maps for JPSD, if there exists a plan
that solves the planning problem under h, then there exists
another plan, also a solution, that visits W at most once
under h.

Proof sketch. Construct a plan by shortcutting directly to the
last visit to W under the same sensor map.

Let A(w) be the set of outgoing events for vertex
w ∈ V (W ). Then the belief tree, a sketch of which appears
in Fig. 3, can be constructed as follows:
. Initialization: An initial vertex W0 of the same vertex

type is created for the set of initial world states V0(W ).
. Expanding action vertex W: Collect the common ac-

tions as U(W) = ∩w∈WA(w), i.e., the set of actions
each of which is available at every state in W . Now,
for any action a ∈ U(W), consider the transition

W {a}−−→ W ′. If the set of world states W ′ has not
appeared earlier in the path from W0 to W , add new
belief vertex W ′ connected via an edge bearing {a}.
Otherwise, add transition fromW to a vertexWdummy to
avoid expanding the same belief vertex multiple times.

. Expanding observation vertex W: Let all possible ob-
servations at the states in W be Y (W), i.e., Y (W) =
∪w∈WA(w). As before, construct a transition from W
toW ′ ifW ′ is new, or toWdummy otherwise. But now do
this, not just the singletons, but for every G ⊆ Y (W).

. Goals in the tree: Mark W a goal state, if W ⊆ Vgoal.
The belief tree is finite. Any sensor map and goal-

achieving plan are a subtree that satisfies the following:
(i) Goals are achieved: the leaf vertices in the subtree are

all in the goal region;
(ii) Readiness to receive all observations: the outgoing

labels at a particular observation vertex in the subtree
cover all outgoing events in the original belief tree;

(iii) Discernment is consistent: the subset of observations in
the tree is universal, i.e., if {o1, o2} appears on any edge
of the subtree, then it will appear at every belief vertex
whose outgoing events contains both o1 and o2.

B. Searching for sensor designs and plans jointly

Next, we search this structure for sensor designs and plans
jointly, returning all appropriate sensor maps. While the tree
is constructed from the root down, this search bubbles from
the leaves back upwards.

For each belief vertexW , we will maintain a list of covers,
denoted by L(W), to record all the appropriate observation
covers in the subtree. When W is in the goal region, there
are no constraints on sensor maps from its subtree. Hence,
we create a new symbol ε 6∈ Y , and initialize its cover list to
L(W) = J{ε}K. This will make it compatible with any cover
when integrating with the goal-achieving sensor covers in a
bottom-up manner. For any non-goal belief vertex Wp (‘p’
stands for parent), we will construct its cover list from its
children. Let the outgoing events be {G1, G2, . . . , Gm} and

the corresponding child vertices be {Wc
1 ,Wc

2 , . . . ,Wc
m} (‘c’

for child). Then we have:
• If Wp is an action vertex, then each cover in any of its

children’s lists L(Wc
i ) is a valid one for Wp (under a

particular action choice), i.e., L(Wp) = ∪1≤i≤mL(Wc
i ).

• If Wp is an observation vertex, we must consider the
combinations from {G1, G2, . . . , Gm} that nevertheless
cover Y (Wp). Let K denote one such combination, then
K = {Gk1

, Gk2
, . . . , Gk`

}, where kj ∈ {1, 2, . . . ,m} and
∪1≤j≤`Gkj

= Y (Wp). Each edge labeled with Gkj
gives a

child vertexWc
kj

, where that child has a cover list L(Wc
kj
)

modeling the sensors that can reach the goal from Wc
kj

.
For a given combination K, representing a set of sensor
readings, we want to find all sensor maps, denoted as LK ,
that can generate K when projected to d(K), and is goal-
achieving for the subtrees starting from each child vertex
Wc

kj
. This is realized via intersection operations:

LK = ∪C1∈L(Wc
k1

),...,Cn∈L(Wc
kn

)K uC1u . . . Cm−1uCm.

The u operation guarantees the universality of the subsets
in the resulting cover. Let C be the set of all such
combinations, such that their labels cover Y (Wp). Each
combination K ∈ C gives a list of covers for the parent
vertex. So we update L(Wp) to value ∪K∈CLK .
By propagating the list of covers from the goal vertices

back upward until the initial belief vertex, we are able to
obtain all the covers from L(W0) where there exists some
plan for each cover in L(W0) toward the goal.

C. Compact representation with upper covers

In the data structure above, we need to maintain a list of
covers L(W) for each belief vertex W . The list can grow
very large. Luckily, we only need to maintain the largest
covers among the ones with the same domain. Every subset
of such covers is also a valid solution, so long as it is a
proper cover.

Theorem 3. If C is an observation cover in the solution of
JPSD, then for any C ′ ⊆ C, such that d(C ′) = d(C), there

Fig. 3: The robot’s belief tree. Action and observation vertices, visu-
alized as boxes and circles respectively, have different expansions.



exists a plan achieving the goal.

This theorem can be proved by showing that the subtree
without edges bearing subsets of events in C ′ \ C, still has
all leaf vertices as goals and sensor map as a valid cover.

Definition 7 (upper cover). Let C be a list of observation
covers, C is an upper cover in C if there does not exist any
cover C ′ ∈ C, such that C ′ ) C and d(C ′) = d(C).

According to Theorem 3, we only need to maintain a set
of upper covers in each L(W).

D. Empirical explorations of sensor maps

We implemented the algorithms in Python to search for all
sensor map solutions for the problem displayed in Fig. 4, a
modified version of the (Fig. 1) motivating example: a robot,
initially located at 1 or 2, moves to the charging station. The
robot can only move forward one or two steps, turn left or
right at the location 5 or the corner 6. The robot must avoid
bumping into the walls of the four offices A–D and also the
stairs. It must, thus, obtain information from its sensors to
reduce its uncertainty. To realize this scenario, we construct
a world p-graph with 22 states and 11 observations.

The algorithm outputs an upper cover with 767 entries.
By enumerating all subsets of the upper cover that covers
all the observations (Theorem 3), an enormous number of
sensor maps are produced. Among these, several are directly
recognizable sensors. For example, they include a sensor
map distinguishing every pair of positions, describing a
GPS device. The sensor partitioning the situations into those
before and after bumping into walls, could be realized as a
contact sensor.

Naturally, some of the sensor maps are inscrutable and
there are others for which not known hardware implemen-
tation could be discerned. For instance, the sensor isolating
cell 5 when facing west from cell 7 when facing north (e.g., a
distance sensor won’t work). This motivates the next section.

V. STRUCTURE AND FABRICATION CONSTRAINTS FOR
REALIZABLE SENSORS

The covers found via the preceding approach might be
thought of as a sort of ‘free object’, on which we may now
impose additional constraints. Specifically we’re interested
in including constraints that help model aspects pertinent to
realizable sensors.

A. Sensor map properties

We will start with the following properties:

Property 1 (Partition). Cover C = {G1, G2, . . . , Gn} is a
partition, if Gi ∩Gj = ∅ for any i, j ∈ {1, . . . , n}, i 6= j.

The label map for the camera in Fig. 1 is a partition, as
it divides the space into red, gray and white locations.

The next concept of interest is a notion of contiguousness,
but we need a more basic structure first.

Definition 8 (Neighbor). Relation N ⊆ Y × Y , written
y1Ny2, is a neighbor relation if it is reflexive and com-
mutative.

Fig. 4: A robot moves toward the charging station, while avoiding
stairs. The figure below shows the p-graph of this planning problem.

Property 2 (Contiguous). With neighbor relation N , then
C is the largest contiguous cover if (1) ∀y ∈ Y , {y} ∈ C;
(2) ∀G1, G2 ∈ C, G1 ∪G2 ∈ C ⇐⇒ ∃y1 ∈ G1,∃y2 ∈ G2,
such that y1Ny2. A given cover C is contiguous, if C ⊆ C.

The distance sensor in Fig. 1 has a contiguous sensor map
for the obvious neighbor notion, since its noise distribution
is contiguous.

Property 3 (output). Cover C is k-outputting, if |C| = k.

The cardinality of the sensor keeps track of total number
of output readings, a sort of notion of dynamic range.

Property 4 (overlap). A cover C = {G1, G2, . . . , Gn} is k-
overlapping, if ∀i, j ∈ {1, . . . , n} and i 6= j, |Gi ∩Gj | ≤ k.

This is a generalization of the partition property, quanti-
fying how much readings bleed into one another.

Property 5 (width). Cover C = {G1, G2, . . . , Gn} is k-wide
(or, has width k), if ∀1 ≤ i ≤ n, |Gi| = k.

The width of a cover gives a notion of precision, a sense
of the volume of noise, describing the number of events that
could account for a single sensor reading.

The properties above may also be combined in specifying
constraints on sensor maps.

All of the properties can be used either in (1) reducing the
sets generated, or in (2) filtering to discard those which vio-
late the constraints, as operators are applied. For instance, in
the first case, if searching for partitions only, then partitions
exclusively need be computed—a process easier to write and
faster to execute than the full cover case.

B. Empirical search for sensors under fabrication con-
straints

We included the properties described above in our im-
plementation and examined in the following scenario. A



robot moves along a cyclic track toward some goal, marked
by a star. The robot can move forward or backward at
different speeds at different parts of the track, which dis-
cretizes the track into 6 segments {s1, s2, . . . , s6} as shown
in Fig. 5. The angular range of segment si is denoted as
{oi} for i ∈ {1, . . . , 4}, and {oi, o} for i ∈ {5, 6}. The
overlap o is the common angular range for both s5 and s6,
arising from the kink. Now, the set of all observations is
Y = {o, o1, o2, . . . , o6}, where each observation represents
a range of angles.2 The neighbor relationship of these ob-
servations inherits from the circular neighbor relationship of
their angles as shown in the figure. Considering only forward
or backward actions, the robot, initially located at s1 or s3,
must move to reach the goal s5. To achieve this, the robot has
to reduce its uncertainty, and it does this via a VHF omni-
directional range (VOR) sensor. As shown on the right-hand
side of Fig. 5, the sensor measures the angular information
via a timer. The specification of the timer determines the
properties of the sensor map. Suppose we have a timer with
no noise, then it gives 1-overlapping contiguous sensor maps,
such as [{o2, o3, o4, o5}, {o5, o}, {o, o6, o1}]. There are only
2183 such sensor maps. But with a noisy timer, it generates
contiguous sensor maps, which leads to 235 807 observation
covers.

Fig. 5: A robot with a sensor equipped to determine angles moves
from its initial position toward the goal along a cyclic track.
The sensor is realized by a VOR-like beacon at the center, a
photo-electric sensor and a timer on the robot. The beacon has a
unidirectional blue light rotating at a fast constant angular velocity,
which is so fast that can be neglected with respect to robot’s
movement. It also emits an omnidirectional red light when the blue
light points North. The robot can determine angular information by
timing the difference between seeing red-red and red-blue flashes.

Consideration of the scenario above leads to the following:

Proposition 1. A noiseless sensor taking measurements on
a continuous or non-continuous space always gives a 1-
overlapping sensor map under discretization.

Proof. When there is no noise for the sensor, the sensor
map partitions the original continuous or non-continuous
measurement space. The task may only need a coarser
discretization of the measurement space. If every boundary
of the sensor map is a discretization boundary, then the
sensor map is still a partition on the discretized space. If
it is not, then there exists a sensor map boundary that falls
into one of the discretized observations. That observation is
shared by the preimage of only the readings separated by the

2Previously we pointed out that Y was finite; this is still true, though the
elements it contains are themselves infinite sets.

corresponding sensor map boundary. Hence, the maximum
overlap between subsets in the observation cover is 1.

VI. GENERALIZATION TO BELIEF STIPULATIONS

Some prior work has examined instances wherein a robot
should be stopped from knowing too much due to privacy
considerations [7, 8]. In these cases, one may pose con-
straints on robot’s belief; in our prior work this was achieved
via logical expressions [4]. To search for sensor maps and
plans that also satisfy these richer stipulations, the algorithm
above needs the following modifications:
• The belief tree should only contain belief vertices satisfy-

ing the stipulations, and the dummy vertex. We transition
to the dummy if the target belief violates the stipulations.
• We must expand the action vertex in the belief tree

over all subsets of actions in the plan instead of just the
singleton ones, since none of the singleton actions may
transition to the subtree that satisfies the stipulations in
each belief vertex.

VII. RELATED WORK

Approaches for automated design of robots have been the
subject of three recent workshops at RSS and ICRA over
the last 3 years [9]. Current research examines aspects of
hardware fabrication (e.g., 3D-printing [10] and prototyp-
ing [11, 12]), interconnection optimization [13], rapid end-
to-end development and deployment [14, 15], automated
synthesis (jointly for mechanisms and controllers) from
specifications of desired capabilities [16], and optimization
subject to functionality–resource interdependencies [17, 18].

A rich history of robotics research has examined the
information required to accomplish a particular task, includ-
ing specifically what sensors ought to provide [1]. Since
sensors can be costly and unreliable, important early papers
explored how one might forgo them entirely [19, 20]; other
work examined how one might reason about sensors to
establish that they do provide enough information [21, 22].
Our prior work [8] exploits properties of carefully conceived
sensors. We are interested in all possible sensors, including
hypothetical ones, that provide adequate information to solve
the planning problem. Imperfection in sensors is modeled as
conflation in the perceived events. This conflation is usually
considered to be transitive in existing work [22, 4, 23, 2, 24],
when reasoning about the information through the sensors.
This paper describes sensors via a sensor map representation
which can model non-transitive conflation, in the spirit
of [6, 5]. It contributes methods to search for all sensors
such that there exists a plan for each one to accomplish a
given task.

VIII. CONCLUSION

This paper explores the space of all sensors that provide
enough information to solve the planning problem for the
robots. The abstraction used for sensors is a generalization
of prior models. A notion of upper cover is proposed to
compress the representation and speed the search process.
Properties are introduced to express domain-knowledge re-
garding fabrication constraints for sensors.
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